Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorVarón Durán, Gloria Margarita
dc.contributor.advisorCoronel Rico, Juan Fernando
dc.contributor.authorLadino Ordoñez, Elkin Andres
dc.date.accessioned2023-12-12T14:30:42Z
dc.date.available2023-12-12T14:30:42Z
dc.date.issued2023-12-11
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85069
dc.descriptionilustraciones
dc.description.abstractLa creciente demanda de servicios inalámbricos que prometen acceso en cualquier momento y lugar ha generado un agotamiento del espectro electromagnético, lo que plantea la necesidad de mejorar los sistemas de comunicación existentes. En este trabajo de tesis se propone un sistema de radio sobre fibra basado en el uso de un oscilador optoelectrónico como una posible solución para mejorar el uso del espectro en altas frecuencias y garantizar características de transmisión óptimas. Se presenta la simulación de un prototipo de transmisión punto a punto que utiliza un oscilador optoelectrónico de modulación externa aplicado a un sistema de radio sobre fibra, analizando los resultados del enlace de bajada. Con esta finalidad, se caracterizó un sistema de radio sobre fibra con la ayuda del radio definido por software en la banda de frecuencia 5,8 GHz. Luego, se desarrolló un oscilador optoelectrónico diseñado para esta misma banda de frecuencia. Finalmente se llevó a cabo una simulación donde se integra el sistema, en donde se contrastaron los resultados obtenidos con las características sugeridas por diferentes estándares y protocolos, para luego evaluar las figuras de mérito del sistema. Los resultados conseguidos permitieron observar la directa relación entre las figuras de mérito trabajadas y su comportamiento bajo diferentes condiciones y esquemas de modulación, para el sistema de radio sobre fibra. En cuanto al oscilador optoelectrónico se pudieron analizar las condiciones de mejora para el ruido de fase y la estabilidad del oscilador. Finalmente se realiza la integración del sistema de radio sobre fibra con el oscilador optoelectrónico, mediante una simulación, verificando las diferentes figuras de mérito y analizando su rendimiento en distintos escenarios. (Texto tomado de la fuente)
dc.description.abstractThe increasing demand for wireless services promising access anytime and anywhere has led to a depletion of the electromagnetic spectrum, prompting the need for improving existing communication systems. In this thesis work, a Radio-over-Fiber (ROF) system is proposed based on the utilization of an optoelectronic oscillator as a potential solution to enhance spectrum utilization at high frequencies and ensure optimal transmission characteristics. A simulation of a point-to-point transmission prototype is presented, employing an externally modulated optoelectronic oscillator applied to a ROF system, and analyzing the results of the downlink link. To achieve this objective, a ROF system was characterized using software-defined radio in the 5,8 GHz frequency band. Subsequently, an optoelectronic oscillator designed for this same frequency band was developed. Finally, a simulation was conducted to integrate the system, contrasting the obtained results with characteristics suggested by different standards and protocols, and then evaluating the system's performance metrics. The achieved results allowed observing a direct relationship between the performance metrics studied and their behavior under different conditions and modulation schemes for the ROF system. Regarding the optoelectronic oscillator, improvements in phase noise and stability conditions were analyzed. Finally, the integration of the radio over fiber system with the optoelectronic oscillator is carried out through a simulation, verifying the different figures of merit, and analyzing its performance in various scenarios.
dc.format.extentxiii, 102
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleDiseño y construcción de un sistema de radio sobre fibra (ROF) basado en un oscilador optoelectrónico
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Telecomunicaciones
dc.contributor.researchgroupGrupo de Investigación en Electrónica de Alta Frecuencia y Telecomunicaciones (Cmun)
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ingeniería De Telecomunicaciones
dc.description.researchareaRedes y Sistemas de Telecomunicaciones
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references“THE GLOBAL STATE OF DIGITAL IN OCTOBER 2022 - We Are Social USA.” https://wearesocial.com/us/blog/2022/10/the-global-state-of-digital-in-october-2022/ (accessed Dec. 07, 2022).
dc.relation.referencesJ. J. G. Torres, “Monitoreo del efecto de la dispersión cromática en un sistema de radio sobre fibra basado en técnicas de procesamiento digital de señales,” Universidad Nacional de Colombia, 2012.
dc.relation.referencesR. Avó, P. Laurêncio, and M. C. R. Medeiros, “Simulation of mm-wave over fiber employing optical single sideband modulation combined with subcarrier multiplexing,” ICTON-MW 2008 - International Conference on Transparent Optical Networks “Mediterranean Winter” 2008 - Conference Proceedings, pp. 2–6, 2008, doi: 10.1109/ICTONMW.2008.4773081.
dc.relation.referencesN. Gomes, P. Monteiro, and A. Gameiro, Next Generation Wireless Communications Using Radio Over Fiber. John Wiley & Sons, 2012.
dc.relation.referencesX. N. Fernando, Radio Over Fiber For Wireless Communications, 1st Editio. Ryerson University, Canada: Wiley, 2014.
dc.relation.referencesA. Bortsov, Y. Il’in, and S. Smolskiy, Laser Optoelectronic Oscillators, vol. 232. Springer, 2020.
dc.relation.referencesF. Zou et al., “Optoelectronic oscillator for 5G wireless networks and beyond,” J Phys D Appl Phys, vol. 54, no. 42, 2021, doi: 10.1088/1361-6463/ac13f2.
dc.relation.referencesZ. Tang and S. Pan, “Transmission of 3-Gb/s uncompressed HD video in a optoelectronic- oscillator-based radio over fiber link,” BioWireleSS 2013 - Proceedings: 2013 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems - 2013 IEEE Radio and Wireless Week, RWW 2013, pp. 142–144, 2013, doi: 10.1109/BioWireleSS.2013.6613702.
dc.relation.referencesM. A. Ilgaz and B. Batagelj, “Proposal for distribution of a low-phase-noise oscillator signal in forthcoming fifth-generation mobile network by radio-over-fibre technology,” Proceedings Elmar - International Symposium Electronics in Marine, vol. 2016-Novem, no. September, pp. 13–16, 2016, doi: 10.1109/ELMAR.2016.7731744.
dc.relation.referencesM. Shin and P. Kumar, “1.25 Gbps optical data channel up-conversion in 20 GHz-band via a frequency-doubling optoelectronic oscillator for radio-over-fiber systems,” in IEEE MTT-S International Microwave Symposium Digest, IEEE, 2007, pp. 63–66. doi: 10.1109/MWSYM.2007.380219.
dc.relation.referencesA. Dixit, “Architectures and algorithms for radio-over-fiber networks,” Journal of Optical Communications and Networking, vol. 10, no. 5, pp. 535–544, 2018, doi: 10.1364/JOCN.10.000535.
dc.relation.referencesD. Wake, A. Nkansah, and N. J. Gomes, “Radio over fiber link design for next generation wireless systems,” Journal of Lightwave Technology, vol. 28, no. 16, pp. 2456–2464, 2010, doi: 10.1109/JLT.2010.2045103.
dc.relation.referencesJ. Bohata, M. Komanec, J. Spacil, R. Slavik, and S. Zvanovec, “Transmitters for Combined Radio over a Fiber and Outdoor Millimeter-Wave System at 25 GHz,” IEEE Photonics J, vol. 12, no. 3, 2020, doi: 10.1109/JPHOT.2020.2997976.
dc.relation.referencesN. Gomes, P. Monteiro, and A. Gameiro, Next Generation Wireless Communications Using Radio Over Fiber. John Wiley & Sons, 2012.
dc.relation.referencesN. Ghazisaidi, M. Maier, and C. M. Assi, “Fiber-wireless (FiWi) access networks: A survey,” IEEE Communications Magazine, vol. 47, no. 2, pp. 160–167, 2009, doi: 10.1109/MCOM.2009.4785396.
dc.relation.referencesN. Kamiya, M. Oishi, A. Bekkali, K. Nishimura, and K. Tanaka, “Study on signal modulation schemes for millimeter-wave band RoF transmission systems with optical signal re-modulation,” 2014 International Topical Meeting on Microwave Photonics / the 9th Asia-Pacific Microwave Photonics Conference, MWP/APMP 2014 - Proceedings, pp. 9–12, 2014, doi: 10.1109/MWP.2014.6994476.
dc.relation.referencesM. Andrea and R. Martínez, “Hybrid Optical Fiber-Wireless Communication to Support Tactile Internet,” p. 136, 2019.
dc.relation.referencesE. Avendaño Fernandez, J. J. Granada Torres, A. M. Cardenas Soto, and N. Guerrero Gonzalez, “Análisis del Impacto de la Conversión Analógica a Digital en el Desempeño de Sistemas RoF Digitalizado,” Inge Cuc, vol. 15, no. 1, pp. 77–88, 2019, doi: 10.17981/ingecuc.15.1.2019.07.
dc.relation.referencesA. Bortsov, Y. Il’in, and S. Smolskiy, Laser Optoelectronic Oscillators, vol. 232. Springer, 2020. [Online]. Available: http://www.springer.com/series/624
dc.relation.referencesJ. F. Coronel Rico, “Injection Locked VCSEL Based Oscillator – ILVBO Juan Fernando Coronel Rico Universidad Nacional de Colombia Facultad de Ingeniería , Departamento de Ingeniería Eléctrica y Electrónica 2016 INJECTION LOCKED VCSEL BASED OSCILLATOR – ILVBO By Juan Fernando C,” 2016.
dc.relation.referencesR. Hui and M. O’Sullivan, “Basic Instrumentation for Optical Measurement,” Fiber Optic Measurement Techniques, pp. 129–258, Jan. 2009, doi: 10.1016/B978-0-12-373865-3.00002-1.
dc.relation.referencesT. Hao et al., “Optoelectronic parametric oscillator,” Light Sci Appl, vol. 9, no. 1, 2020, doi: 10.1038/s41377-020-0337-5.
dc.relation.referencesJ. Zhang, Y. Wang, X. Li, Z. Liu, and J. Wo, “Tunable multi-frequency optoelectronic oscillator based on a microwave photonic filter and an electrical filter,” Opt Quantum Electron, vol. 53, no. 7, pp. 1–10, 2021, doi: 10.1007/s11082-021-03061-0.
dc.relation.referencesL. A. D. de Britto, J. Panasiewicz, G. M. Pacheco, and A. Banerjee, “Optoelectronic oscillator with dual-loop in the RF domain,” Opt Quantum Electron, vol. 53, no. 9, pp. 1–18, 2021, doi: 10.1007/s11082-021-03128-y.
dc.relation.referencesN. Da Dalt and A. Sheikholeslami, Understanding Jitter and Phase Noise. 2018. doi: 10.1017/9781316981238.
dc.relation.referencesM. E. Belkin and L. Belkin, “Microwave opto-electronic oscillator research,” Proceedings - 2010 IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering, SIBIRCON-2010, pp. 589–593, 2010, doi: 10.1109/SIBIRCON.2010.5555138.
dc.relation.referencesS. V. Shinde, “Review of oscillator phase noise models,” Lecture Notes in Engineering and Computer Science, vol. 2210, no. January, 2014.
dc.relation.referencesD. B. Leeson, “A Simple Model of Feedback Oscillator Noise Spectrum,” Proceedings of the IEEE, vol. 54, no. 2, pp. 329–330, 1966, doi: 10.1109/PROC.1966.4682.
dc.relation.referencesB. Saleh and M. Teich, Fundamentals of photonics, vol. 5, no. March. 2019.
dc.relation.referencesM. Z. Chowdhury, M. T. Hossan, A. Islam, and Y. M. Jang, “A Comparative Survey of Optical Wireless Technologies: Architectures and Applications,” IEEE Access, vol. 6, pp. 9819–9840, 2018, doi: 10.1109/ACCESS.2018.2792419.
dc.relation.references“ITU Radiocommunication Sector.” https://www.itu.int/en/ITU-R/Pages/default.aspx (accessed Jan. 16, 2023).
dc.relation.references“IEEE SA - The IEEE Standards Association - Home.” https://standards.ieee.org/ (accessed Jan. 16, 2023).
dc.relation.references“ETSI - Welcome to the World of Standards!” https://www.etsi.org/ (accessed Mar. 21, 2023).
dc.relation.referencesJ. Capmany, J. Fraile, and J. Marti, Fundamentos de Comunicaciones ópticas. Editorial Sintesis, 1998.
dc.relation.referencesANE, “Cuadro nacional de atribución de bandas de frecuencia,” 2022.
dc.relation.references5G Americas, “Enterprise Evolution with 5G Adoption 1,” 2023.
dc.relation.referencesUIT, “Mediciones de dispositivos de radiocomunicaciones de corto alcance Serie SM,” vol. 2179, 2010.
dc.relation.referencesH. Paz, Sistemas de comunicaciones digitales. Escuela Colombiana de Ingeniería, 2009.
dc.relation.referencesETSI, “TS 138 104 V16.10.0 - 5G; NR; Base Station (BS) radio transmission and reception (3GPP TS 38.104 version 16.10.0 Release 16),” vol. 0, 2022.
dc.relation.references“Wireless Telecommunications | Federal Communications Commission.” https://www.fcc.gov/wireless-telecommunications (accessed Jan. 16, 2023).
dc.relation.referencesA. Ng-oma, Radio-over-Fibre Technology for Broadband Wireless Communication Systems, vol. 1, no. 2005. 2005. doi: 10.6100/IR592332.
dc.relation.referencesITU-R, “Requisitos básicos y objetivos de calidad de funcionamiento para sistemas de acceso inalámbrico fijo que utilizan tecnologías derivadas de las tecnologías móviles que ofrecen servicios de telefonía y de comunicaciones de datos Servicio fijo,” vol. 4, 2011.
dc.relation.referencesITU-R, “Requisitos básicos y objetivos de calidad de funcionamiento para sistemas de acceso inalámbrico fijo que utilizan tecnologías derivadas de las tecnologías móviles que ofrecen servicios de telefonía y de comunicaciones de datos Servicio fijo,” vol. 4, 2011.
dc.relation.referencesI. Std, L. A. N. Man, S. Committee, and I. C. Society, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) speciÞcations,” vol. 2016, 1997.
dc.relation.referencesETSI, “ETSI EN 302 217-4-2 V1.4.1 2008 - E-band radiation pattern mask,” Etsi, vol. 1, pp. 1–36, 2008.
dc.relation.referencesJ. Guillory, “Radio over Fiber (RoF) for the future home area networks.” [Online]. Available: https://theses.hal.science/tel-00786479
dc.relation.referencesV. J. Urick, J. X. Qiu, and F. Bucholtz, “Wide-band QAM-over-fiber using phase modulation and interferometric demodulation,” IEEE Photonics Technology Letters, vol. 16, no. 10, pp. 2374–2376, Oct. 2004, doi: 10.1109/LPT.2004.834551.
dc.relation.referencesM. Kavehrad, “Fiber-optic Transmission of Microwave 64-QAM Signals.”
dc.relation.referencesB. Stewart, K. Barlee, D. Atkinson, and L. Crockett, Software Defined Radio Workflow Using MATLAB & Simulink and the RTL-SDR. 2015.
dc.relation.referencesJ. Cepeda, “Diseño de un sistema transceptor para comunicaciones usando una multiplexación para 5G sobre Radio definido por software,” 2019.
dc.relation.referencesJ. Beas, G. Castanon, I. Aldaya, A. Aragon-Zavala, and G. Campuzano, “Millimeter-wave frequency radio over fiber systems: A survey,” IEEE Communications Surveys and Tutorials, vol. 15, no. 4, pp. 1593–1619, 2013, doi: 10.1109/SURV.2013.013013.00135.
dc.relation.referencesM. A. Ilgaz and B. Batagelj, “Preliminary idea for a converged fixed and mobile network infrastructure with 5G using Radio-over-Fiber technology and an Opto-Electronic Oscillator in the millimeter-wave range,” International Conference on Transparent Optical Networks, vol. 2016-Augus, pp. 1–4, 2016, doi: 10.1109/ICTON.2016.7550476.
dc.relation.referencesM. Shin and P. Kumar, “1.25 Gbps optical data channel up-conversion in 20 GHz-band via a frequency-doubling optoelectronic oscillator for radio-over-fiber systems,” IEEE MTT-S International Microwave Symposium Digest, pp. 63–66, 2007, doi: 10.1109/MWSYM.2007.380219.
dc.relation.referencesB. Yang et al., “Photonic microwave up-conversion of vector signals based on an optoelectronic oscillator,” IEEE Photonics Technology Letters, vol. 25, no. 18, pp. 1758–1761, 2013, doi: 10.1109/LPT.2013.2274808.
dc.relation.referencesD. Zhu, S. Liu, and S. Pan, “Multichannel up-conversion based on polarization-modulated optoelectronic oscillator,” IEEE Photonics Technology Letters, vol. 26, no. 6, pp. 544–547, 2014, doi: 10.1109/LPT.2013.2296898.
dc.relation.referencesZ. Tang and S. Pan, “A Q-band radio-over-fiber system for the distribution of uncompressed high-definition video signal,” Asia-Pacific Microwave Conference Proceedings, APMC, vol. 1, pp. 5–7, 2016, doi: 10.1109/APMC.2015.7411672.
dc.relation.referencesJ.-Y. Lee, M.-S. Jeon, and J.-I. Song, “Remote Optical Frequency Up-Converter Based on Optoelectronic Oscillator,” IEEE Photonics Technology Letters, vol. 31, no. 1, pp. 50–53, 2019, doi: 10.1109/LPT.2018.2882546.
dc.relation.referencesG. K. M. Hasanuzzaman, H. Shams, C. C. Renaud, J. Mitchell, A. J. Seeds, and S. Iezekiel, “Tunable THz Signal Generation and Radio-Over-Fiber Link Based on an Optoelectronic Oscillator-Driven Optical Frequency Comb,” Journal of Lightwave Technology, vol. 38, no. 19, pp. 5240–5247, 2020, doi: 10.1109/JLT.2019.2953070.
dc.relation.referencesJ. W. Li, Y. C. Yu, Z. Q. Yang, Y. C. Manie, and P. C. Peng, “A New Approach of RoF System Using Optoelectronic Oscillator and Discrete Mode Laser,” 2021 IEEE International Conference on Consumer Electronics-Taiwan, ICCE-TW 2021, pp. 2021–2022, 2021, doi: 10.1109/ICCE-TW52618.2021.9602946.
dc.relation.references“Laser Diode Current / TEC Controller - ITC5000 Series.” https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=925 (accessed Jul. 23, 2023).
dc.relation.references“AQ6370D Telecom Optical Spectrum Analyzer 600 - 1700 nm | Yokogawa Test & Measurement Corporation.” https://tmi.yokogawa.com/solutions/products/optical-measuring-instruments/optical-spectrum-analyzer/aq6370d-optical-spectrum-analyzer/ (accessed Jul. 23, 2023).
dc.relation.references“Thorlabs - PM100D Compact Power and Energy Meter Console, Digital 4" LCD.” https://www.thorlabs.com/thorproduct.cfm?partnumber=PM100D (accessed Jul. 23, 2023).
dc.relation.references“R&S®FSW Signal and spectrum analyzer | Rohde & Schwarz.” https://www.rohde-schwarz.com/us/products/test-and-measurement/benchtop-analyzers/rs-fsw-signal-and-spectrum-analyzer_63493-11793.html (accessed Jul. 23, 2023).
dc.relation.references“R&S®ZNA vector network analyzers | Rohde & Schwarz.” https://www.rohde-schwarz.com/us/products/test-and-measurement/network-analyzers/rs-zna-vector-network-analyzers_63493-551810.html (accessed Jul. 23, 2023).
dc.relation.referencesF. FITEL, “Datasheet: FRL15DCWx-A8x-xxxxx-x DWDM CW DFB Laser Module,” pp. 1–5, 2016.
dc.relation.referencesITU-T, “Spectral grids for WDM applications: DWDM frequency grid,” Series G.694.1, pp. 1–16, 2020.
dc.relation.referencesIxBlue, “MX-LN-20-PD-P-P-FA-FA - iXblue.” https://www.ixblue.com/store/mx-ln-20-pd-p-p-fa-fa/ (accessed Apr. 15, 2023).
dc.relation.referencesEttus Research, “LP0965 Antenna,” LP0965 Antenna. https://www.ettus.com/all-products/lp0965/
dc.relation.referencesE. Research, “USRP B205mini-i.” https://www.ettus.com/all-products/usrp-b205mini-i/ (accessed Jun. 04, 2023).
dc.relation.referencesNewPort, “818-BB-35F Fiber-Optic Detector.” https://www.newport.com/p/818-BB-35F (accessed Jun. 04, 2023).
dc.relation.referencesMiniCircuits, “Low Noise Amplifier, 500 - 8000 MHz, 50Ω | ZX60-83LN-S+ | Mini-Circuits.” https://www.minicircuits.com/WebStore/dashboard.html?model=ZX60-83LN-S%2B (accessed Jun. 04, 2023).
dc.relation.referencesThorlabs, “Laser Diode LP1550-SAD2,” pp. 0–2, 2015.
dc.relation.referencesNewport, “High-Speed Receivers High-Speed Detectors Model 1414,” no. 408.
dc.relation.references“Cavity Band Pass Filter, 5725 - 5875 MHz, 50Ω | ZVBP-5800-S+ | Mini-Circuits.” https://www.minicircuits.com/WebStore/dashboard.html?model=ZVBP-5800-S%2B (accessed Jun. 14, 2023).
dc.relation.referencesIxBlue, “MXAN-LN series MXAN-LN-20”.
dc.relation.referencesMiniCircuits, “Low Noise Amplifier, 500 - 8000 MHz, 50Ω | ZX60-83LN-S+ | Mini-Circuits.” https://www.minicircuits.com/WebStore/dashboard.html?model=ZX60-83LN-S%2B (accessed Jun. 03, 2023).
dc.relation.references“20 dB Directional Coupler, 2000 - 18000 MHz, 50Ω | ZUDC20-02183-S+ | Mini-Circuits.” https://www.minicircuits.com/WebStore/dashboard.html?model=ZUDC20-02183-S%2B (accessed Jun. 29, 2023).
dc.relation.referencesI. Ozdur, D. Mandridis, M. U. Piracha, M. Akbulut, N. Hoghooghi, and P. J. Delfyett, “Optical frequency stability measurement using an etalon-based optoelectronic oscillator,” IEEE Photonics Technology Letters, vol. 23, no. 4, pp. 263–265, 2011, doi: 10.1109/LPT.2010.2100375.
dc.relation.referencesX. Zhu et al., “A Frequency-Stable Optoelectronic Oscillator Based on Passive Phase Compensation,” IEEE Photonics Technology Letters, vol. 32, no. 10, pp. 612–615, May 2020, doi: 10.1109/LPT.2020.2987924.
dc.relation.referencesHuanfa Peng, Naijing Liu, Yankun Li, Xiaopeng Xie, and Zhangyuan Chen, “Low Phase Noise and Highly Stable Optoelectronic Oscillator by Using Frequency-Multiplying Phase Locked Loop”.
dc.relation.referencesJian Dai, Yao Zeng, Xiaoyang Wang, Anni Liu, and Kun Xu, “Frequency compensation range amplification for the stabilized optoelectronic oscillator”.
dc.relation.referencesJ. F. Coronel Rico, “Injection Locked VCSEL Based Oscillator – ILVBO Juan Fernando Coronel Rico Universidad Nacional de Colombia Facultad de Ingeniería , Departamento de Ingeniería Eléctrica y Electrónica 2016 INJECTION LOCKED VCSEL BASED OSCILLATOR – ILVBO By Juan Fernando C,” 2016.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembComunicaciones
dc.subject.lembCommunication and traffic
dc.subject.lembRadio
dc.subject.lembTelecomunicaciones
dc.subject.lembTelecommunication
dc.subject.proposalRadio sobre fibra
dc.subject.proposalOsciladores
dc.subject.proposalRadio definida por software
dc.subject.proposalOptoelectrónica
dc.subject.proposalRadio-over-fiber
dc.subject.proposalOscillators
dc.subject.proposalSoftware-defined radio
dc.subject.proposalOptoelectronics
dc.title.translatedDesign and construction of a Radio over Fiber (RoF) system based on an optoelectronic oscillator
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.orcidLadino Ordoñez, Elkin Andres [0000000338992896]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-CompartirIgual 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito