Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorGonzález-Calderón, Carlos Alberto
dc.contributor.advisorPosada Henao, John Jairo
dc.contributor.advisorLópez-Ospina, Héctor Andrés
dc.contributor.authorMoreno Palacio, Diana Patricia
dc.date.accessioned2023-12-13T19:52:30Z
dc.date.available2023-12-13T19:52:30Z
dc.date.issued2023-12
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85092
dc.descriptionilustraciones, diagramnas
dc.description.abstractThis research introduces a multi-class demand synthesis model for transit and freight, utilizing entropy maximization and fuzzy logic. The model incorporates traffic data and fuzzy parameters to accommodate uncertainty. The use of fuzzy logic enhances classical modeling by providing flexibility and addressing data uncertainty, a critical aspect in resource-constrained decision-making scenarios. Finite resources such as road capacity necessitate optimal decision-making. Flexible models are essential, as not all constraints can be fully met. Fuzzy logic excels in handling variability and uncertainty, improving results' reliability. It aids in estimating congestion patterns, emissions levels, and accidents, thereby providing valuable insights to decision-makers. Fuzzy logic's flexibility is crucial for real-world adaptability. It enhances transportation planning, benefiting urban mobility. Results' accuracy directly impacts decisions, and fuzzy logic incorporates real-world variability into models. The research focuses on triangular membership functions, a commonly used approach. Fuzzy logic's adaptability is compared with deterministic models, demonstrating superior performance. It helps in finding satisfactory solutions when full constraint satisfaction is unfeasible. Pareto frontiers indicate multi-objective optimization. Decision-makers can use this frontier to choose the right model based on accomplishment versus entropy trade-offs. Fuzzy logic accommodates partial solutions when strict constraints cannot be met. Trials with a developed model show that capacity and cost significantly influence outcomes. Sensitivity analyses reveal the model's robustness. The model's application is promising for shared lanes and infrastructure optimization, handling data variability and uncertainty. It aids in decision-making for urban transportation planning and infrastructure development. Government agencies must strategize mobility elements. Accurate data are crucial for decisions related to routes, traffic management, and infrastructure. Fuzzy logic can guide decisions about shared lanes and resource allocation, enhancing urban transportation planning and development.
dc.description.abstractEsta investigación presenta un modelo de síntesis de demanda multiclase para tránsito y carga, utilizando maximización de entropía y lógica difusa. El modelo incorpora datos de tráfico y parámetros difusos para adaptarse a la incertidumbre. El uso de la lógica difusa mejora el modelado clásico al proporcionar flexibilidad y abordar la incertidumbre de los datos, un aspecto crítico en escenarios de toma de decisiones con recursos limitados. Los recursos finitos, como la capacidad de las vías, requieren una toma de decisiones óptima. Los modelos flexibles son esenciales, ya que no todas las restricciones pueden cumplirse por completo. La lógica difusa se destaca en el manejo de la variabilidad y la incertidumbre, mejorando la confiabilidad de los resultados. Ayuda a estimar los patrones de congestión, los niveles de emisiones y los accidentes, proporcionando así información valiosa a los responsables de la toma de decisiones. La flexibilidad de la lógica difusa es crucial para la adaptabilidad al mundo real. Mejora la planificación del transporte, beneficiando la movilidad urbana. La precisión de los resultados impacta directamente en las decisiones, y la lógica difusa incorpora la variabilidad del mundo real en los modelos. La investigación se centra en las funciones de pertenencia triangulares, un enfoque de uso común. La adaptabilidad de la lógica difusa se compara con modelos deterministas, lo que demuestra un rendimiento superior. Ayuda a encontrar soluciones satisfactorias cuando la satisfacción total de la restricción es inviable. Las fronteras de Pareto indican optimización multiobjetivo. Los tomadores de decisiones pueden usar esta frontera para elegir el modelo correcto en función de las compensaciones entre logros y entropía. La lógica difusa acomoda soluciones parciales cuando no se pueden cumplir restricciones estrictas. Los ensayos con el modelo desarrollado muestran que la capacidad y el costo influyen significativamente en los resultados. Los análisis de sensibilidad revelan la solidez del modelo. La aplicación del modelo es una alternativa prometedora en el uso de infraestructura compartida (carriles y bahías) y la optimización de la misma, al incluir la variabilidad e incertidumbre de los datos, pudiendo ser de ayuda en la toma de decisiones para la planificación del transporte urbano y el desarrollo de infraestructura. Las agencias gubernamentales deben diseñar estrategias para los elementos de movilidad. Los datos precisos son cruciales para las decisiones relacionadas con las rutas, la gestión del tráfico y la infraestructura. La lógica difusa puede guiar las decisiones sobre carriles compartidos y asignación de recursos, mejorando la planificación y el desarrollo del transporte urbano. (Texto tomado de la fuente)
dc.format.extentxvi, 132 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civil
dc.titleFreight-Transit tour synthesis
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Ingeniería Civil
dc.contributor.researchgroupVias y Transporte (Vitra)
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería
dc.description.researchareaTransporte de carga y logística
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Minas
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedRedCol
dc.relation.indexedLaReferencia
dc.relation.referencesAbdulaal, M., & LeBlanc, L. J. (1979). Continuous equilibrium network design models. Transportation Research Part B: Methodological, 13(1), 19–32. https://doi.org/10.1016/0191-2615(79)90004-3
dc.relation.referencesAbrahamsson, T. (1998). Estimation of Origin-Destination Matrices Using Traffic Counts - A Literature Survey. IIASA, Laxenburg, Austria: IR-98-021. Retrieved from http://pure.iiasa.ac.at/id/eprint/5627/
dc.relation.referencesAggarwal, M. (2021). Redefining fuzzy entropy with a general framework. Expert Systems with Applications, 164, 113671. https://doi.org/10.1016/j.eswa.2020.113671
dc.relation.referencesAgrawal, A. W., T. Goldman, and N. Hannaford. Shared-Use Bus Priority Lanes on City Streets: Case Studies in Design and Management. Journal of Public Transportation, Vol. 16, No. 4, 2013, pp. 25–41. https://doi.org/http://doi.org/10.5038/2375-0901.16.4.2.
dc.relation.referencesAl-Battaineh, O., & Kaysi, I. A. (2005). Commodity-based truck origin--destination matrix estimation using input--output data and genetic algorithms. Transportation Research Record, 1923(1), 37–45.
dc.relation.referencesBar-Gera, Hillel, Fredrik Hellman, and Michael Patriksson. 2013. “Computational Precision of Traffic Equilibria Sensitivities in Automatic Network Design and Road Pricing.” Procedia-Social and Behavioral Sciences 80:41–60.
dc.relation.referencesBastida, C., & Holguin-Veras, J. (2009). Freight Generation Models. Comparative analysis of regression models and multiple classification analysis. Transportation Research Record: Journal of the Transportation Research Board, 2097(1), 51–61. https://doi.org/10.3141/2097-07
dc.relation.referencesBellman, R., & Zadeh, L. A. (1970). Decision-Making in a Fuzzy Environment. Management Science, 17(4), B141–B164. Retrieved from https://www.jstor.org/stable/2629367
dc.relation.referencesBen-Dor, G., E. Ben-Elia, and I. Benenson. Assessing the Impacts of Dedicated Bus Lanes on Urban Traffic Congestion and Modal Split with an Agent-Based Model. Procedia Computer Science, Vol. 130, 2018, pp. 824–829. https://doi.org/10.1016/j.procs.2018.04.071.
dc.relation.referencesBit, A. K., Biswal, M. P., & Alam, S. S. (1992). Fuzzy programming approach to multicriteria decision making transportation problem. Fuzzy Sets and Systems, 50(2), 135–141. https://doi.org/10.1016/0165-0114(92)90212-M
dc.relation.referencesBit, A. K., Biswal, M. P., & Alam, S. S. (1993a). An additive fuzzy programming model for multiobjective transportation problem. Fuzzy Sets and Systems, 57(3), 313–319. https://doi.org/10.1016/0165-0114(93)90026-E
dc.relation.referencesBit, A. K., Biswal, M. P., & Alam, S. S. (1993b). Fuzzy programming approach to multiobjective solid transportation problem. Fuzzy Sets and Systems, 57(2), 183–194. https://doi.org/10.1016/0165-0114(93)90158-E
dc.relation.referencesBlack, J. (2018). Urban transport planning: Theory and practice (Vol. 4). Routledge.
dc.relation.referencesBoard, T. R., Engineering, of S., & Medicine. (2016). Using Commodity Flow Survey Microdata and Other Establishment Data to Estimate the Generation of Freight, Freight Trips, and Service Trips: Guidebook. (J. Holguín-Veras, C. Lawson, C. Wang, M. Jaller, C. González-Calderón, S. Campbell, … D. Ramirez, Eds.). Washington, DC, USA: The National Academies Press. https://doi.org/10.17226/24602
dc.relation.referencesBureau of Public Roads. Traffic Assignment Manual. Washington, D.C., 1964.
dc.relation.referencesCampbell, S., Holguin-Veras, J., Ramirez-Rios, D. G., Gonzalez-Calderon, C. A., Kalahasthi, L., & Wojtowicz, J. (2018). Freight and service parking needs and the role of demand management. European Transport Research Review, 10(2), 1–13. https://doi.org/http://dx.doi.org/10.1186/s12544-018-0309-5
dc.relation.referencesChakirov, A. Sioux Falls. In The Multi-Agent Transport Simulation MATSim (A. Horni, K. Nagel, and K. W. Axhausen, eds.), Ubiquity Press, London, pp. 385–388.
dc.relation.referencesChakirov, Artem, and Pieter J. Fourie. 2014. Enriched Sioux Falls Scenario with Dynamic and Disaggregate Demand. Singapore.
dc.relation.referencesChanas, S., & Kuchta, D. (1996). A concept of the optimal solution of the transportation problem with fuzzy cost coefficients. Fuzzy Sets and Systems, 82(3), 299–305. https://doi.org/10.1016/0165-0114(95)00278-2
dc.relation.referencesCruz-Daraviña, P. A. ;, I. Sanchez-Diaz, and J. P. Bocarejo Suescún. Bus Rapid Transit (BRT) and Urban Freight-Competition for Space in Densely Populated Cities. Sustainability, Vol. 13, No. 6611, 2021. https://doi.org/10.3390/su13126611.
dc.relation.referencesDe Cea, Joaquin, and Enrique Fernández. 1993. “Transit Assignment for Congested Public Transport Systems: An Equilibrium Model.” Transportation Science 27(2):133–47.
dc.relation.referencesFan, W., & Machemehl, R. B. (2006). Optimal Transit Route Network Design Problem with Variable Transit Demand : Genetic Algorithm Approach. Journal of Transportation Engineering, 132(January), 40–51. https://doi.org/10.1061/(ASCE)0733-947X(2006)132:1(40)
dc.relation.referencesFisk, C. S. 1989. “Trip Matrix Estimation from Link Traffic Counts: The Congested Network Case.” Transportation Research Part B 23(5):331–36. doi: 10.1016/0191-2615(89)90009-X.
dc.relation.referencesFriesz, Terry L., Hsun-Jung Cho, Nihal J. Mehta, Roger L. Tobin, and G. Anandalingam. 1992. “A Simulated Anneal-ing Approach to the Network Design Problem with Variational Inequality Constraints.” Transportation Science 26(1):18–26.
dc.relation.referencesGonzalez-Calderon, C. A. (2014). Multiclass Equilibrium Demand Synthesis. PhD dissertation. Doctor of Philosophy, Rensselaer Polytechnic Institute.
dc.relation.referencesGonzalez-Calderon, C. A., & Holguín-Veras, J. (2019). Entropy-based freight tour synthesis and the role of traffic count sampling. Transportation Research Part E: Logistics and Transportation Review, 121(November 2017), 63–83. https://doi.org/10.1016/j.tre.2017.10.010
dc.relation.referencesGonzalez-Calderon, C. A., Sanchez-Diaz, I., Sarmiento-Ordosgoitia, I., & Holguin-Veras, J. (2018). Characterization and analysis of metropolitan freight patterns in Medellin, Colombia. European Transport Research Review, 10(2), 23. https://doi.org/10.1186/s12544-018-0290-z
dc.relation.referencesGonzalez-Feliu, J., & Sánchez-Díaz, I. (2019). The influence of aggregation level and category construction on estimation quality for freight trip generation models. Transportation Research Part E: Logistics and Transportation Review, 121, 134–148. https://doi.org/10.1016/j.tre.2018.07.007
dc.relation.referencesGunes, S., A. Goodchild, C. Greene, and V. Nemani. Evaluating Traffic Impacts of Permitting Trucks in Transit-Only Lanes. Transportation Research Record, 2021, p. 03611981211031888.
dc.relation.referencesHannan, E. L. (1981a). Linear programming with multiple fuzzy goals. Fuzzy Sets and Systems, 6(3), 235–248. https://doi.org/10.1016/0165-0114(81)90002-6
dc.relation.referencesHannan, E. L. (1981b). On Fuzzy Goal Programming. Decision Sciences, 12(3), 522–531. https://doi.org/10.1111/j.1540-5915.1981.tb00102.x
dc.relation.referencesHewings, Geoffrey J. D., and Esteban Fernandez-Vazquez. 2019. “Entropy Maximization and Input–Output Analy-sis.” Interdisciplinary Science Reviews 44(3–4):272–85.
dc.relation.referencesHolguin-Veras, J. (2013). Freight demand modeling: state of the art and practice. In Onlinepubs Trb. Washington, D.C.: paper presented to Adapting freight models and traditional freight data programs for performance measurement Workshop. Retrieved from http://onlinepubs.trb.org/onlinepubs/conferences/2013/Freight/Holguin-Veras.pdf
dc.relation.referencesHolguín-Veras, J., & Jaller, M. (2014). Comprehensive freight demand data collection framework for large urban areas. In Sustainable Urban Logistics: Concepts, Methods and Information Systems (pp. 91–112). Springer.
dc.relation.referencesHolguin-Veras, J., & Patil, G. R. (2005). Observed trip chain behavior of commercial vehicles. Transportation Research Record, 1906(1), 74–80.
dc.relation.referencesHolguin-Veras, J., & Thorson, E. (2003). Practical implications of modeling commercial vehicle empty trips. Transportation Research Record, (1833), 87–94. https://doi.org/10.3141/1833-12
dc.relation.referencesHolguin-Veras, J., Amaya-Leal, J., Wojtowicz, J., Jaller, M., Gonzalez-Calderon, C. A., Sanchez-Diaz, I., Wang, X., Haake, D. G., Rhodes, S. S. ;, Darville Hodge, S., Frazier, R. J., Nick, M. K., Dack, J., & Casinelli, L. (2015). Improving freight system performance in metropolitan areas: a planning guide. https://doi.org/10.17226/22159
dc.relation.referencesHolguin-Veras, J., and M. Cetin. Optimal Tolls for Multi-Class Traffic: Analytical Formulations and Policy Implications. Transportation Research Part A: Policy and Practice, Vol. 43, No. 4, 2009, pp. 445–467. https://doi.org/10.1016/j.tra.2008.11.012.
dc.relation.referencesHolguin-Veras, J., Encarnacion, T., Ramirez-Rios, D., He, X. (Sean), Kalahasthi, L., Perez-Guzman, S., Sanchez-Diaz, I., & Gonzalez-Calderon, C. A. (2020). A Multiclass Tour Flow Model and lts Role in Multiclass Freight Tour Synthesis. Transportation Science. https://doi.org/10.1287/trsc.2019.0936
dc.relation.referencesHolguín-Veras, J., Hodge, S., Wojtowicz, J., Singh, C., Wang, C., Jaller, M., … Cruz, B. (2018). The New York city off-hour delivery program: a business and community-friendly sustainability program. Interfaces, 48(1), 70–86. https://doi.org/10.1287/inte.2017.0929
dc.relation.referencesHolguin-Veras, J., Jaller, M., Destro, L., Ban, X., Lawson, C., & Levinson, H. (2011). Freight generation, freight trip generation, and perils of using constant trip rates. Transportation Research Record: Journal of the Transportation Research Board, 2224, 68–81. https://doi.org/10.3141/2224-09
dc.relation.referencesHolguin-Veras, J., Jaller, M., Sanchez-Diaz, I., Campbell, S., & Lawson, C. (2014). Freight Generation and Freight Trip Generation Models. In Modelling Freight Transport (pp. 43–63). Elsevier Inc. https://doi.org/10.1016/B978-0-12-410400-6.00003-3
dc.relation.referencesHu, Baoyu, Yanli Ma, Yulong Pei, and Wei Gao. 2020. “Statistical Analysis and Predictability of Inter-Urban High-way Traffic Flows: A Case Study in Heilongjiang Province, China.” Transportmetrica A: Transport Science 16(3):1062–78.
dc.relation.referencesJosefsson, Magnus, and Michael Patriksson. 2007. “Sensitivity Analysis of Separable Traffic Equilibrium Equilibria with Application to Bilevel Optimization in Network Design.” Transportation Research Part B: Methodological 41(1):4–31.
dc.relation.referencesKonstantinos, K., and K. Matthew. Transit Route Network Design Problem: Review. Journal of Transportation Engineering, Vol. 135, No. 8, 2009, pp. 491–505. https://doi.org/10.1061/(ASCE)0733-947X(2009)135:8(491).
dc.relation.referencesKrisztin, T. (2018). Semi-parametric spatial autoregressive models in freight generation modeling. Transportation Research Part E: Logistics and Transportation Review, 114, 121–143. https://doi.org/10.1016/j.tre.2018.03.003
dc.relation.referencesKurauchi, F., Bell, M. G. H., & Schmöcker, J.-D. (2003). Capacity Constrained Transit Assignment with Common Lines. Journal of Mathematical Modelling and Algorithms, 2(4), 309–327. https://doi.org/10.1023/B:JMMA.0000020426.22501.c1
dc.relation.referencesLam, W. H. K., Wu, Z. X., & Chan, K. S. (2003). Estimation of Transit Origin-Destination Matrices from Passenger Counts Using a Frequency-Based Approach. Journal of Mathematical Modelling and Algorithms, 2(4), 329–348. https://doi.org/10.1023/B:JMMA.0000020423.93104.14
dc.relation.referencesLam, W. H. K., Z. Y. Gao, K. S. Chan, and H. Yang. 1999. “A Stochastic User Equilibrium Assignment Model for Congested Transit Networks.” Transportation Research Part B: Methodological 33(5):351–68. doi: 10.1016/S0191-2615(98)00040-X.
dc.relation.referencesLam, William H. K., Jing Zhou, and Zhao Han Sheng. 2002. “A Capacity Restraint Transit Assignment with Elastic Line Frequency.” Transportation Research Part B: Methodological 36(10):919–38. doi: 10.1016/S0191-2615(01)00042-X.
dc.relation.referencesLeBlanc, L. J., E. K. Morlok, and W. P. Pierskalla. An Efficient Approach to Solving the Road Network Equilibrium Traffic Assignment Problem. Transportation Research, Vol. 9, No. 5, 1975, pp. 309–318. https://doi.org/10.1016/0041-1647(75)90030-1.
dc.relation.referencesLee, S., and J. Lim. Effectiveness And Macroeconomic Impact Analysis Of Policy Instruments For Sustainable Transport In Korea: A CGE Modelling Approach. WIT Transactions on the Built Environment, Vol. 60, 2002, pp. 1–12.
dc.relation.referencesLi, T., Sun, H., Wu, J., Gao, Z., Ge, Y., & Ding, R. (2019). Optimal urban expressway system in a transportation and land use interaction equilibrium framework. Transportmetrica A: Transport Science, 15(2), 1247–1277. https://doi.org/10.1080/23249935.2019.1576798
dc.relation.referencesLim, Y., & Kim, H. (2016). A combined model of trip distribution and route choice problem. Transportmetrica A: Transport Science, 12(8), 721–735. https://doi.org/10.1080/23249935.2016.1166171
dc.relation.referencesLópez-Ospina, H. (2013). Modelo de maximización de la entropía y costos generalizados intervalares para la distribución de viajes urbanos. Ingenieria y Universidad, 17(2), 390–407. Retrieved from https://www.redalyc.org/articulo.oa?id=47728826008
dc.relation.referencesLópez-Ospina, H., Cortés, C. E., Pérez, J., Peña, R., Figueroa-García, J. C., & Urrutia-Mosquera, J. (2021). A maximum entropy optimization model for origin-destination trip matrix estimation with fuzzy entropic parameters. Transportmetrica A: Transport Science, 1–38. https://doi.org/10.1080/23249935.2021.1913257
dc.relation.referencesLuathep, P., A. Sumalee, W. H. K. Lam, Z.-C. Li, and H. K. Lo. Global Optimization Method for Mixed Transportation Network Design Problem: A Mixed-Integer Linear Programming Approach. Transportation Research Part B: Methodological, Vol. 45, No. 5, 2011, pp. 808–827.
dc.relation.referencesLuhandjula, M. K. (2015). Fuzzy optimization: Milestones and perspectives. Fuzzy Sets and Systems, 274, 4–11. https://doi.org/10.1016/j.fss.2014.01.004
dc.relation.referencesMajidi, S., Hosseini-Motlagh, S. M., Yaghoubi, S., & Jokar, A. (2017). Fuzzy green vehicle routing problem with simultaneous pickup-delivery and time windows. RAIRO - Operations Research, 51(4), 1151–1176. https://doi.org/10.1051/ro/2017007
dc.relation.referencesMarcotte, Patrice, and Gerald Marquis. 1992. “Efficient Implementation of Heuristics for the Continuous Network Design Problem.” Annal of Operations Research 34:163–76.
dc.relation.referencesMcleod, F., and T. Cherrett. Modelling the Impacts of Shared Freight-Public Transport Lanes in Urban Centers. 9.
dc.relation.referencesMeng, Q., H. Yang, and M. G. H. Bell. An Equivalent Continuously Differentiable Model and a Locally Convergent Algorithm for the Continuous Network Design Problem. Transportation Research Part B: Methodological, Vol. 35, No. 1, 2001, pp. 83–105.
dc.relation.referencesMoreno-Palacio, D. P., Gonzalez-Calderon, C. A., López-Ospina, H., Gil-Marin, J. K., & Posada-Henao, J. J. (2023). Freight tour synthesis based on entropy maximization with fuzzy logic constraints. Transportation. https://doi.org/10.1007/s11116-023-10407-y
dc.relation.referencesMoreno-Palacio, D. P., Gonzalez-Calderon, C. A., Posada-Henao, J. J., Lopez-Ospina, H., & Gil-Marin, J. K. (2022). Entropy-Based Transit Tour Synthesis Using Fuzzy Logic. In Sustainability (Vol. 14, Issue 21). https://doi.org/10.3390/su142114564
dc.relation.referencesMoreno-Palacio, Diana Patricia, Carlos Alberto Gonzalez-Calderon, Héctor López-Ospina, Jhan Gil-Marin, and John Jairo Posada-Henao. 2022. “POMS-2022-Conference Program Book.” P. 147 in Freight Tour Synthesis based on Entropy - Fuzzy Logic, edited by T. Dhakar, R. Tewari, and S. Singhania. PRODUCTION AND OPERATIONS MANAGEMENT SOCIETY.
dc.relation.referencesMorlok, E. K., Schofer, J. L., Pierskalla, W. P., Marsten, R. E., Agarwal, S. K., Stoner, J. W., … Spacek, D. T. (1973). Development and Application of a Highway Network Design Model (Vol. 1,2).
dc.relation.referencesNagy, A., Ercsey, Z., Tick, J., & Kovács, Z. (2019). Bus transport process network synthesis. Acta Polytechnica Hungarica, 16(7), 25–43. https://doi.org/10.12700/APH.16.7.2019.7.2
dc.relation.referencesNational Association of City Transportation Officials. Transit Street Design Guide. Washington, 2016.
dc.relation.referencesNguyen, Sang, and Stefano Pallottino. 1988. “Equilibrium Traffic Assignment for Large Scale Transit Networks.” European Journal of Operational Research 37(2):176–86.
dc.relation.referencesNielsen, Otto Anker. 2000. “A Stochastic Transit Assignment Model Considering Differences in Passengers Utility Functions.” Transportation Research Part B: Methodological 34(5):377–402. doi: 10.1016/S0191-2615(99)00029-6.
dc.relation.referencesNoriega, Y., & Florian, M. (2007). Multi-Class Demand Matrix Adjustment. Canada: CIRRELT.
dc.relation.referencesNuzzolo, Agostino, and Umberto Crisalli. 2001. “Estimation of Transit Origin/Destination Matrices from Traffic Counts Using a Scheduled-Based Approach.” in European Transport Forum 2001. Cambridge, UK: Association for European Transport.
dc.relation.referencesOrtuzar, J. de D., & Willumsen, L. G. (2011). Modelling Transport (Fourth Edi). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119993308
dc.relation.referencesSakawa, M. (1983). Interactive Fuzzy Decision Making for Multiobjective Linear Programming Problems and its Application. IFAC Proceedings Volumes, 16(13), 295–300. https://doi.org/10.1016/S1474-6670(17)62049-4
dc.relation.referencesSakawa, M., & Yano, H. (1987). An Interactive Fuzzy Satisficing Method for Multiobjective Linear Programming Problems with Fuzzy Parameters. IFAC Proceedings Volumes, 20(9), 437–442. https://doi.org/10.1016/S1474-6670(17)55745-6
dc.relation.referencesSanchez-Diaz, I., Holguin-Veras, J., & Ban, X. (Jeff). (2015). A time-dependent freight tour synthesis model. Transportation Research Part B: Methodological, 78, 144–168. https://doi.org/10.1016/j.trb.2015.04.007
dc.relation.referencesSanchez-Diaz, I., Holguin-Veras, J., & Wang, X. (2016). An Exploratory Analysis of Spatial Effects on Freight Trip Attraction. Transportation, 43(1), 177–196. https://doi.org/10.1007/s11116-014-9570-1
dc.relation.referencesSoehodo, S., & Koshi, M. (1999). Design of public transit network in urban area with elastic demand. Journal of Advanced Transportation, 33(3), 335–369. https://doi.org/10.1002/atr.5670330306
dc.relation.referencesSpiess, Heinz, and Michael Florian. 1989. “Optimal Strategies: A New Assignment Model for Transit Networks.” Transportation Research Part B: Methodological 23(2):83–102.
dc.relation.referencesSun, Chao, Yulin Chang, Yuji Shi, Lin Cheng, and Jie Ma. 2019. “Subnetwork Origin-Destination Matrix Estimation Under Travel Demand Constraints.” Networks and Spatial Economics 19(4):1123–42. doi: 10.1007/s11067-019-09449-6.
dc.relation.referencesSuwansirikul, Chaisak, Terry L. Friesz, and Roger L. Tobin. 1987. “Equilibrium Decomposed Optimization: A Heu-ristic for the Continuous Equilibrium Network Design Problem.” Transportation Science 21(4):254–63.
dc.relation.referencesTamin, and LG Willumsem. 1992. “Freight Demand Model Estimation From Traffic Counts.” Simplified Transport Demand Modelling (Perspectives 2) 75–86.
dc.relation.referencesTang, Jinjun, Shen Zhang, Xinqiang Chen, Fang Liu, and Yajie Zou. 2018. “Taxi Trips Distribution Modeling Based on Entropy-Maximizing Theory: A Case Study in Harbin City—China.” Physica A: Statistical Mechanics and Its Applications 493:430–43.
dc.relation.referencesTavasszy, L. A., & Stada, J. E. (1994). THE IMPACT OF DECREASING BORDER BARRIERS IN EUROPE ON FREIGHT TRANSPORT BY ROAD. In Transportation Research Forum, 36th Annual Conference, 2 volumesTransportation Research Forum.
dc.relation.referencesTrubia, S., A. Severino, S. Curto, F. Arena, and G. Pau. On BRT Spread around the World: Analysis of Some Particular Cities. Infrastructures, 2020. https://doi.org/10.3390/infrastructures5100088.
dc.relation.referencesVelichko, Andrey. 2016. “Interregional Transportation Modeling for the Far East of Russia Macro-Region.” Pp. 394–403 in DOOR (Supplement).
dc.relation.referencesViegas, J., and B. Lu. Turn of the Century, Survival of the Compact City, Revival of Public Transport. Bottlenecks in Transportation and the Port Industry.(H. Meersman, Ed). Antwerp, Belgium, 1996, pp. 55–63.
dc.relation.referencesWang, Q., & Holguin-Veras, J. (2009). Tour-Based Entropy Maximization Formulations of Urban Commercial Vehicle Movements. In 2009 Annual Meeting of the Transportation Research Board (pp. 1–22). New York: 2009 Annual Meeting of the Transportation Research Board. Retrieved from https://abstracts.aetransport.org/
dc.relation.referencesWardrop, J. G. (1952). Some Theoretical Aspects of Road Traffic Research. ROAD ENGINEERING DIVISION MEETING.
dc.relation.referencesWei, Xueyan, Weijie Yu, Wei Wang, De Zhao, and Xuedong Hua. n.d. “Optimization and Comparative Analysis of Traffic Restriction Policy by Jointly Considering Carpool Exemptions.” doi: 10.3390/su12187734.
dc.relation.referencesWigan, M., Browne, M., Allen, J., & Anderson, S. (2002). Understanding the growth in service trips and developing transport modelling approaches to commercial, service and light goods movements. Association for European Transport, 15. Retrieved from http://abstracts.aetransport.org/paper/index/id/1370/confid/8
dc.relation.referencesWillumsen, L. G. (1978a). Estimation of an OD Matrix from Traffic Counts - A Review. Leeds, UK: Institute of Transport Studies, University of Leeds. Retrieved from http://eprints.whiterose.ac.uk/2415/
dc.relation.referencesWillumsen, L. G. (1978b). OD matrices from network data: a comparison of alternative methods for their estimation. In Proc. of PTRC Summer Annual Meeting 1978 Seminar in Transport Models.
dc.relation.referencesWillumsen, L. G. 1982. Estimation of Trip Matrices from Volume Counts. Validation of a Model under Congested Condi-tions.
dc.relation.referencesWillumsen, L. G. 1984. “Estimating Time-Dependent Trip Matrices from Traffic Counts.” Pp. 397–412 in Proceedings of the Ninth International Symposium on Transportation and Traffic Theory, edited by J. Volmuller and R. Hamers-lag. Utrecht, Netherlands: VNU Science Press.
dc.relation.referencesWilson, A. G. (1969). The use of entropy maximising models, in the theory of trip distribution, mode split and route split. Journal of Transport Economics and Policy, 3(1), 108–126. Retrieved from https://www.jstor.org/stable/20052128
dc.relation.referencesWilson, A. G. (1970). Inter‐regional Commodity Flows: Entropy Maximizing Approaches. Geographical Analysis, 2(3), 255–282. https://doi.org/10.1111/j.1538-4632.1970.tb00859.x
dc.relation.referencesWilson, A. G. A Statistical Theory of Spatial Distribution Models. Transportation Research, Vol. 1, No. 3, 1967, pp. 253–269. https://doi.org/10.1016/0041-1647(67)90035-4.
dc.relation.referencesWirasinghe, S. C., Kattan, L., Rahman, M. M., Hubbell, J., Thilakaratne, R., & Anowar, & S. (2013). Bus rapid transit-a review. International Journal of Urban Sciences, 17(1), 1–31. https://doi.org/10.1080/12265934.2013.777514
dc.relation.referencesWong, S. C., and C. O. Tong. 1998. “Estimation of Time-Dependent Origin-Destination Matrices for Transit Net-works.” Transportation Research Part B: Methodological 32(1):35–48. doi: 10.1016/S0191-2615(97)00011-8.
dc.relation.referencesWong, S. C., C. O. Tong, K. I. Wong, W. H. K. Lam, H. K. Lo, H. Yang, and H. P. Lo. 2005. “Estimation of Multiclass Origin-Destination Matrices from Traffic Counts.” Journal of Urban Planning and Development 131(1):19–29. doi: 10.1061/(ASCE)0733-9488(2005)131:1(19).
dc.relation.referencesWu, Jia Hao, Michael Florian, and Patrice Marcotte. 1994. “Transit Equilibrium Assignment: A Model and Solution Algorithms.” Transportation Science 28(3):193–203.
dc.relation.referencesYou, S. I., & Ritchie, S. G. (2019). Tour-Based Truck Demand Modeling with Entropy Maximization Using GPS Data. Journal of Advanced Transportation, 2019. https://doi.org/10.1155/2019/5021026
dc.relation.referencesZadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
dc.relation.referencesZadeh, L. A. (1968). Fuzzy algorithms. Information and Control, 12(2), 94–102. https://doi.org/10.1016/S0019-9958(68)90211-8
dc.relation.referencesZadeh, L. A. (1999). Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 100(6), 9–34. https://doi.org/10.1016/S0165-0114(99)80004-9
dc.relation.referencesZhang, Y., & Ye, Z. (2008). Short-term traffic flow forecasting using fuzzy logic system methods. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 12(3), 102–112. https://doi.org/10.1080/15472450802262281
dc.relation.referencesZimmermann, H.-J. (1978). Fuzzy programming and linear programming with several objective functions. Fuzzy Sets and Systems, 1(1), 45–55. https://doi.org/10.1016/0165-0114(78)90031-3
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembTransporte de carga
dc.subject.lembFreight services
dc.subject.lembTransporte de pasajeros
dc.subject.lembTransportation-passengers traffic
dc.subject.proposalEntropy
dc.subject.proposalFreight Transportation
dc.subject.proposalFreight Tour Synthesis
dc.subject.proposalTransit Tour Synthesis
dc.subject.proposalFuzzy Logic
dc.subject.proposalSioux Falls Network
dc.subject.proposalFreight and Transit Tour Synthesis
dc.subject.proposalEntropía
dc.subject.proposalTransporte de carga
dc.subject.proposalSíntesis de toures de carga
dc.subject.proposalSíntesis de toures de buses
dc.subject.proposalSíntesis de toures de carga y buses
dc.subject.proposalLógica difusa
dc.subject.proposalRed de Sioux Falls
dc.title.translatedSíntesis de toures de carga y de buses de transporte público
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentResponsables políticos
dc.contributor.orcidhttps://orcid.org/my-orcid?orcid=0000-0002-9697-7646
dc.contributor.orcidMoreno Palacio, Diana Patricia [0000-0002-9697-7646]
dc.contributor.cvlacMORENO PALACIO, DIANA PATRICIA
dc.contributor.scopushttps://www.scopus.com/authid/detail.uri?authorId=57199156747
dc.contributor.scopusMoreno Palacio, Diana Patricia [57199156747]
dc.contributor.researchgatehttps://www.researchgate.net/profile/Diana-Patricia-Moreno-Palacio
dc.contributor.researchgateMoreno Palacio, Diana Patricia [Diana-Patricia-Moreno-Palacio]
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=eXCDGeIAAAAJ&hl=en
dc.contributor.googlescholarMoreno Palacio, Diana Patricia [eXCDGeIAAAAJ&hl=en]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito