Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorDuque Daza, Carlos Alberto
dc.contributor.authorPinzón Rincón, Christian David
dc.date.accessioned2023-11-30T18:49:59Z
dc.date.available2023-11-30T18:49:59Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85028
dc.descriptionilustraciones, diagramas
dc.description.abstractLa refrigeración por película ha permitido incrementar las temperaturas de trabajo en álabes de turbinas de gas, al mantener parte de la superficie cubierta por un flujo de refrigerante de menor temperatura que el flujo principal de los gases de combustión. El rendimiento de la refrigeración por película está altamente influenciado por la relación de velocidades entre el flujo de refrigeración y el flujo principal de gases calientes, ası́ como de la geometría de descarga, principalmente. La influencia de estos parámetros genera fenómenos como la formación de vórtices, los cuales pueden atenuar o acelerar la separación del refrigerante, dependiendo el caso. Una técnica usada para mejorar el rendimiento de refrigeración ha sido colocar obstáculos o resaltos aguas arriba del agujero de descarga, los cuales retardan la mezcla del refrigerante con el flujo principal. En este trabajo se analizó, mediante simulaciones numéricas de flujo incompresible en OpenFoam, el efecto generado por la prensencia de dos diferentes obstáculos aguas arriba de la descarga de refrigerante sobre una placa plana. El análisis se llevó a cabo mediante la evaluación de diferentes indicadores de rendimiento de refrigeración, en el que se evaluarón tres configuraciones diferentes de la placa plana: sin obstáculo, con obstáculo triangular y con obstáculo curvo. En los tres casos la relación de velocidades entre el chorro y el flujo principal fue de uno (U c /U ∞ = 1). Encontrandose que al agregar obstáculos se tiene un incremento en la efectividad de enfriamiento promedio (η) y el flujo de calor neto reducido (NHFR), debido a que estos generan una mejor propagación lateral en la descarga del refrigerante al no separarse tempranamente de la superficie. El obstáculo curvo es el de mejor desempeño al tener la mayor (η) y el mayor (NHFR) respecto a los demás casos. (Texto tomado de la fuente)
dc.description.abstractFilm cooling technology has increased the operating temperature of gas turbine blades and vanes. The refrigerant film cools part of the surface, keeping it at a lower temperature than the main stream of combustion gases. The performance of film cooling is affected by the velocity of the refrigerant relative to the main stream (vlocity relation), and the geometry of the holes through which the refrigerant is discharged. These parameters can generate vortices, which can either diminish or accelerate the separation of the refrigerant from the surface. In this work, the effect of placing a triangular and a circular obstacle upstream of the refrigerant discharge in a flat plate was carried out by means of numerical simulation of incompressible flow with OpenFoam software. The analysis was conducted by evaluating different performance indicators of film cooling. Three different configuration of flat plate were evaluated: whithout obstacle, triangular obstacle and curve obtacle. The velocity relation of the three cases was set as one (U c /U ∞ = 1). It was found that adding obstacles increased the average cooling effectiveness (η) and the net heat flux reduction (NHFR). This is because obstacles promote better lateral spreading of the coolant, preventing early separation from the surface. Among the obstacles simulated, the circular one showed the best performance, due to their average film cooling efectiveness (η) and the net heat flux reduction (NHFR) was the highest.
dc.format.extentxvi, 61 páginas
dc.format.mimetypeapplication/pdf
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleEvaluación de geometrías de canales de refrigeración por película en álabes de turbinas de gas
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica
dc.contributor.researchgroupGrupo de Investigación: GNUM
dc.description.degreelevelMaestría
dc.description.researchareaIngeniería Térmica y Fluidos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesInternational Energy Agency, Energy efficiency market report 2013, Paris, 2013, International Energy Agency, pp 18.
dc.relation.referencesInternational Energy Agency, Capturing the Multiple Benefits of Energy Efficiency, Paris, 2014, International Energy Agency, pp 19.
dc.relation.referencesM. M. Rahman, T. K. Ibrahim , K. Kadirgama, R. Mamat y Rosli A. Bakar, Influence of Operation Conditions and Ambient Temperature on Performance of Gas Turbine Power Plant , Advanced Materials Research. 2011, vol 189, pp 3007-3013. https://doi.org/10.4028/www.scientific.net/AMR.189-193.3007
dc.relation.referencesA. Noroozian, M. Bidi, An applicable method for gas turbine efficiency improvement. Case study: Montazar Ghaem power plant, Iran , Journal of Gas Science and Engineering. 2016, vol 28, pp 95-105. https://doi.org/10.1016/j.jngse.2015.11.032
dc.relation.referencesGE9X , GE9X Engine, disponible en : https://www.geaerospace.com/propulsion/ commercial/ge9x
dc.relation.referencesN Uddin , J T Gravdhal Introducing Back-up to Active Compressor Surge Control System , IFAC Proceedings Volumes. 2012, vol 45, pp 263-268. https://doi.org/10. 3182/20120531-2-NO-4020.00053
dc.relation.referencesD Garcia , G Liśkiewiczb Stable or not stable? Recognizing surge based on the pressure signal , TRANSACTIONS OF THE INSTITUTE OF FLUID-FLOW MACHINERY. 2016, vol 133, pp 55-68.
dc.relation.referencesS Naik Basic Aspects of Gas Turbine Heat Transfer, INTECH. 2017, pp 111-139. http: //dx.doi.org/10.5772/67323
dc.relation.referencesS Chena, X Zhoua, W Songb, J Suna, H Zhanga, J Jianga, L Denga,S Donga, X Caoa, Mg2SiO4 as a novel thermal barrier coating material for gas turbine applications, Journal of the European Ceramic Society. 2019, vol 39, pp 2397-2408. https://doi.org/10.1016/j.jeurceramsoc.2019.02.016
dc.relation.referencesI Gartshore, M Salcudean, I Hassan Film cooling injection hole geometry: hole shape comparison for compound cooling orientation, Aerospace Research Central. 2001, vol 31, pp 1493-1499. https://doi.org/10.2514/2.1500
dc.relation.referencesJ Zhang, S Zhang, C Wang, X Tan Recent advances in film cooling enhancement: A review, Chinese Journal of Aeronautics. 2020, vol 33 , pp 1119-1136 . https://doi. org/10.1016/j.cja.2019.12.023
dc.relation.referencesS M Kim, K D Lee, K Y Kim, A comparative análisis of various shaped film-cooling holes, Heat Mass Transfer, 2012, vol 48, pp 1929-1939 . 10.1007/s00231-012-1043-5
dc.relation.referencesP Kalghatgi ,S Acharya Improved Film Cooling Effectiveness With a Round Film Cooling Hole Embedded in a Contoured Crater, Journal of Turbumachinery. 2015, vol 137 , pp 1-9 DOI:10.1115/1.4030395
dc.relation.referencesJ Heidmann A Numerical Study of Anti-Vortex Film Cooling Designs at High Blowing Ratio, NASA. 2008, pp 1-11 .
dc.relation.referencesM Ely, B Jubran, A numerical evaluation on the effect of sister holes on film cooling effectiveness and surrounding Flow field, Heat Mass Transfer, 2009, vol 45 , pp 1435–1446 . 10.1007/s00231-009-0523-8
dc.relation.referencesP Kalghatgi, S Acharty, Improved Film Cooling Effectiveness With a Round Film Cooling Hole Embedded in a Contoured Crater, Journal of Turbomachinery, 2018, vol 137, 10.1115/1.4030395
dc.relation.referencesS Zhang, J Zhang, X Tan, Improvement on shape-hole film cooling effectiveness by iterating upstream sand-dune-shaped ramps, Chinese Journal of Aeronautics, 2020
dc.relation.referencesZhang, S Chang, Zhang, J Zhou, Tan, X ming, Numerical investigation of film cooling enhancement using an upstream sand-dune-shaped ramp, MDPI, 2018 , vol 49, pp 2-13, https://doi.org/10.3390/computation6030049
dc.relation.referencesR Goldstein, Film Colling, Department of Mechanical Engineering. University of Minnesota. Minneapolis, 1971.
dc.relation.referencesF Zhang ,X Wang ,J Li The effects of upstream steps with unevenly spanwise distributed height on rectangular hole film cooling performance, International Journal of Heat and Mass Transfer. 2016, pp 1209-1221. https://doi.org/10.1016/j. ijheatmasstransfer.2016.07.001
dc.relation.referencesA Coussement, O Gicquel, G Degrez, Large Eddy Simulation of a Pulsed Jet in Crossflow, Journal of Fluid Mechanics, 2012, Vol 695, pp 1-34,https://doi.org/10. 1017/jfm.2011.539.
dc.relation.referencesN Rajaratnam Chapter 9 Jets in Cross-Flow , Developments in Water Science, Ed by N. Rajaratnam , Elsevier, 1976, Vol 5, pp 184-210. https://doi.org/10.1016/ S0167-5648(08)70909-2.
dc.relation.referencesC Cárdenas, R Suntz, J Denev, H Bockhorn, Two-dimensional estimation of Reynolds-fluxesand - stresses in a Jet-in-Crossflow arrangement by simultaneous 2D-LIF and PIV,Lasers and Optics ,2007, Vol 88, pp 588-591, 10.1007/s00340-007-2734-3.
dc.relation.referencesJ Andreopoulos , W Rodi , Experimental investigation of jets in crossflow . Journal of Fluid Mechanics, 1984, vol. 138, pp 93-127, doi:10.1017/s0022112084000057.
dc.relation.referencesR.J. Goldstein, E.R.G. Eckert, J.W. Ramsey , Film cooling with injection through holes: adiabatic wall temperatures downstream of a circular hole, J. Eng. Power, 1968, pp 384–393, https://doi.org/10.1115/1.3609223.
dc.relation.referencesS Acharya, Y Kanani , Advances in Film Cooling Heat Transfer, Advances in Heat Transfer, Ed E.M. Sparrow, J.P. Abraham, J.M. Gorman, Elsevier, 2017, pp 91-156, https://doi.org/10.1016/bs.aiht.2017.10.001.
dc.relation.referencesR.S. Colladay, L.M. Russell , Streakline flow visualization of discrete hole film cooling for gas turbine applications, J. Heat Transfer 98, 1976, pp 245–250, https: //doi.org/10.1115/1.3450526.
dc.relation.referencesS. Baldauf, M. Scheurlen, A. Schulz, S. Wittig , Correlation of film-cooling effective- ness from thermographic measurements at engine like conditions, J. Turbomach 124, 2002, pp 686–698, https://doi.org/10.1115/1.1504443
dc.relation.referencesD. Schmidt,, B.Sen, and D.Bogard , Film Cooling with Compound Angle Holes: Adiabatic Effectiveness, Journal of Turbomachinery Vol. 118, 1996, pp. 807–813., doi: 10.1115/94-gt-312
dc.relation.referencesD. Bogard, K. Thole , Gas Turbine Film Cooling, Journal of Propulsion and Power Vol. 22, 2006, pp. 249-270., doi:10.2514/1.18034
dc.relation.referencesJ.C. Han, A.B. Mehendale , Flat-Plate Film Cooling with Steam Injection Through One Row and Two Rows of Inclined Holes, Journal of Turbomachinery, Vol. 108, 1986, pp. 137–144, https://doi.org/10.1115/1.3262013
dc.relation.referencesN. W. Foster, D. Lampard , The Flow and Film Cooling Effectiveness Following Injection Through a Row of Holes, Journal of Engineering for Power, Vol. 102, 1980, pp. 584–588, https://doi.org/10.1115/1.3230306
dc.relation.referencesA. Kohli, D.Bogard , Adiabatic Effectiveness, Thermal Fields,and Velocity Fields for Film Cooling with Large Angle Injection, Journal of Turbomachinery,Vol. 119, 1997, pp. 352–358, https://doi.org/10.1115/1.2841118
dc.relation.referencesC. Saumweber, A. Schulz, S. Wittig , Free-Stream Turbulence Effects on Film Cooling with Shaped Holes, Journal of Turbomachinery,Vol. 125, 2003, pp. 65–73, https: //doi.org/10.1115/1.1515336.
dc.relation.referencesK. Kadotani, R.Goldstein , Effect of Mainstream Variables on Jets Issuing from a Row of Inclined Round Holes, Transaction of the American Society of Mechanical Engineers, Vol. 101, 1979, pp. 298–304. https://doi.org/10.1115/1.3446486.
dc.relation.referencesAokomoriuta , Law of Wall, disponible en : https://commons.wikimedia.org/ wiki/File:Law_of_the_wall_(English).svg, 2011, consultado en Enero de 2023.
dc.relation.referencesJ.B. Anderson, E.K. Wilkes, J.W. Mcclintic, D.G. Bogard , Effects of freestream Mach number, reynolds number, and boundary layer thickness on film cooling effectiveness of shaped holes, ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Seoul, South Korea, 2016, https://doi.org/10.1115/ GT2016-56152.
dc.relation.referencesS. Ito, R. Goldstein, E. Eckert, Film Cooling of a Gas Turbine Blade, Journal of Engineering for Power, Vol. 100, 1978, pp. 476–481, https://doi.org/10.1115/1. 3446382
dc.relation.referencesJ.P Bons, R Taylor,S McClain, R.B Rivir, The Many Faces of Turbine Surface Roughness, Journal of Turbomachinery, Vol. 123, 2001, pp. 739–748, https://doi.org/ 10.1115/1.1400115
dc.relation.referencesD. G Bogard, D.L Schmidt, M Tabbita, Characterization and Laboratory Simulation of Turbine Airfoil Surface Roughness and Associated Heat Transfer, Journal of Turbomachinery, Vol. 120, 1998, pp. 337–342, https://doi.org/10.1115/1.2841411
dc.relation.referencesR. J. Goldstein, E. R. G. Eckert, H. D. Chiang, E Elovic, Effect of Surface Roughness on Film Cooling Performance, Journal of Engineering for Gas Turbines and Power, Vol. 107, 1985, pp. 111–116, https://doi.org/10.1115/1.3239669
dc.relation.referencesD. L Schmidt, B Sen, D.G Bogard, Effects of Surface Roughness on Film Cooling, American Society of Mechanical Engineers, ASME Paper 96-GT-299, 1996.
dc.relation.referencesVA Kurganov , Adiabatic Wall Temperature, disponible en : https://www. thermopedia.com/content/291/#ADIABATIC_WALL_TEMPERATURE_FIG1
dc.relation.referencesY Ito , Heat Transfer of Supercritical Fluid Flows and Compressible Flows, IntechOPen, capı́tulo 6, pp 140 .
dc.relation.referencesJ Librizzi, R Gresci, Transpiration Cooling of a Turbulent Boundary Layer in an Axisymmetric Nozzle, AIAA JOURNAL, Vol 2, 1964, pp. 617–624, https://doi.org/ 10.2514/3.2397
dc.relation.referencesS. S. Kutateladze, A. I. Leont’ev, Cortina térmica con capa lı́mite turbulenta de gas, TVT, 1963, Volume 1,Issue 2, pp 281–290.
dc.relation.referencesJ.L. Stollery, A.A.M. El-Ehwany, On the use of a boundary-layer model for correlating film cooling data, Heat Mass Transfer, 1967, Vol 10, pp 101-105, https: //doi.org/10.1016/0017-9310(67)90186-X
dc.relation.referencesY Cengel,A Ghajar,Transferencia de Calor y Masa,editorial McGrawHill, 4 Ed, 2004.
dc.relation.referencesMora J, Análisis de Turbinas de Gas con Álabes Refrigerados, Universidad de Sevilla, en lı́nea ,disponible en : http://bibing.us.es/proyectos/abreproy/90740/fichero/ TFG_memoria.pdf.
dc.relation.referencesA Lande, Complex Mesh Generation with OpenFOAM, University of South-Eastern Norway, 2021.
dc.relation.referencesW Colban, K Thole, D Bogard, A Film-Cooling Correlation for Shaped Holes on a Flat-Plate Surface,ASME Journal of Turbumachinery, vol 133, no 011002, pp 1-11, Enero 2011, doi:10.1115/1.4002064.
dc.relation.referencesY Cengel,J Cimbala,Fluid Mechanics Fundamentals and Applications,New York,editorial McGrawHill, 2006.
dc.relation.referencesF White,Fluid Mechanics, 4th ed,editorial McGrawHill.
dc.relation.referencesP.J Newton, G.D Lock, S.K Krishnababu, H.P Hodson, W.N Dawes, J Hannis, C Whitney Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines—Part III: TIP Cooling, Journal of Turbumachinery. 2009, vol 131, pp 1-12 DOI:10.1115/1.2950060
dc.relation.referencesSIMSCALE, (2021, Septiembre 3), What is Transport Equation? .en lı́nea. Disponible en : https://www.simscale.com/docs/simwiki/numerics-background/ what-is-the-transport-equation/.
dc.relation.referencesD H Rhee,Y S Lee , H H Cho, Film Cooling Effectiveness and Heat Transfer of Rectangular-Shaped Film Cooling Holes,Proceedings of ASME TURBO EXPO,pp 1-11, Junio 2002, doi:10.1115/GT2002-30168.
dc.relation.referencesA Abdala,F Elwekeel , D Huang, Film cooling effectiveness and flow structures for novel upstream, Applied Thermal Engineering,pp 1-14, Mayo 2015,http://dx.doi. org/10.1016/j.applthermaleng.2015.05.074.
dc.relation.referencesW Zhou, H Hu, Improvements of film cooling effectiveness by using Barchan dune shaped ramps, International Journal of Heat and Mass Transfer, vol 103, pp 443-455, 2016, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.07.066.
dc.relation.referencesOpenFOAM Wiki , The PIMPLE algorithm in OpenFOAM, disponible en : https://openfoamwiki.net/index.php/OpenFOAM_guide/The_PIMPLE_algorithm_ in_OpenFOAM, 2023, consultado en Junio de 2023.
dc.relation.referencesOpenFOAM Foundation , OpenFOAM User Guide, disponible en : https:// doc.cfd.direct/openfoam/user-guide-v6/fvsolution, 2022, consultado en Junio de 2023.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembIndustria de turbinas de gas
dc.subject.lembGas-turbine industry
dc.subject.lembTermotecnia
dc.subject.lembHeat engineering
dc.subject.proposalRefrigeración por pelı́cula
dc.subject.proposalChorro en flujo cruzado
dc.subject.proposalEfectividad de enfriamiento
dc.subject.proposalCoeficiente de transferencia de calor por convección
dc.subject.proposalCalor neto reducido
dc.subject.proposalFilm cooling
dc.subject.proposalJet in cross flow
dc.subject.proposalCooling effectiveness
dc.subject.proposalHeat transfer coefficient by convection
dc.subject.proposalNet heat flux reduction
dc.title.translatedEvaluation of film cooling channel geometries in gas turbine blades
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito