Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorVillagran Munar, Edwin Andres
dc.contributor.advisorAcuña Caita, John Fabio
dc.contributor.authorOrtiz Rocha, Gloria Alexandra
dc.date.accessioned2023-11-28T14:22:37Z
dc.date.available2023-11-28T14:22:37Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85002
dc.descriptionilustraciones, diagramas, fotografías
dc.description.abstractEsta tesis se propuso abordar el desafío de diseñar y evaluar un sistema de climatización para optimizar el microclima de un invernadero tipo capilla con doble ventilación fija construido en el centro de investigación Tibaitata de la Corporación Colombiana de Investigación Agropecuaria - Agrosavia. Un análisis técnico y bibliométrico del estado del arte en estrategias de climatización para invernaderos. Adicionalmente se identificó la demanda energética de este invernadero y se evaluaron estrategias de optimización microclimática usando dinámica de fluidos computacional y seguimiento experimental en campo. Para cuantificar la demanda energética necesaria, se utilizó un modelo dinámico de balance de energía, considerando la presencia de heladas. El diseño propuesto incluye una pantalla térmica estratégicamente ubicada en el techo y dos paredes, junto con agua en un sistema de tubería negra en el suelo para maximizar la inercia térmica. Esta configuración busca optimizar la eficiencia energética sin depender de fuentes externas, asegurando condiciones microclimáticas ideales para el crecimiento de los cultivos. La evaluación experimental involucró mediciones de temperatura del suelo, de la cubierta, del aire y humedad relativa dentro del invernadero, así como la velocidad del viento, radiación, temperatura y humedad relativa en el exterior. Los resultados obtenidos revelaron que existe un interés activo por el uso de la energía solar y su almacenamiento, especialmente para su aprovechamiento en la condición más crítica, para lo cual se enfocó el modelo dinámico de bance de energía en las perdidas bajo la condición de helada, la aplicación de climatización generó un comportamiento térmico favorable con potenciales mejoras que fueron posible analizar gracias al uso de CFD. Estos resultados respaldan la eficacia del sistema diseñado en la mejora de las condiciones microclimáticas, subrayando su potencial para contribuir a la sostenibilidad y eficiencia en la producción agrícola bajo estructuras protegidas.
dc.description.abstractThis thesis aimed to address the challenge of designing and evaluating a climate control system to optimize the microclimate of a chapel-type greenhouse with double fixed ventilation, built at the Tibaitata research center of the Colombian Corporation of Agricultural Research - Agrosavia. A technical and bibliometric analysis of the state of the art in greenhouse climate control strategies was conducted. Additionally, the energy demand of this greenhouse was identified, and microclimatic optimization strategies were evaluated using computational fluid dynamics and experimental field monitoring. To quantify the required energy demand, a dynamic energy balance model was employed, considering the occurrence of frost. The proposed design includes a thermal screen strategically located on the roof and two walls, along with water in a black pipe system on the ground to maximize thermal inertia. This configuration aims to optimize energy efficiency without relying on external sources, ensuring ideal microclimatic conditions for crop growth. The experimental evaluation involved measurements of soil temperature, cover temperature, air temperature, and relative humidity inside the greenhouse, as well as wind speed, radiation, temperature, and relative humidity outside. The results revealed active interest in the use of solar energy and its storage, especially for utilization in critical conditions, focusing the dynamic energy balance model on losses under frost conditions. The application of climate control generated favorable thermal behavior with potential improvements that were possible to analyze through the use of CFD. These findings support the effectiveness of the designed system in improving microclimatic conditions, emphasizing its potential to contribute to sustainability and efficiency in agricultural production under protected structures.
dc.description.sponsorshipCORPORACIÓN COLOMBIANA DE INVESTIGACIÓN AGROPECUARIA - AGROSAVIA
dc.format.extent139 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::006 - Métodos especiales de computación
dc.subject.ddc010 - Bibliografía::011 - Bibliografías y catálogos
dc.subject.ddc500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados
dc.subject.ddc530 - Física::535 - Luz y radiación relacionada
dc.subject.ddc530 - Física::536 - Calor
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materiales
dc.subject.ddc690 - Construcción de edificios::697 - Ingeniería de calefacción, ventilación, aire acondicionado
dc.subject.ddc690 - Construcción de edificios::691 - Materiales de construcción
dc.subject.ddc690 - Construcción de edificios::693 - Construcción en tipos específicos de materiales y propósitos específicos
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
dc.titleDiseño asistido por computador de un sistema de climatización para invernaderos ventilados naturalmente en el trópico altoandino
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Agrícola
dc.contributor.researchgroupGti Grupo de Gestión en Tecnología E Innovación en Biosistemas
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería de Biosistemas
dc.description.methods2. Metodología 2.1. Análisis técnico y bibliométrico del estado del arte 2.2. Identificación de la demanda energética del invernadero en estudio 2.2.1. Descripción del invernadero en estudio 2.2.2. Consideraciones para el sistema de climatización 2.2.3. Definición de la demanda energética durante heladas con un modelo dinámico de balance de energía 2.3. Diseño mediante el uso de dinámica de fluidos computacional de un sistema de climatización para el invernadero en estudio 30 2.3.1. Configuración del modelo numérico en CFD 2.3.2. Simulación y optimización del sistema 2.3.3. Coeficientes de transferencia de calor calculados, temperatura superficial del sistema de tubería y condiciones climáticas externa 2.3.4. Independencia y calidad de la malla 2.4. Evaluación experimental 2.4.1. Recopilación de datos climáticos, micro climáticos y del sistema de climatización 2.4.2. Análisis estadístico
dc.description.researchareaConstrucciones e infraestructura rural y bioclimática
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesABNT. (2022). NBR 15220: Desempenho térmico de edificações Parte 2 - Componentes e elementos construtivos das edificações - Resistência e transmitância térmica. Associação Brasileira de Normas Técnicas, 1–58.
dc.relation.referencesAgropinos. (2019). Agroclear (p. 1).
dc.relation.referencesAhamed, M. S., Guo, H., & Tanino, K. (2018). Development of a thermal model for simulation of supplemental heating requirements in Chinese-style solar greenhouses. Computers and Electronics in Agriculture, 150, 235–244.
dc.relation.referencesAnsys. (2015). ANSYS ICEM CFD 16.2 Tutorial Manual. 15317(November), 1–1294. papers://d0b7ba82-564e-41a5-892d-096be28ddf10/Paper/p1477
dc.relation.referencesAttar, I., Naili, N., Khalifa, N., Hazami, M., & Farhat, A. (2013). Parametric and numerical study of a solar system for heating a greenhouse equipped with a buried exchanger. Energy Conversion and Management, 70, 163–173. https://doi.org/10.1016/j.enconman.2013.02.017
dc.relation.referencesBadia, M. (2022). Espesor pared tubería Acero Inoxidable según ASME B36.19M :: DNBrida. http://www.dnbrida.com/espesor-tuberia-acero-inoxidable-sch-asme-b36.19m.php
dc.relation.referencesBaeza, E., Ignacio Montero, J., Pérez-Parra, J., J. Bailey, B., Hernández, J. C., & Carlos Gázquez, J. (2014). Avances en el estudio de la ventilación natural.
dc.relation.referencesBaeza, E. J., & Kacira, M. (2017). Greenhouse technology for cultivation in arid and semi-arid regions. Acta Horticulturae, 1170, 17–29. https://doi.org/10.17660/ActaHortic.2017.1170.2
dc.relation.referencesBarilla. (2012). Barilla F22 Flat Plate by Fruitful Media Ltd - Issuu. https://issuu.com/fmltd/docs/barilla-f22-flat-plate
dc.relation.referencesBaxevanou, C., Bartzanas, T., Fidaros, D., & Kittas, C. (2008). Solar radiation distribution in a tunnel greenhouse. Acta Horticulturae, 801 PART 2(February 2014), 855–862. https://doi.org/10.17660/ActaHortic.2008.801.100
dc.relation.referencesBelov, V. V. V., Belov, E. L. L., & Sharonova, T. V. V. (2020). Evaluation of the effectiveness of a helio-greenhouse with soil heating. IOP Conference Series: Earth and Environmental Science, 604(1). https://doi.org/10.1088/1755-1315/604/1/
dc.relation.referencesBerroug, F., Lakhal, E. K. K., El Omari, M., Faraji, M., & El Qarnia, H. (2011). Thermal performance of a greenhouse with a phase change material north wall. Energy and Buildings, 43(11), 3027–3035. https://doi.org/10.1016/j.enbuild.2011.07.020
dc.relation.referencesBlanco, I., Pascuzzi, S., Anifantis, A. S. A. S., & Scarascia-Mugnozza, G. (2014). Study of a pilot photovoltaic-electrolyser-fuel cell power system for a geothermal heat pump heated greenhouse and evaluation of the electrolyser efficiency and operational mode. Journal of Agricultural Engineering, 45(3), 111–118. https://doi.org/10.4081/jae.2014.238
dc.relation.referencesBojacá, C. R., Monsalve, O., Casilimas, H., Villagrán, E. A., Gil, R., Arias, L. A., & Fuentes, L. S. (2012). Manual de producción de pimentón bajo invernadero (C. R. Bojacá & O. Monsalve (eds.); 1a ed.). Universidad Jorge Tadeo Lozano.
dc.relation.referencesBonachela, S., & Medrano, E. (2022). Sistemas pasivos de calefacción en invernaderos mediterráneos (Número March).
dc.relation.referencesBournet, P. E., & Boulard, T. (2010). Effect of ventilator configuration on the distributed climate of greenhouses: A review of experimental and CFD studies. Computers and Electronics in Agriculture, 74(2), 195–217. https://doi.org/10.1016/j.compag.2010.08.007
dc.relation.referencesBusinger, J. A. (1963). The glasshouse (greenhouse) climate. Physics of Plant Environment, WR Van Wijk, Ed.(North Holland Publishing Co., Amsterdam, 1963).
dc.relation.referencesCardona, J. P., Leal, J. J., & Ustariz, J. E. (2020). Mathematical modeling of white and black box in engineering education. Formacion Universitaria, 13(6), 105–118. https://doi.org/10.4067/S0718-50062020000600105
dc.relation.referencesCarrillo, I. T. (2023). Predicción de variables de estaciones meteorologicas para hallar el flujo del aire en la Universidad Industrial de Santander. Universidad Industrial de Santander
dc.relation.referencesCarrión, P., Montalván, N., Paz, N., & Morante, F. (2020). Volcanic geomorphology: A review of worldwide research. Geosciences (Switzerland). https://doi.org/10.3390/geosciences10090347
dc.relation.referencesCengel, Y. A. (2007). Transferencia de calor y masa - Un enfoque práctico. Biotechnology Letters, 18(12), 1419–1422. https://doi.org/10.1007/BF00129346
dc.relation.referencesCervantes, M. Á. (2015, junio 9). FITOSOFIA: PANTALLAS TÉRMICAS. https://fitosofia.blogspot.com/2015/06/pantallas-termicascoc.html
dc.relation.referencesChahidi, L. O., Fossa, M., Priarone, A., & Mechaqrane, A. (2021). Energy saving strategies in sustainable greenhouse cultivation in the mediterranean climate – A case study. Applied Energy, 282(PA), 116156. https://doi.org/10.1016/j.apenergy.2020.116156
dc.relation.referencesChen, C., Ling, H., Zhai, Z. (John) Z. J., Li, Y., Yang, F., Han, F., & Wei, S. (2018). Thermal performance of an active-passive ventilation wall with phase change material in solar greenhouses. Applied Energy, 216(February), 602–612. https://doi.org/10.1016/j.apenergy.2018.02.130
dc.relation.referencesChinlli, C. M. (2021). Modelización de Series Temporales modelos clásicos y SARIMA.
dc.relation.referencesChu, C.-R. R., Lan, T.-W. W., Tasi, R.-K. K., Wu, T.-R. R., & Yang, C.-K. K. (2017). Wind-driven natural ventilation of greenhouses with vegetation. Biosystems Engineering, 164, 221–234. https://doi.org/10.1016/j.biosystemseng.2017.10.008
dc.relation.referencesComisión Europea. (2022). JRC Photovoltaic Geographical Information System (PVGIS) - European Commission. https://re.jrc.ec.europa.eu/pvg_tools/fr/#api_5.2
dc.relation.referencesCondustrial. (2020). 2ACM150
dc.relation.referencesDiaz, D. C., Bojacá, C. R., & Schrevens, E. (2018). Modeling the suitability of the traditional plastic greenhouse for tomato production across Colombian regions. Acta Horticulturae, 1205, 857–864. https://doi.org/10.17660/ActaHortic.2018.1205.109
dc.relation.referencesDuarte, A. R., Osorio, R., & Mahecha, D. C. (2022). Simulación climática de un invernadero para rosas. Revista Politécnica, 18(36), 107–114. https://doi.org/10.33571/rpolitec.v18n36a8
dc.relation.referencesEl Kolaly, W., Ma, W., Li, M., & Darwesh, M. (2020). The investigation of energy production and mushroom yield in greenhouse production based on mono photovoltaic cells effect. Renewable Energy, 159, 506–518. https://doi.org/10.1016/j.renene.2020.05.144
dc.relation.referencesEspinal-Montes, V., López-Cruz, I. L., Rojano-Aguilar, A., Romantchik-Kriuchova, E., & Ramírez-Arias, A. (2015). Determination of night-time thermal gradients in a greenhouse using computational thermal dynamics. Agrociencia, 49(3), 233–247.
dc.relation.referencesFAO, O. de las N. U. para la A. (2002). Agricultura mundial: hacia los años 2015/2030. https://www.fao.org/3/y3557s/y3557s06.htm
dc.relation.referencesFirfiris, V. K. K., Fragos, V. P. P., Kotsopoulos, T. A. A., & Nikita-Martzopoulou, C. (2020). Energy and environmental analysis of an innovative greenhouse structure towards frost prevention and heating needs conservation. Sustainable Energy Technologies and Assessments, 40(March). https://doi.org/10.1016/j.seta.2020.100750
dc.relation.referencesFlores, J., & Montero, J. I. (2008). Computational fluid dynamics (CFD) study of large scale screenhouses. Acta Horticulturae, 797, 117–122. https://doi.org/10.17660/ActaHortic.2008.797.14
dc.relation.referencesFlores, J., Rojano, F., Aguilar, C. E., Villagran, E., & Villarreal, F. (2022). Greenhouse Thermal Effectiveness to Produce Tomatoes Assessed by a Temperature-Based Index. Agronomy, 12(5), 1–14. https://doi.org/10.3390/agronomy12051158
dc.relation.referencesFlores, J., Villarreal, F., Rojano, A., & Schdmith, U. (2019). CFD to analyze energy exchange by convection in a closed greenhouse with a pipe heating system. Acta Universitaria, 29, 1–16. https://doi.org/10.15174/au.2019.2112
dc.relation.referencesFuentes, M. K. (1987). A simplified thermal model for Flat-Plate photovoltaic arrays. https://www.osti.gov/biblio/6802914
dc.relation.referencesGary, C., Jones, J. W., & Tchamitchian, M. (1998). Crop modelling in horticulture: state of the art. Scientia Horticulturae, 74(1–2), 3–20.
dc.relation.referencesGholamalizadeh, E., & Kim, M. H. (2014). Three-dimensional CFD analysis for simulating the greenhouse effect in solar chimney power plants using a two-band radiation model. Renewable Energy, 63, 498–506. https://doi.org/10.1016/j.renene.2013.10.011
dc.relation.referencesGonzález, O., & Torres, C. (2012). Actualización nota técnica heladas 2012. IDEAM, Instituto de Hidrología, Meteorología y Estudios Ambientales, 11.
dc.relation.referencesGorjian, S., Calise, F., Kant, K., Ahamed, M. S., Copertaro, B., Najafi, G., Zhang, X., Aghaei, M., & Shamshiri, R. R. (2021). A review on opportunities for implementation of solar energy technologies in agricultural greenhouses. Journal of Cleaner Production, 285. https://doi.org/10.1016/j.jclepro.2020.124807
dc.relation.referencesGorjian, S., Ebadi, H., Najafi, G., Singh Chandel, S., & Yildizhan, H. (2021). Recent advances in net-zero energy greenhouses and adapted thermal energy storage systems. Sustainable Energy Technologies and Assessments, 43. https://doi.org/10.1016/j.seta.2020.100940
dc.relation.referencesGourdo, L., Fatnassi, H., Bouharroud, R., Ezzaeri, K., Bazgaou, A., Wifaya, A., Demrati, H., Bekkaoui, A., Aharoune, A., Poncet, C., Poncet, C., & Bouirden, L. (2019). Heating canarian greenhouse with a passive solar water–sleeve system: Effect on microclimate and tomato crop yield. Solar Energy, 188(May), 1349–1359. https://doi.org/10.1016/j.solener.2019.07.004
dc.relation.referencesGranados, M. R., Hernandez, J., Bonachela, S., Lopez Hernandez, J. C., & Magán, J. J. (2017). Modificación del clima en invernaderos pasivos con pantallas fijas y móvil. February.
dc.relation.referencesGuerra, K., de Zayas, M. R., & González, M. V. (2013). Análisis bibliométrico de las publicaciones relacionadas con proyectos de innovación y su gestión en Scopus, en el período 2001-2011. Revista Cubana de Información en Ciencias de la Salud, 24(3), 281–294.
dc.relation.referencesHa, T., Lee, I.-B., Hwang, H.-S., Hong, S.-W., Seo, I.-H., & Bitog, J. P. (2011). Development of an assessment model for greenhouse using geothermal heat pump system. American Society of Agricultural and Biological Engineers Annual International Meeting 2011, ASABE 2011, 3, 2105–2114.
dc.relation.referencesHaldorai, S., Gurusamy, S., & Pradhapraj, M. (2019). A review on thermal energy storage systems in solar air heaters. International Journal of Energy Research, 43(12), 6061–6077. https://doi.org/10.1002/er.4379
dc.relation.referencesHassanien, R. H. E. R. H. E., Li, M., & Dong Lin, W. (2016). Advanced applications of solar energy in agricultural greenhouses. Renewable and Sustainable Energy Reviews, 54, 989–1001. https://doi.org/10.1016/j.rser.2015.10.095
dc.relation.referencesHerrera, G., Montalván, N., Carrión, P., & Bravo, Lady. (2021). Worldwide research on socio-hydrology: A bibliometric analysis. Water (Switzerland). https://doi.org/10.3390/w13091283
dc.relation.referencesHongkang, W., Li, L., Yong, W., Fanjia, M., Haihua, W., & Sigrimis, N. A. (2018). Recurrent neural network model for prediction of microclimate in solar greenhouse. IFAC-PapersOnLine, 51(17), 790–795.
dc.relation.referencesHortiCultivos. (2014, agosto 22). Pantallas térmicas para el control del clima | Revista HortiCultivos. https://www.horticultivos.com/agricultura-protegida/invernaderos/pantallas-termicas-para-el-control-del-clima-3/
dc.relation.referencesHosseini, F., Motevali, A., Nabavi, A., Hashemi, S. J., & Chau, K. wing. (2019). Energy-Life cycle assessment on applying solar technologies for greenhouse strawberry production. Renewable and Sustainable Energy Reviews, 116(May), 109411. https://doi.org/10.1016/j.rser.2019.109411
dc.relation.referencesKitta, E., Katsoulas, N., & Savvas, D. (2012). Shading effects on greenhouse microclimate and crop transpiration in a cucumber crop grown under mediterranean conditions. Applied Engineering in Agriculture, 28(1), 129–140.
dc.relation.referencesLam, C. K. G., & Bremhorst, K. (1981). A Modified Form of the k-ε Model for Predicting Wall Turbulence. Journal of Fluids Engineering, 103(3), 456–460. https://doi.org/10.1115/1.3240815
dc.relation.referencesLee, C.-G., Cho, L.-H., Kim, S.-J., Park, S.-Y., & Kim, D.-H. (2021). Comparative analysis of combined heating systems involving the use of renewable energy for greenhouse heating. Energies, 14(20). https://doi.org/10.3390/en14206603
dc.relation.referencesLiu, Y., & Yang, Y. (2017). Use of nano-α-Al2O3 to improve binary eutectic hydrated salt as phase change material. Solar Energy Materials and Solar Cells, 160(August 2016), 18–25. https://doi.org/10.1016/j.solmat.2016.09.050
dc.relation.referencesLópez, J. H., Fitz, E., & Rosales, J. E. (2018). Evaluation of heat-pipe solar collectors for heating a single-span greenhouse. ASABE 2018 Annual International Meeting. https://doi.org/10.13031/aim.201800295
dc.relation.referencesMa, J. J. (2019). Direct wind heating greenhouse underground heating system. IOP Conference Series: Earth and Environmental Science, 300(4). https://doi.org/10.1088/1755-1315/300/4/042056
dc.relation.referencesMartínez, S. (2017). Climatología y Fenología Agrícola. 1–51.
dc.relation.referencesMisra, R., Bansal, V., Agrawal, G. Das, Mathur, J., & Aseri, T. K. (2013). CFD analysis based parametric study of derating factor for Earth Air Tunnel Heat Exchanger. Applied Energy, 103, 266–277. https://doi.org/10.1016/j.apenergy.2012.09.041
dc.relation.referencesMistriotis, A., Bot, G. P. A., Picuno, P., & Scarascia-Mugnozza, G. (1997). Analysis of the efficiency of greenhouse ventilation using computational fluid dynamics. Agricultural and Forest Meteorology, 85(3), 217–228. https://doi.org/https://doi.org/10.1016/S0168-1923(96)02400-8
dc.relation.referencesMontero, J. I., Muñoz, P., Sánchez-Guerrero, M. C., Medrano, E., Piscia, D., & Lorenzo, P. (2013). Shading screens for the improvement of the night-time climate of unheated greenhouses. Spanish Journal of Agricultural Research, 11(1), 32–46. https://doi.org/10.5424/sjar/2013111-411-11
dc.relation.referencesMüller, E. (2006). Manual de diseño para viviendas con climatización pasiva. 63.
dc.relation.referencesNations United. (2020). ¿Qué es el cambio climático? | Naciones Unidas. https://www.un.org/es/climatechange/what-is-climate-change
dc.relation.referencesNimmermark, S. A., & Maslak, K. (2015). Measured energy use in a greenhouse with tomatoes compared to predicted use by a mechanistic model including transpiration. Agricultural Engineering International: CIGR Journal, 2015, 65–70.
dc.relation.referencesNtinas, G. K. G. K., Dannehl, D., Schuch, I., Rocksch, T., & Schmidt, U. (2020). Sustainable greenhouse production with minimised carbon footprint by energy export. Biosystems Engineering, 189, 164–178. https://doi.org/10.1016/j.biosystemseng.2019.11.012
dc.relation.referencesNtinas, G. K. G. K., Neumair, M., Tsadilas, C. D. C. D., & Meyer, J. (2017). Carbon footprint and cumulative energy demand of greenhouse and open-field tomato cultivation systems under Southern and Central European climatic conditions. Journal of Cleaner Production, 142, 3617–3626. https://doi.org/10.1016/j.jclepro.2016.10.106
dc.relation.referencesOrtiz, G. A., Chamorro, A. N., Acuña, J. F., Lopez, I. L., & Villagran, E. (2023). Calibration and implementation of a dynamic energy balance model to estimate the temperature in a plastic covered Colombian greenhouse.
dc.relation.referencesOrtiz, G. A., Pichimata, M. A., & Villagran, E. (2021). Research on the microclimate of protected agriculture structures using numerical simulation tools: A technical and bibliometric analysis as a contribution to the sustainability of under-cover cropping in tropical and subtropical countries. Sustainability (Switzerland), 13(18). https://doi.org/10.3390/su131810433
dc.relation.referencesPaksoy, H. Ö., & Beyhan, B. (2015). Thermal energy storage (TES) systems for greenhouse technology. En Advances in Thermal Energy Storage Systems: Methods and Applications. Woodhead Publishing Limited. https://doi.org/10.1533/9781782420965.4.533
dc.relation.referencesPAVCO. (2020). Manual Tecnio Tubosistemas Presion PVC. 2, 22.
dc.relation.referencesPérez, C., Ramírez, J. A., López, I. L., Arteaga, R., & Cervantes, R. (2021). 3D computational fluid dynamics modeling of temperature and humidity in a humidified greenhouse. Ingeniería Agrícola y Biosistemas, 13(1), 17–31. https://doi.org/10.5154/r.inagbi.2020.10.060
dc.relation.referencesPiscia, D., Montero, J. I., Baeza, E. J., & Bailey, B. J. (2012). A CFD greenhouse night-time condensation model. Biosystems Engineering, 111(2), 141–154. https://doi.org/10.1016/j.biosystemseng.2011.11.006
dc.relation.referencesQiu, Z., Song, M., Wang, J., Zhang, X., Liu, H., Meng, T., & Song, Y. (2014). Experiment effect of application to new assembly type solar double effect greenhouse. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 30(19), 232–239. https://doi.org/10.3969/j.issn.1002-6819.2014.19.028
dc.relation.referencesRasheed, A., Na, W. H. W. H., Lee, J. W. J. W., Kim, H. T. H. T., & Lee, H. W. H. W. (2021). Development and validation of air‐to‐water heat pump model for greenhouse heating. Energies, 14(15), 1–22. https://doi.org/10.3390/en14154714
dc.relation.referencesReyes-Rosas, A., Molina-Aiz, F. D., Valera, D. L., López, A., & Khamkure, S. (2017). Development of a single energy balance model for prediction of temperatures inside a naturally ventilated greenhouse with polypropylene soil mulch. Computers and Electronics in Agriculture. https://doi.org/10.1016/j.compag.2017.08.020
dc.relation.referencesRiggio, G. (2017). Indicadores bibliométricos de la actividad científica de la República Dominicana. (Tesis doctoral) Programa Oficial de Doctorado en Documentación. Universidad Carlos III de Madrid, España. https://doi.org/DOI: 10.13140/RG.2.2.14126.41287
dc.relation.referencesRitter Energie. (2020). Evacuated tube collectors.
dc.relation.referencesRojano, A., Salazar, R., Flores, J., Lopez, I., Schmidt, U., & Medina, A. (2013). Experimental and Computational Modeling of Venlo Type Greenhouse. https://api.semanticscholar.org/CorpusID:117250891
dc.relation.referencesSalazar, R., López, I. L., & Cruz, A. C. S. (2018). Dynamic energy balance model in a greenhouse with tomato cultivation: Simulation, calibration and evaluation. Revista Chapingo, Serie Horticultura, 25(1), 45–60. https://doi.org/10.5154/r.rchsh.2018.07.014
dc.relation.referencesSalinas, D. A., Romero, F., Numa, S., Villagrán, E., Donado, P., & Galindo, J. R. (2022). Insights into Circular Horticulture: Knowledge Diffusion, Resource Circulation, One Health Approach, and Greenhouse Technologies. International Journal of Environmental Research and Public Health, 19(19). https://doi.org/10.3390/ijerph191912053
dc.relation.referencesSeo, Y., & Seo, U.-J. U. J. (2021). Ground source heat pump (GSHP) systems for horticulture greenhouses adjacent to highway interchanges: A case study in South Korea. Renewable and Sustainable Energy Reviews, 135(August 2020), 110194. https://doi.org/10.1016/j.rser.2020.110194
dc.relation.referencesSepúlveda, S. (2014). Radiación Solar: Factor Clave Para El Diseño De Sistemas Fotovoltaicos. Revista Mundo FESC, 8, 60–65. file:///C:/Users/HP User/Downloads/Dialnet-RadiacionSolar-5109240.pdf
dc.relation.referencesSethi, V. P. P., & Sharma, S. K. K. (2008). Survey and evaluation of heating technologies for worldwide agricultural greenhouse applications. Solar Energy, 82(9), 832–859. https://doi.org/10.1016/j.solener.2008.02.010
dc.relation.referencesSvensson. (2022). Especificaciones de la pantalla Obscura 10070 R FR W.
dc.relation.referencesSwinbank, W. C. (1963). Long-wave radiation from clear skies. Quarterly Journal of the Royal Meteorological Society, 89(381), 339–348. https://doi.org/https://doi.org/10.1002/qj.49708938105
dc.relation.referencesTaki, M., Ajabshirchi, Y., Ranjbar, S. F. S. F., Rohani, A., & Matloobi, M. (2016). Modeling and experimental validation of heat transfer and energy consumption in an innovative greenhouse structure. Information Processing in Agriculture, 3(3), 157–174. https://doi.org/10.1016/j.inpa.2016.06.002
dc.relation.referencesTesicol - Tejidos de Colombia S.A. (2023). Alumitex® | Tesicol - Tejidos de Colombia S.A. https://www.tesicol.com.co/productos/alumitex/alumitex
dc.relation.referencesValera, D., Molina, F., & Álvarez, A. (2008). Ahorro y Eficiencia Energética en Invernaderos. En Eficiencia y ahorro energético. https://www.idae.es/uploads/documentos/documentos_10995_Agr07_AyEE_en_invernaderos_A2008_9e4c63f5.pdf
dc.relation.referencesVan, N. J., & Waltman, L. (2013). {VOSviewer} manual. Leiden: Univeristeit Leiden, March, 1–29. http://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.1.pdf
dc.relation.referencesVan, N. J., & Waltman, L. (2021). Manual de VOSviewer. Univeristeit Leiden, July. http://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.1.pdf
dc.relation.referencesVesbo. (2023). Tuberías Oxy-Pex para calefacción por piso radiante. 100.
dc.relation.referencesVillagrán, E., & Bojacá, C. (2019a). CFD simulation of the increase of the roof ventilation area in a traditional Colombian greenhouse: Effect on air flow patterns and thermal behavior. International Journal of Heat and Technology, 37(3), 881–892. https://doi.org/10.18280/ijht.370326
dc.relation.referencesVillagrán, E., & Bojacá, C. (2019b). Study of natural ventilation in a Gothic multi-tunnel greenhouse designed to produce rose (Rosa spp.) in the high-Andean tropic. Ornamental Horticulture, 25(2), 133–143. https://doi.org/10.14295/oh.v25i2.2013
dc.relation.referencesVillagran, E., & Bojacá, C. R. (2019). Microclimate i simulation in a greenhouse used for roses production under conditions of intertropical climate | Simulacion del microclima en un invernadero usado para la producción de rosas bajo condiciones de clima intertropical. Chilean Journal of Agricultural and Animal Sciences, 35(2), 137–150. https://doi.org/10.4067/S0719-38902019005000308
dc.relation.referencesVillagran, E., & Bojacá, C. R. (2020). Study using a CFD approach of the efficiency of a roof ventilation closure system in a multi-tunnel greenhouse for nighttime microclimate optimization. Revista Ceres, 67(5), 345–356. https://doi.org/10.1590/0034-737x202067050002
dc.relation.referencesVillagrán, E., & Bojacá, C. R. (2019c). Numerical evaluation of passive strategies for nocturnal climate optimization in a greenhouse designed for rose production (Rosa spp.). Ornamental Horticulture, 25(4), 351–364. https://doi.org/10.1590/2447-536X.v25i4.2087
dc.relation.referencesVillagran, E., Bojacá, C. R., & Rojas Bahamon, N. A. (2018). Determinación del comportamiento térmico de un invernadero espacial colombiano mediante dinámica de fluidos computacional. Revista U.D.C.A Actualidad & Divulgación Científica, 21(2). https://doi.org/10.31910/rudca.v21.n2.2018.1070
dc.relation.referencesVillagrán, E., Flores, J., Akrami, M., & Bojacá, C. (2021). Influence of the height in a Colombian multi-tunnel greenhouse on natural ventilation and thermal behavior: Modeling approach. Sustainability (Switzerland), 13(24). https://doi.org/10.3390/su132413631
dc.relation.referencesVillagrán, E., Flores, J., Akrami, M., & Bojacá, C. (2022). Microclimatic Evaluation of Five Types of Colombian Greenhouses Using Geostatistical Techniques. Sensors, 22(10). https://doi.org/10.3390/s22103925
dc.relation.referencesVillagrán, E., Flores, J., Bojacá, C., & Akrami, M. (2021). Evaluation of the Microclimate in a Traditional Colombian Greenhouse Used for Cut Flower Production. Agronomy, 11(7), 1330.
dc.relation.referencesVillagran, E., Jaramillo, J. E., & León-Pacheco, R. I. (2020). Natural ventilation in greenhouse with anti-insect screens evaluated with a computational fluid model. Agronomy Mesoamerican, 31(3), 709–728. https://doi.org/10.15517/AM.V31I3.40782
dc.relation.referencesVillagran, E., Ramirez-Matarrita, R., Rodriguez, A., León-Pacheco, R. I., Jaramillo, J. E., Ramirez, R., Rodriguez, A., Pacheco, R. L., Jaramillo, J. E., Ramirez-Matarrita, R., Rodriguez, A., & León-Pacheco, R. I. (2020). Simulation of the thermal and aerodynamic behavior of an established screenhouse under warm tropical climate conditions: A numerical approach. International Journal of Sustainable Development and Planning, 15(4), 487–499. https://doi.org/10.18280/ijsdp.150409
dc.relation.referencesVillagrán, E., & Rodriguez, A. (2021). Analysis of the thermal behavior of a new structure of protected agriculture established in a region of tropical climate conditions. Fluids, 6(6), 223. https://doi.org/10.3390/fluids6060223
dc.relation.referencesWaller, R., Kacira, M., Magadley, E., Teitel, M., & Yehia, I. (2022). Evaluating the Performance of Flexible, Semi-Transparent Large-Area Organic Photovoltaic Arrays Deployed on a Greenhouse. AgriEngineering, 4(4), 969–992. https://doi.org/10.3390/agriengineering4040062
dc.relation.referencesYu, O.-Y. Y., Ferrell, J., Kim, H.-Y. Y., & Houser, J. (2018). NEXUS: Integrated sustainable energy for enhancing farm productivity. IOP Conference Series: Earth and Environmental Science, 188(1). https://doi.org/10.1088/1755-1315/188/1/012012
dc.relation.referencesZhang, L., Xu, P., Mao, J., Tang, X. X., Li, Z., & Shi, J. (2015). A low cost seasonal solar soil heat storage system for greenhouse heating: Design and pilot study. Applied Energy, 156, 213–222. https://doi.org/10.1016/j.apenergy.2015.07.036
dc.relation.referencesZhang, X., Lv, J., Dawuda, M. M., Xie, J., Yu, J., Gan, Y., Zhang, J., Tang, Z., & Li, J. (2019). Innovative passive heat-storage walls improve thermal performance and energy efficiency in Chinese solar greenhouses for non-arable lands. Solar Energy, 190, 561–575. https://doi.org/10.1016/j.solener.2019.08.056
dc.relation.referencesZhang, X., Wang, H., Zou, Z., & Wang, S. (2016). CFD and weighted entropy based simulation and optimisation of Chinese Solar Greenhouse temperature distribution. Biosystems Engineering, 142, 12–26. https://doi.org/10.1016/j.biosystemseng.2015.11.006
dc.relation.referencesKatzin, D., van Henten, E. J., & van Mourik, S. (2022). Process-based greenhouse climate models: Genealogy, current status, and future directions. Agricultural Systems, 198, 103388.
dc.relation.referencesZhang, D., Zhu, D., Wang, J., Wei, H., Zong, X., Tan, Y., & Liu, Q. (2014). Design and experiment of semi-automatic double-heat source forcing cultivation of temperature control for sweet cherry. Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 30(17), 228–234. https://doi.org/10.3969/j.issn.1002-6819.2014.17.029
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembSistemas biológicos
dc.subject.lembBiological systems
dc.subject.lembInvernaderos
dc.subject.lembGreenhouses
dc.subject.lembPlantas de invernadero
dc.subject.lembGreenhouse plants
dc.subject.lembClimatología agrícola
dc.subject.lembCrops and climate
dc.subject.proposalSimulación en CFD
dc.subject.proposalModelo de predicción
dc.subject.proposalBalance de energía
dc.subject.proposalControl climático
dc.subject.proposalSuelo radiante
dc.subject.proposalPantalla térmica
dc.subject.proposalBibliometría
dc.subject.proposalCFD simulation
dc.subject.proposalPrediction model
dc.subject.proposalEnergy balance
dc.subject.proposalClimate control
dc.subject.proposalRadiant floor
dc.subject.proposalThermal screen
dc.subject.proposalBibliometrics
dc.title.translatedComputer-aided design of a natural ventilation climate control system for high Andean tropical greenhouses
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitle“Fortalecimiento de las capacidades de I+D+i del centro de investigación Tibaitata para la generación, apropiación y divulgación de nuevo conocimiento como estrategia de adaptación al cambio climático en sistemas de producción agrícola ubicados en las zonas agroclimáticas del trópico alto colombiano.”
oaire.fundernameColciencias
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentGrupos comunitarios
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.orcidGloria Alexandra Ortiz Rocha [0000-0002-4137-3837]
dc.contributor.cvlacGloria Alexandra Ortiz Rocha [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000033806]
dc.contributor.scopusOrtiz, Gloria Alexandra [58704045400]
dc.contributor.researchgateGloria Alexandra Ortiz Rocha [https://www.researchgate.net/profile/Gloria-Ortiz-Rocha]
dc.contributor.googlescholarGloria Alexandra Ortiz Rocha [Gloria Alexandra Ortiz Rocha]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito