Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorOrdóñez Santos, Luis Eduardo
dc.contributor.advisorLondoño Hernandez, Luis Fernando
dc.contributor.authorOrozco Ágredo, Juan Camilo
dc.date.accessioned2023-11-29T16:46:17Z
dc.date.available2023-11-29T16:46:17Z
dc.date.issued2023-08-30
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85020
dc.descriptionIlustraciones, tablas, graficas
dc.description.abstractEl fríjol común (Phaseolus vulgaris) es uno de los cultivos alimentarios más importantes a nivel mundial y su producción se extiende en diferentes regiones de América latina, África, Europa y Asia oriental, debido a su facilidad de siembra en diversos ambientes. Además, el fríjol es un componente esencial en la dieta humana por su alto contenido nutricional y su fácil acceso a la población rural y urbana de bajos recursos. Sin embargo, los procesos de preparación de este alimento pueden ser extensos, logrando afectar la calidad nutricional de este. Se estudió la implementación del ultrasonido como herramienta de optimización en el proceso de hidratación de dos variedades de fríjol (BIO101 y NimaCalima), su efecto en el proceso de cocción y en la calidad nutricional. Para ello, se analizó los comportamientos de hidratación convencional (HC) e hidratación convencional con pretratamiento con ultrasonido (HCPU), esta última siendo optimizada mediante la metodología de superficie de respuesta (MSR). Se encontró que el modelo de Kaptso y el modelo de Weibull fueron los modelos que mejor se ajustaron a las cinéticas de hidratación obtenidas. El tiempo de hidratación adecuado (tha) mediante el método de HCPU, fue significativamente menor con respecto al método de HC en ambas variedades de fríjol (p<0.05). El método HCPU tuvo un efecto significativo (p<0.05) en el tiempo de cocción (tc) con respecto al método HC para la variedad BIO101. Sin embargo, fue no significativo para la variedad Nima-Calima. Se encontró que la mayoría de los compuestos nutricionales analizados no se vieron afectados por el método de hidratación implementado. Este estudio permitió conocer que la implementación del ultrasonido en los procesos de hidratación del fríjol común mejora el tha sin afectar el contenido nutricional. (Texto tomado de la fuente)
dc.description.abstractCommon bean (Phaseolus vulgaris) is one of the most important food crops worldwide and its production extends to different regions of Latin America, Africa, Europe and East Asia, due to its ease of planting in various environments. In addition, beans are an essential component in the human diet due to their high nutritional content and their easy access to low-income rural and urban populations. However, the preparation processes of this food can be extensive, affecting its nutritional quality. The implementation of ultrasound was presented as an optimization tool in the hydration process of two bean varieties (BIO101 and Nima-Calima), its effect on the cooking process and nutritional quality. For this, the behaviors of conventional hydration (HC) and conventional hydration pre-treated with ultrasound (HCPU) were analyzed, the latter being optimized using the response surface (MSR) methodology. It was found that the Kaptso model and the Weibull model were the models that best fit the hydration kinetics obtained. The adequate hydration time (tha) using the HCPU method was significantly lower than the HC method in both bean varieties (p<0.05). The HCPU method had a significant effect (p<0.05) on the cooking time (tc) with respect to the HC method for the BIO101 variety. However, it was not significant for the Nima-Calima variety. It was found that most of the nutritional compounds analyzed were not affected by the hydration method implemented. This study allowed us to know that the implementation of ultrasound in the hydration processes of common beans improves the tha without affecting the nutritional content.
dc.description.sponsorshipEste proyecto fue patrocinado por HarvestPlus. HarvestPlus es una alianza de investigación agrícola mundial para un futuro seguro en cuanto a la alimentación
dc.format.extentxvii, 97 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines
dc.titleEfecto del ultrasonido sobre la hidratación y calidad nutricional en la cocción del fríjol común (Phaseolus vulgarís)
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programPalmira - Ingeniería y Administración - Maestría en Ingeniería Agroindustrial
dc.description.notesContiene material didáctico, tablas y figuras
dc.contributor.researchgroupAlimentación y Nutrición Humana
dc.description.degreelevelMaestría
dc.description.degreenameMaestría en Ingeniería Agroindustrial
dc.description.methodsDos variedades de fríjol común (Phaseolus vulgaris) fueron evaluadas en este estudio. La variedad BIO101 biofortificada en hierro y zinc y la variedad comercial Nima-Calima. Ambas variedades fueron sometidas a una limpieza y selección exhaustiva de las semillas, posteriormente empacadas al vacío, para luego ser conservadas en condiciones óptimas a una temperatura de 18°C y humedad relativa 40% hasta sus respectivos análisis de interés.
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería y Administración
dc.publisher.placePalmira, Valle del Cauca, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmira
dc.relation.referencesAbbas, Y., & Ahmad, A. (2018). Impact of processing on nutritional and antinutritional factors of legumes: A review. Annal. Food Science and Technology, 19(2), 199–215. https://doi.org/10.24275/rmiq/Alim2433
dc.relation.referencesAgregán, R., Munekata, P. E. S., Feng, X., Astray, G., Gullón, B., & Lorenzo, J. M. (2021). Recent advances in the extraction of polyphenols from eggplant and their application in foods. Lwt, 146(December 2020), 1–13. https://doi.org/10.1016/j.lwt.2021.111381
dc.relation.referencesAksoy, A., Karasu, S., Akcicek, A., & Kayacan, S. (2020). Effects of Different Drying Methods on Untargeted. 8(216), 1–23.
dc.relation.referencesAllali, S., Brousse, V., Sacri, A. S., Chalumeau, M., & de Montalembert, M. (2017). Anemia in children: prevalence, causes, diagnostic work-up, and long-term consequences. Expert Review of Hematology, 10(11), 1023–1028. https://doi.org/10.1080/17474086.2017.1354696
dc.relation.referencesAmpofo, J., & Ngadi, M. (2022). Ultrasound-assisted processing: Science, technology and challenges for the plant-based protein industry. Ultrasonics Sonochemistry, 84(February), 1–10. https://doi.org/10.1016/j.ultsonch.2022.105955
dc.relation.referencesArgyridis, S. (2019). Folic acid in pregnancy. Obstetrics, Gynaecology and Reproductive Medicine, 29(4), 118–120. https://doi.org/10.1016/j.ogrm.2019.01.008
dc.relation.referencesAugustin, M. A., & Cole, M. B. (2022). Towards a sustainable food system by design using faba bean protein as an example. Trends in Food Science and Technology, 125(April), 1–11. https://doi.org/10.1016/j.tifs.2022.04.029
dc.relation.referencesAwad, T. S., Moharram, H. A., Shaltout, O. E., Asker, D., & Youssef, M. M. (2012). Applications of ultrasound in analysis, processing and quality control of food: A review. Food Research International, 48(2), 410–427. https://doi.org/10.1016/j.foodres.2012.05.004
dc.relation.referencesBatista, K. A., Prudêncio, S. H., & Fernandes, K. F. (2011). Wheat Bread Enrichment with Hard-to-Cook Bean Extruded Flours: Nutritional and Acceptance Evaluation. Journal of Food Science, 76(1), 108–113. https://doi.org/10.1111/j.1750-3841.2010.01969.x
dc.relation.referencesBeebe, S., Gonzalez, A. V., & Rengifo, J. (2000). Research on trace minerals in the common bean. Food and Nutrition Bulletin, 21(4), 387–391. https://doi.org/10.1177/156482650002100408
dc.relation.referencesBeebe, S., Rengifo, J., Gaitan, E., Duque, M. C., & Tohme, J. (2001). Plant genetic resources: Diversity and origin of Andean landraces of common bean. Crop Science, 41(3), 854–862. https://doi.org/10.2135/cropsci2001.413854x
dc.relation.referencesBelmiro, R. H., Tribst, A. A. L., & Cristianini, M. (2018). Impact of high pressure processing in hydration and drying curves of common beans (Phaseolus vulgaris L.). Innovative Food Science and Emerging Technologies, 47, 279–285. https://doi.org/10.1016/j.ifset.2018.03.013
dc.relation.referencesBhargava, N., Mor, R. S., Kumar, K., & Sharanagat, V. S. (2021). Advances in application of ultrasound in food processing: A review. Ultrasonics Sonochemistry, 70(June 2020), 105293. https://doi.org/10.1016/j.ultsonch.2020.105293
dc.relation.referencesBoye, J., Zare, F., & Pletch, A. (2010). Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Research International, 43(2), 414–431. https://doi.org/10.1016/j.foodres.2009.09.003
dc.relation.referencesCampbell, I. (2017). Macronutrients, minerals, vitamins and energy. Anaesthesia and Intensive Care Medicine, 18(3), 141–146. https://doi.org/10.1016/j.mpaic.2016.11.014
dc.relation.referencesCardoso, R. V. C., Fernandes, Â., Gonzaléz-Paramás, A. M., Barros, L., & Ferreira, I. C. F. R. (2019). Flour fortification for nutritional and health improvement: A review. Food Research International, 125, 1–7. https://doi.org/10.1016/j.foodres.2019.108576
dc.relation.referencesChavan, P., Sharma, P., Sharma, S. R., Mittal, T. C., & Jaiswal, A. K. (2022). Application of High-Intensity Ultrasound to Improve Food Processing Efficiency: A Review. Foods, 11(1), 1–18. https://doi.org/10.3390/foods11010122
dc.relation.referencesChow, R., Blindt, R., Chivers, R., & Povey, M. (2005). A study on the primary and secondary nucleation of ice by power ultrasound. Ultrasonics, 43(4), 227–230. https://doi.org/10.1016/j.ultras.2004.06.006
dc.relation.referencesCosta, R., Fusco, F., & Gândara, J. F. M. (2018). Mass transfer dynamics in soaking of chickpea. Journal of Food Engineering, 227(2018), 42–50. https://doi.org/10.1016/j.jfoodeng.2018.02.004
dc.relation.referencesCreus, E. G. (2004). Compuestos fenólicos. Un análisis de sus beneficios para la salud. Ambito Farmaceutico Nutricion, 23(6), 80–84.
dc.relation.referencesDalvi-Isfahan, M., Hamdami, N., Xanthakis, E., & Le-Bail, A. (2017). Review on the control of ice nucleation by ultrasound waves, electric and magnetic fields. Journal of Food Engineering, 195(2017), 222–234. https://doi.org/10.1016/j.jfoodeng.2016.10.001
dc.relation.referencesDas, G., Sharma, A., & Sarkar, P. K. (2022). Conventional and emerging processing techniques for the post-harvest reduction of antinutrients in edible legumes. Applied Food Research, 2(1), 100–112. https://doi.org/10.1016/j.afres.2022.100112
dc.relation.referencesDas, K., Zhang, M., Bhandari, B., Chen, H., Bai, B., & Roy, M. C. (2022). Ultrasound generation and ultrasonic application on fresh food freezing: Effects on freezing parameters, physicochemical properties and final quality of frozen foods. Food Reviews International, 00(00), 1–23. https://doi.org/10.1080/87559129.2022.2027436
dc.relation.referencesDe Ron, M. A., Papa, R., Bitocchi, E., González, A. M., Debouck, D. G., Brick, M. A., Fourie, D., Marsolais, F., James, B., Geffroy, V., Mc Clean, P., Santalla, M., Lozano, R., Yuste-Lisbona, F., & Casquero, P. A. (2015). Common Bean. In Grain Legumes (pp. 1–36). Springer. https://doi.org/10.1007/978-1-4939-2797-5
dc.relation.referencesDebouck, D., & Hidalgo, R. (1985). Morfología de la planta de frijol. In M. Lopez, F. Fernandez, & A. van Schoonhoven (Eds.), Frijol:Investigación y producción (2nd ed., p. 169). Programa de las Naciones Unidas.
dc.relation.referencesdel Valle, J. M., Cottrell, T. J., Jackman, R. L., & Stanley, D. W. (1992). Hard-to-cook defect in black beans: the contribution of proteins to salt soaking effects. Food Research International, 25(6), 429–436. https://doi.org/10.1016/0963-9969(92)90167-4
dc.relation.referencesDoma, K. M., Farrell, E. L., Leith-Bailey, E. R., Soucier, V. D., & Duncan, A. M. (2019). Motivators, Barriers and Other Factors Related to Bean Consumption in Older Adults. Journal of Nutrition in Gerontology and Geriatrics, 38(4), 397–413. https://doi.org/10.1080/21551197.2019.1646690
dc.relation.referencesDrulyte, D., & Orlien, V. (2019). The Effect of Processing on Digestion of Legume Proteins. Foods, 2019(8), 224–232.
dc.relation.referencesFabbri, A. D. T., & Crosby, G. A. (2016). A review of the impact of preparation and cooking on the nutritional quality of vegetables and legumes. International Journal of Gastronomy and Food Science, 3, 2–11. https://doi.org/10.1016/j.ijgfs.2015.11.001
dc.relation.referencesFan, K., Wu, J., & Chen, L. (2021). Ultrasound and its combined application in the improvement of microbial and physicochemical quality of fruits and vegetables: A review. Ultrasonics Sonochemistry, 80(2021), 1–18. https://doi.org/10.1016/j.ultsonch.2021.105838
dc.relation.referencesFAO/WHO Expert Consultation. (2011). Dietary protein quality evaluation in human nutrition. In FAO food and nutrition paper (Vol. 92)
dc.relation.referencesFAO. (2021). Top 20 countries production of beans, dry 2020. https://www.fao.org/faostat/en/#rankings/countries_by_commodity
dc.relation.referencesFeregrino-Pérez, A. A., Berumen, L. C., García-Alcocer, G., Guevara-Gonzalez, R. G., Ramos-Gomez, M., Reynoso-Camacho, R., Acosta-Gallegos, J. A., & Loarca-Piña, G. (2008). Composition and chemopreventive effect of polysaccharides from common beans (Phaseolus vulgaris L.) on azoxymethane-induced colon cancer. Journal of Agricultural and Food Chemistry, 56(18), 8737–8744. https://doi.org/10.1021/jf8007162
dc.relation.referencesFu, X., Wang, D., Belwal, T., Xie, J., Xu, Y., Li, L., Zou, L., Zhang, L., & Luo, Z. (2021). Natural deep eutectic solvent enhanced pulse-ultrasonication assisted extraction as a multi-stability protective and efficient green strategy to extract anthocyanin from blueberry pomace. LWT, 144(January), 1–52. https://doi.org/10.1016/j.lwt.2021.111220
dc.relation.referencesGallo, M., Ferrara, L., & Naviglio, D. (2018). Application of ultrasound in food science and technology: A perspective. Foods, 7(10), 1–18. https://doi.org/10.3390/foods7100164
dc.relation.referencesGani, A., & Ashwar, B. A. (2021). Food biopolymers: Structural, functional and nutraceutical properties. In Food biopolymers: Structural, functional and nutraceutical properties. https://doi.org/10.1007/978-3-030-27061-2
dc.relation.referencesGhafoor, M., Misra, N. N., Mahadevan, K., & Tiwari, B. K. (2014). Ultrasound assisted hydration of navy beans (Phaseolus vulgaris). Ultrasonics Sonochemistry, 21(1), 409–414. https://doi.org/10.1016/j.ultsonch.2013.05.016
dc.relation.referencesGharibzahedi, S. M. T., & Jafari, S. M. (2017). The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends in Food Science and Technology, 62, 119–132. https://doi.org/10.1016/j.tifs.2017.02.017
dc.relation.referencesGiuberti, G., Tava, A., Mennella, G., Pecetti, L., Masoero, F., Sparvoli, F., Fiego, A. Lo, & Campion, B. (2019). Nutrients’ and antinutrients’ seed content in common bean (phaseolus vulgaris L.) lines carrying mutations affecting seed composition. Agronomy, 9(6). https://doi.org/10.3390/agronomy9060317
dc.relation.referencesGomes Basso Los, F., Ferreira Zielinski, A. A., Wojeicchowski, J. P., Nogueira, A., & Demiate, I. M. (2018). Beans (Phaseolus vulgaris L.): whole seeds with complex chemical composition. Current Opinion in Food Science, 19, 63–71. https://doi.org/10.1016/j.cofs.2018.01.010
dc.relation.referencesGuimarães, B., Polachini, T. C., Augusto, P. E. D., & Telis-Romero, J. (2020). Ultrasound-assisted hydration of wheat grains at different temperatures and power applied: Effect on acoustic field, water absorption and germination. Chemical Engineering and Processing - Process Intensification, 155, 1–11. https://doi.org/10.1016/j.cep.2020.108045
dc.relation.referencesGupta, R. K., Gangoliya, S. S., & Singh, N. K. (2013). Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. Journal of Food Science and Technology, 52(2), 676–684. https://doi.org/10.1007/s13197-013-0978-y
dc.relation.referencesHart, J. J., Tako, E., Kochian, L. V., & Glahn, R. P. (2015). Identification of Black Bean (Phaseolus vulgaris L.) Polyphenols That Inhibit and Promote Iron Uptake by Caco-2 Cells. Journal of Agricultural and Food Chemistry, 63(25), 5950–5956. https://doi.org/10.1021/acs.jafc.5b00531
dc.relation.referencesHayat, I., Ahmad, A., Masud, T., Ahmed, A., & Bashir, S. (2014). Nutritional and Health Perspectives of Beans (Phaseolus vulgaris L.): An Overview. Critical Reviews in Food Science and Nutrition, 54(5), 580–592. https://doi.org/10.1080/10408398.2011.596639
dc.relation.referencesHoward, L. R., White, B. L., Uebersax, M. A., & Siddiq, M. (2018). Dry beans processing, quality evaluation, and nutrition. Handbook of Vegetables and Vegetable Processing: Second Edition, 2–2, 559–587. https://doi.org/10.1002/9781119098935.ch24
dc.relation.referencesIslam, M. N., Zhang, M., & Adhikari, B. (2014). The Inactivation of Enzymes by Ultrasound-A Review of Potential Mechanisms. Food Reviews International, 30(1), 1–21. https://doi.org/10.1080/87559129.2013.853772
dc.relation.referencesJara, C., & Giraldo, D. (2016). Manejo Agronómico de Fríjol CARTILLA (p. 7). Centro Internacional de Agricultura Tropical.
dc.relation.referencesKaptso, K. G., Njintang, Y. N., Komnek, A. E., Hounhouigan, J., Scher, J., & Mbofung, C. M. F. (2008). Physical properties and rehydration kinetics of two varieties of cowpea (Vigna unguiculata) and bambara groundnuts (Voandzeia subterranea) seeds. Journal of Food Engineering, 86(1), 91–99. https://doi.org/10.1016/j.jfoodeng.2007.09.014
dc.relation.referencesKek, S. P., Chin, N. L., & Yusof, Y. A. (2013). Direct and indirect power ultrasound assisted pre-osmotic treatments in convective drying of guava slices. Food and Bioproducts Processing, 91(4), 495–506. https://doi.org/10.1016/j.fbp.2013.05.003
dc.relation.referencesKotha, R. R., Finley, J. W., & Luthria, D. L. (2020). Determination of Soluble Mono, Di, and Oligosaccharide Content in 23 Dry Beans (Phaseolus vulgaris L.). Journal of Agricultural and Food Chemistry, 68(23), 6412–6419. https://doi.org/10.1021/acs.jafc.0c00713
dc.relation.referencesKrebs, N. F., Miller, L. V., & Michael Hambidge, K. (2014). Zinc deficiency in infants and children: A review of its complex and synergistic interactions. Paediatrics and International Child Health, 34(4), 279–288. https://doi.org/10.1179/2046905514Y.0000000151
dc.relation.referencesLee, C., Kim, E., Kim, H., Heo, W., Ahn, S., Park, J., Ban, C., & Lim, S. (2023). Comparison of the pretreatment methods for enhancing hydration of water-soaked adzuki beans (Vigna angularis). Food Science and Biotechnology, 2023(March), 1–9. https://doi.org/10.1007/s10068-023-01294-1
dc.relation.referencesLépiz-Ildefonso, R., Chavarín-Espinoza, I. E., López-Alcocer, J. de J., & Rodríguez-Guzmán, E. (2018). ACUMULACIÓN DE MATERIA SECA DURANTE LAS ETAPAS DE DESARROLLO DE VARIEDADES DE FRIJOL. Revista Fitotecnia Mexicana, 41(3), 275–283. https://doi.org/10.35196/rfm.2018.3.275-283
dc.relation.referencesLi, P., Li, Y., Wang, L., Zhang, H., Qi, X., & Qian, H. (2020). Study on water absorption kinetics of black beans during soaking. Journal of Food Engineering, 283(September 2019), 1–8. https://doi.org/10.1016/j.jfoodeng.2020.110030
dc.relation.referencesLiu, G., Gu, Z., Hong, Y., Cheng, L., & Li, C. (2017). Structure, functionality and applications of debranched starch: A review. In Trends in Food Science and Technology (Vol. 63). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2017.03.004
dc.relation.referencesLópez, L. ., Ulloa, J. ., Ulloa, P. R., Ramirez, J. ., Carrillo Silva, Y., & Ramos Quintero, A. (2017). Modelling of hydration of bean( Phaseolus Vulgaris L . ): Effect of the Low-Frequency Ultrasound. Journal Food Science, 29(September), 288–301. https://doi.org/10.14674/1120-1770
dc.relation.referencesMartínez-Manrique, E., Jacinto-Hernández, C., Garza-García, R., Campos, A., Moreno, E., & Bernal-Lugo, I. (2011). Enzymatic changes in pectic polysaccharides related to the beneficial effect of soaking on bean cooking time. Journal of the Science of Food and Agriculture, 91(13), 2394–2398. https://doi.org/10.1002/jsfa.4474
dc.relation.referencesMiano, A. C., & Augusto, P. E. D. (2015). From the sigmoidal to the downward concave shape behavior during the hydration of grains: Effect of the initial moisture content on Adzuki beans (Vigna angularis). Food and Bioproducts Processing, 96(Fao), 43–51. https://doi.org/10.1016/j.fbp.2015.06.007
dc.relation.referencesMiano, A. C., & Augusto, P. E. D. (2018). The Hydration of Grains: A Critical Review from Description of Phenomena to Process Improvements. Comprehensive Reviews in Food Science and Food Safety, 17(2), 352–370. https://doi.org/10.1111/1541-4337.12328
dc.relation.referencesMiano, A. C., Ibarz, A., & Augusto, P. E. D. (2016). Mechanisms for improving mass transfer in food with ultrasound technology: Describing the phenomena in two model cases. Ultrasonics Sonochemistry, 29, 413–419. https://doi.org/10.1016/j.ultsonch.2015.10.020
dc.relation.referencesMiano, A. C., Ibarz, A., & Augusto, P. E. D. (2017). Ultrasound technology enhances the hydration of corn kernels without affecting their starch properties. Journal of Food Engineering, 197, 34–43. https://doi.org/10.1016/j.jfoodeng.2016.10.024
dc.relation.referencesMiano, A. C., Pereira, J. D. C., Castanha, N., Júnior, M. D. D. M., & Augusto, P. E. D. (2016). Enhancing mung bean hydration using the ultrasound technology: Description of mechanisms and impact on its germination and main components. Scientific Reports, 6(November), 1–14. https://doi.org/10.1038/srep38996
dc.relation.referencesMiano, A. C., Sabadoti, V. D., & Augusto Duarte, P. E. (2018). Enhancing the hydration process of common beans by ultrasound and high temperatures: Impact on cooking and thermodynamic properties. Journal of Food Engineering, 225, 53–61. https://doi.org/10.1016/j.jfoodeng.2018.01.015
dc.relation.referencesMiano, A. C., Sabadoti, V. D., Pereira, J. da C., & Augusto, P. E. D. (2018). Hydration kinetics of cereal and pulses: New data and hypothesis evaluation. Journal of Food Process Engineering, 41(1), 1–8. https://doi.org/10.1111/jfpe.12617
dc.relation.referencesMinagricultura. (2020). Cadena del Fríjol. https://sioc.minagricultura.gov.co/AlimentosBalanceados/Documentos/2020-03-31 Cifras Sectoriales frijol.pdf
dc.relation.referencesNieto, C. (2014). Técnicas de cocción: sabor, color, textura y nutrientes a buen recaudo. Farmacia Profesional, 28(4), 15–19.
dc.relation.referencesNyau, V. (2014). Nutraceutical perspectives and utilization of common beans (. African Journal of Food, Agriculture, Nutrition and Development, 9483–9496.
dc.relation.referencesOrozco, J. C., Londoño, L. F., Jaramillo, A. M., & Patiño, G. (2020). Estudio de la bioaccesibilidad in vitro de zinc en arroz (oryza sativa) y su relación con el contenido de ácido fitico. Revista Chilena de Nutrición, 47(2), 171–180. https://doi.org/10.4067/s0717-75182020000200171
dc.relation.referencesOrtiz-Monasterio, J. I., Palacios-Rojas, N., Meng, E., Pixley, K., Trethowan, R., & Peña, R. J. (2007). Enhancing the mineral and vitamin content of wheat and maize through plant breeding. Journal of Cereal Science, 46(3), 293–307. https://doi.org/10.1016/j.jcs.2007.06.005
dc.relation.referencesOvando-Martínez, M., Bello-Pérez, L. A., Whitney, K., Osorio-Díaz, P., & Simsek, S. (2011). Starch characteristics of bean (Phaseolus vulgaris L.) grown in different localities. Carbohydrate Polymers, 85(1), 54–64. https://doi.org/10.1016/j.carbpol.2011.01.043
dc.relation.referencesPatero, T., & Augusto, P. E. D. (2015). Ultrasound (US) enhances the hydration of sorghum (Sorghum bicolor) grains. Ultrasonics Sonochemistry, 23, 11–15. https://doi.org/10.1016/j.ultsonch.2014.10.021
dc.relation.referencesPatist, A., & Bates, D. (2008). Ultrasonic innovations in the food industry: From the laboratory to commercial production. Innovative Food Science and Emerging Technologies, 9(2), 147–154. https://doi.org/10.1016/j.ifset.2007.07.004
dc.relation.referencesTechnologies, 9(2), 147–154. https://doi.org/10.1016/j.ifset.2007.07.004 Peleg, M. (1988). An Empirical Model for the Description of Moisture Sorption Curves. Journal of Food Science, 53(4), 1216–1217. https://doi.org/10.1111/j.1365-2621.1988.tb13565.x
dc.relation.referencesPereira, E. J., Carvalho, L. M. J., Dellamora-Ortiz, G. M., Cardoso, F. S. N., & Carvalho, J. L. V. (2016). Effect of different home-cooking Methods on the bioaccessibility of zinc and iron in conventionally bred cowpea (Vigna unguiculata L. Walp) consumed in Brazil. Food and Nutrition Research, 60. https://doi.org/10.3402/fnr.v60.29082
dc.relation.referencesPerera, D., Devkota, L., Garnier, G., Panozzo, J., & Dhital, S. (2023). Hard-to-cook phenomenon in common legumes: Chemistry, mechanisms and utilisation. Food Chemistry, 415(September 2022), 1–15. https://doi.org/10.1016/j.foodchem.2023.135743
dc.relation.referencesPérez-Perez, L. M., Del Toro Sánchez, C. L., Sánchez Chavez, E., González Vega, R. I., Reyes Díaz, A., Borboa Flores, J., Soto Parra, J. M., & Flores-Cordova, M. A. (2019). Bioaccesibilidad de compuestos antioxidantes de diferentes variedades de frijol (Phaseolus vulgaris L.) en México, mediante un sistema gastrointestinal in vitro//Bioaccessibility of antioxidant compounds from different bean varieties (Phaseolus vulgaris L. Biotecnia, 22(1), 117–125. https://doi.org/10.18633/biotecnia.v22i1.1159
dc.relation.referencesPetry, N., Boy, E., Wirth, J. P., & Hurrell, R. F. (2015). Review: The potential of the common bean (phaseolus vulgaris) as a vehicle for iron biofortification. Nutrients, 7(2), 1144–1173. https://doi.org/10.3390/nu7021144
dc.relation.referencesPetry, N., Egli, I., Zeder, C., Walczyk, T., & Hurrell, R. (2010). Polyphenols and phytic acid contribute to the low iron bioavailability from common beans in young women. Journal of Nutrition, 140(11), 1977–1982. https://doi.org/10.3945/jn.110.125369
dc.relation.referencesPiñon, M., Alarcon-Rojo, A., Paniwnyk, L., Mason, T., Luna, L., & Renteria, A. (2019). Ultrasound for improving the preservation of chicken meat. Food Science and Technology, 39(June), 129–135. https://doi.org/10.1590/fst.39017
dc.relation.referencesPirhayati, M., Soltanizadeh, N., & Kadivar, M. (2011). Chemical and microstructural evaluation of “hard-to-cook” phenomenon in legumes (pinto bean and small-type lentil). International Journal of Food Science and Technology, 46(9), 1884–1890. https://doi.org/10.1111/j.1365-2621.2011.02697.x
dc.relation.referencesQiu, L., Zhang, M., Chitrakar, B., & Bhandari, B. (2020). Application of power ultrasound in freezing and thawing Processes: Effect on process efficiency and product quality. Ultrasonics Sonochemistry, 68(April), 1–12. https://doi.org/10.1016/j.ultsonch.2020.105230
dc.relation.referencesQuiñones, M., Miguel, M., & Aleixandre, A. (2012). Los polifenoles, compuestos de origen natural con efectos saludables sobre el sistema cardiovascular. Nutricion Hospitalaria, 27(1), 76–89. https://doi.org/10.3305/nh.2012.27.1.5418
dc.relation.referencesRana, A., Vishvavidyalya, K., Pradesh, H., Meena Parmar, I. Y., & Anita Rana, C. (2017). Ultrasonic processing and its use in food industry: A review. International Journal of Chemical Studies, 5(6), 1961–1968.
dc.relation.referencesRanjbari, A., Kashaninejad, M., Aalami, M., Khomeiri, M., & Gharekhani, M. (2013). Effect of ultrasonic pre-treatment on water absorption characteristics of chickpeas (Cicer arietinum). Latin American Applied Research, 43(2), 153–159.
dc.relation.referencesReynoso-Camacho, R., & Ramoz-Gomez, M. (2006). Bioactive components in common beans (Phaseolus vulgaris L.). Research Signpost, 661(2), 217–236
dc.relation.referencesRicce, C., Rojas, M. L., Miano, A. C., Siche, R., & Augusto, P. E. D. (2016). Ultrasound pre-treatment enhances the carrot drying and rehydration. Food Research International, 89, 701–708. https://doi.org/10.1016/j.foodres.2016.09.030
dc.relation.referencesRios, B., & Quiroz, D. (2002). El frijol (Phaseolus vulgaris L.) Cultivo, Beneficio y Variedades (p. 193). Convenio FENALCE.
dc.relation.referencesSánchez-Arteaga, H. M., Urías-Silvas, J. E., Espinosa-Andrews, H., & García-Márquez, E. (2015). Effect of chemical composition and thermal properties on the cooking quality of common beans (Phaseolus vulgaris). CYTA - Journal of Food, 13(3), 385–391. https://doi.org/10.1080/19476337.2014.988182
dc.relation.referencesSatya, S., Kaushik, G., & Naik, S. N. (2010). Processing of food legumes: A boon to human nutrition. Mediterranean Journal of Nutrition and Metabolism, 3, 183–195. https://doi.org/10.1007/s12349-010-0017-8
dc.relation.referencesSchoeninger, V., Coelho, S. R. M., & Bassinello, P. Z. (2017). Industrial processing of canned beans. Ciência Rural, 47(5), 1–9. https://doi.org/10.1590/0103-8478cr20160672
dc.relation.referencesShergill-Bonner, R. (2017). Micronutrients. Paediatrics and Child Health (United Kingdom), 27(8), 357–362. https://doi.org/10.1016/j.paed.2017.04.002
dc.relation.referencesShriki, J. (2014). Ultrasound physics. Critical Care Clinics, 30(1), 1–24. https://doi.org/10.1016/j.ccc.2013.08.004
dc.relation.referencesSiddiq, M., Masood, S. B., & Sultan, M. T. (2012). Dry Beans and Pulses Production, Processing and Nutrition. Dry Beans and Pulses Production, Processing and Nutrition, 545–564. https://doi.org/10.1002/9781118448298
dc.relation.referencesSingh, B., Singh, J. P., Shevkani, K., Singh, N., & Kaur, A. (2017). Bioactive constituents in pulses and their health benefits. Journal of Food Science and Technology, 54(4), 858–870. https://doi.org/10.1007/s13197-016-2391-9
dc.relation.referencesSinkovič, L., Pipan, B., Šibul, F., Nemeš, I., Tepić Horecki, A., & Meglič, V. (2023). Nutrients, Phytic Acid and Bioactive Compounds in Marketable Pulses. Plants, 12(1), 1–17. https://doi.org/10.3390/plants12010170
dc.relation.referencesSoltani Firouz, M., Farahmandi, A., & Hosseinpour, S. (2019). Recent advances in ultrasound application as a novel technique in analysis, processing and quality control of fruits, juices and dairy products industries: A review. Ultrasonics Sonochemistry, 57(April), 73–88. https://doi.org/10.1016/j.ultsonch.2019.05.014
dc.relation.referencesSuárez-Martínez, S. E., Ferriz-Martínez, R. A., Campos-Vega, R., Elton-Puente, J. E., De La Torre Carbot, K., & García-Gasca, T. (2016). Bean seeds: Leading nutraceutical source for human health. CYTA - Journal of Food, 14(1), 131–137. https://doi.org/10.1080/19476337.2015.1063548
dc.relation.referencesSzadzińska, J., Łechtańska, J., Kowalski, S. J., & Stasiak, M. (2017). The effect of high power airborne ultrasound and microwaves on convective drying effectiveness and quality of green pepper. Ultrasonics Sonochemistry, 34, 531–539. https://doi.org/10.1016/j.ultsonch.2016.06.030
dc.relation.referencesTaha, A., Mehany, T., Pandiselvam, R., Anusha Siddiqui, S., Mir, N. A., Malik, M. A., Sujayasree, O. J., Alamuru, K. C., Khanashyam, A. C., Casanova, F., Xu, X., Pan, S., & Hu, H. (2023). Sonoprocessing: mechanisms and recent applications of power ultrasound in food. Critical Reviews in Food Science and Nutrition, 1–39. https://doi.org/10.1080/10408398.2022.2161464
dc.relation.referencesTajoddin, M., Manohar, S., & Lalitha, J. (2014). Effect of soaking and germination on polyphenol content and polyphenol oxidase activity of mung bean (Phaseolus Aureus L.) cultivars differing in seed color. International Journal of Food Properties, 17(4), 782–790. https://doi.org/10.1080/10942912.2012.654702
dc.relation.referencesTao, Y., Han, M., Gao, X., Han, Y., Show, P. L., Liu, C., Ye, X., & Xie, G. (2019). Applications of water blanching, surface contacting ultrasound-assisted air drying, and their combination for dehydration of white cabbage: Drying mechanism, bioactive profile, color and rehydration property. Ultrasonics Sonochemistry, 53(December 2018), 192–201. https://doi.org/10.1016/j.ultsonch.2019.01.003
dc.relation.referencesTao, Y., & Sun, D. W. (2015). Enhancement of Food Processes by Ultrasound: A Review. Critical Reviews in Food Science and Nutrition, 55(4), 570–594. https://doi.org/10.1080/10408398.2012.667849
dc.relation.referencesUlloa, J. A., Enríquez López, K. V., Contreras Morales, Y. B., Rosas Ulloa, P., Ramírez Ramírez, J. C., & Ulloa Rangel, B. E. (2015). Effect of ultrasound treatment on the hydration kinetics and cooking times of dry beans (Phaseolus vulgaris). CYTA - Journal of Food, 13(4), 588–596. https://doi.org/10.1080/19476337.2015.1024173
dc.relation.referencesUlloa, J. A., Rosas-Ulloa, P., Ramírez-Ramírez, J. C., & Ulloa-Rangel, B. E. (2016). Modelación matemática de las cinéticas de hidratación a diferentes temperaturas de cuatro variedades de frijol (Phaseolus vulgaris L) producidas en México. CienciaUAT, 10(2), 52–62. https://doi.org/10.29059/cienciauat.v10i2.542
dc.relation.referencesVásquez, U., Siche, R., & Miano, A. C. (2021). Ultrasound-assisted hydration with sodium bicarbonate solution enhances hydration-cooking of pigeon pea. LWT, 144(February), 1–8. https://doi.org/10.1016/j.lwt.2021.111191
dc.relation.referencesWainaina, I., Wafula, E., Sila, D., Kyomugasho, C., Grauwet, T., Van Loey, A., & Hendrickx, M. (2021). Thermal treatment of common beans (Phaseolus vulgaris L.): Factors determining cooking time and its consequences for sensory and nutritional quality. Comprehensive Reviews in Food Science and Food Safety, 20(4), 3690–3718. https://doi.org/10.1111/1541-4337.12770
dc.relation.referencesWani, I. A., Sogi, D. S., & Gill, B. S. (2013). Physical and cooking characteristics of black gram (Phaseolus mungoo L.) cultivars grown in India. International Journal of Food Science and Technology, 48(12), 2557–2563. https://doi.org/10.1111/ijfs.12249
dc.relation.referencesWilliams, D. (2012). The physics of ultrasound. Anaesthesia and Intensive Care Medicine, 13(6), 264–268. https://doi.org/10.1016/j.mpaic.2012.03.010
dc.relation.referencesWood, J. A. (2017). Evaluation of cooking time in pulses: A review. Cereal Chemistry, 94(1), 32–48. https://doi.org/10.1094/CCHEM-05-16-0127-FI
dc.relation.referencesYang, Q. Q., Gan, R. Y., Ge, Y. Y., Zhang, D., & Corke, H. (2018). Polyphenols in Common Beans (Phaseolus vulgaris L.): Chemistry, Analysis, and Factors Affecting Composition. Comprehensive Reviews in Food Science and Food Safety, 17, 1518–1539. https://doi.org/10.1111/1541-4337.12391
dc.relation.referencesYildirim, A., & Öner, M. D. (2015). Electrical conductivity, water absorption, leaching, and color change of chickpea (Cicer arietinum L.) during soaking with ultrasound treatment. International Journal of Food Properties, 18(6), 1359–1372. https://doi.org/10.1080/10942912.2014.917660
dc.relation.referencesYildirim, A., Öner, M. D., & Bayram, M. (2011). Fitting Fick’s model to analyze water diffusion into chickpeas during soaking with ultrasound treatment. Journal of Food Engineering, 104(1), 134–142. https://doi.org/10.1016/j.jfoodeng.2010.12.005
dc.relation.referencesYousif, A. M., Kato, J., & Deeth, H. C. (2007). Effect of storage on the biochemical structure and processing quality of adzuki bean (Vigna angularis). In Food Reviews International (Vol. 23, Issue 1). https://doi.org/10.1080/87559120600865172
dc.relation.referencesZamindar, N., Baghekhandan, M. S., Nasirpour, A., & Sheikhzeinoddin, M. (2013). Effect of line, soaking and cooking time on water absorption, texture and splitting of red kidney beans. Journal of Food Science and Technology, 50(1), 108–114. https://doi.org/10.1007/s13197-011-0234-2
dc.relation.referencesZehring, J., Walter, S., Quendt, U., Zocher, K., & Rohn, S. (2022). Phytic Acid Content of Faba Beans (Vicia faba)—Annual and Varietal Effects, and Influence of Organic Cultivation Practices. Agronomy, 12(4), 1–14. https://doi.org/10.3390/agronomy12040889
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocUltrasonics
dc.subject.agrovocTratamiento con ultrasonido
dc.subject.agrovocUltrasonic treatment
dc.subject.agrovocPhaseolus vulgaris
dc.subject.agrovocEffects
dc.subject.agrovocCapacidad de fijación del agua
dc.subject.agrovocWater binding capacity
dc.subject.proposalFrijol
dc.subject.proposalNutrientes
dc.subject.proposalUltrasonido
dc.subject.proposalHidratacion
dc.subject.proposalCocción
dc.subject.proposalCommon bean
dc.subject.proposalNutrients
dc.subject.proposalUltrasound
dc.subject.proposalHydration
dc.subject.proposalCooking
dc.title.translatedEffect of ultrasound on hydration and nutritional quality in cooking common bean (Phaseolus vulgaris)
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentGrupos comunitarios
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaIngeniería.Sede Palmira
dc.contributor.orcid0000-0002-4554-3629


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-CompartirIgual 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito