Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorCortés Rodríguez, Carlos Julio
dc.contributor.advisorCorredor Gómez, Jennifer Paola
dc.contributor.authorLlanos Eraso, Oswaldo Esteban
dc.date.accessioned2024-01-11T18:50:34Z
dc.date.available2024-01-11T18:50:34Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85232
dc.descriptionilustraciones, fotografías a color
dc.description.abstractActualmente, el tratamiento con implantes dentales representa la mejor alternativa para la sustituci´on est´etica y funcional de piezas dentales que se han perdido. No obstante, com- plicaciones asociadas al dise˜no de la conexi´on implante-pilar pueden comprometer el ´exito del tratamiento. Es por esto que el objetivo de este estudio fue llevar a cabo un an´alisis m´as completo del comportamiento biomec´anico de implantes dentales con conexi´on c´onica y hexagonal, evaluando simult´aneamente la formaci´on de microgap y remodelaci´on ´osea. Se construyeron dos modelos CAD tridimensionales (uno por cada tipo de conexi´on) en el software SolidWorks y se exportaron al software de elementos finitos ABAQUS, donde se llevaron a cabo estudios in silico de la formaci´on de microgap en la interfaz implante-pilar, cuando el implante se somete a cargas c´ıclicas. Para el estudio del proceso de remodelaci´on ´osea, se desarroll´o el algoritmo MED, que fue implementado con la subrutina de usuario UMAT de ABAQUS. El estudio de este proceso se enfoc´o en la regi´on periimplantaria, donde se examinaron la variaci´on en la rigidez y den- sidad del tejido ´oseo como resultado de la remodelaci´on, a trav´es de un tiempo de simulaci´on equivalente a 48 meses. Los resultados mostraron que la conexi´on c´onica ofrece mayor resistencia a la formaci´on de microgap en la interfaz implante-pilar, adem´as de proporcionar una mejor distribuci´on de carga sobre el tejido, que se evidenci´o en una mayor densificaci´on y rigidez tisular a la altura del cuello del implante y, en general, en las regiones de inter´es del estudio, respecto a la conexi´on hexagonal interna. La metodolog´ıa propuesta en este estudio permite la evaluaci´on del comportamiento bio- mec´anico de implantes dentales de acuerdo al dise˜no de la conexi´on implante-pilar, donde los an´alisis de formaci´on de microgap y remodelaci´on ´osea se abordan conjuntamente, a diferencia de estudios previos donde dichos an´alisis se llevan a cabo de manera aislada, des- estimando as´ı factores de riesgo que pueden conducir al fracaso del tratamiento. (Texto tomado de la fuente)
dc.description.abstractCurrently, dental implant treatment represents the best alternative for the aesthetic and functional replacement of lost teeth. However, complications associated with the design of the implant-abutment connection can compromise the success of the treatment. Therefore, the objective of this study was to conduct a more comprehensive analysis of the biomecha- nical behavior of dental implants with conical and hexagonal connections, simultaneously evaluating the formation of a microgap and bone remodeling. Two three-dimensional CAD models (one for each type of connection) were constructed using SolidWorks software and exported to the finite element software ABAQUS, where in silico studies of the microgap formation at the implant-abutment interface were conducted under cyclic loading conditions. For the study of the bone remodeling process, the MED algorithm was developed and imple- mented with the user subroutine UMAT in ABAQUS. This study focused on the peri-implant region, examining the variation in tissue stiffness and density resulting from remodeling over a simulation period equivalent to 48 months. The results showed that the conical connection offers greater resistance to the formation of a microgap at the implant-abutment interface, in addition to providing a better load distribu- tion on the tissue. This was evidenced by increased tissue densification and stiffness at the implant neck and, overall, in the regions of interest in the study compared to the internal hexagonal connection. The proposed methodology in this study allows for the evaluation of the biomechanical behavior of dental implants according to the design of the implant-abutment connection. The analyses of microgap formation and bone remodeling are addressed together, unlike previous studies where these analyses are carried out in isolation, thereby disregarding risk factors that may lead to treatment failure.
dc.format.extentxvii, 87 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleAnálisis comparativo del comportamiento biomecánico de la interfaz implante-pilar en implantes dentales con conexión cónica y hexagonal
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica
dc.contributor.researchgroupGrupo de Investigación en Biomecánica / Universidad Nacional de Colombia Gibm-Uncb
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería Mecánica
dc.description.researchareaBiomecánica Computacional
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references[Abrahamsson et al., 2009] Abrahamsson, I., Linder, E., and Lang, N. P. (2009). Implant stability in relation to osseointegration: an experimental study in the labrador dog. Clinical oral implants research, 20(3):313–318.
dc.relation.references[Abueidda et al., 2017] Abueidda, D. W., Sabet, F. A., and Jasiuk, I. M. (2017). Modeling of stiffness and strength of bone at nanoscale. Journal of biomechanical engineering, 139(5):051006.
dc.relation.references[Bickford, 2018] Bickford, J. (2018). An introduction to the design and behavior of bolted joints, Revised and expanded. Routledge.
dc.relation.references[Bolamperti et al., 2022] Bolamperti, S., Villa, I., and Rubinacci, A. (2022). Bone remodeling: An operational process ensuring survival and bone mechanical competence. Bone Research, 10(1):48.
dc.relation.references[Li et al., 2007] Li, J., Li, H., Shi, L., Fok, A. S., Ucer, C., Devlin, H., Horner, K., and Silikas, N. (2007). A mathematical model for simulating the b
dc.relation.references[Lin et al., 2005] Lin, C.-L., Kuo, Y.-C., and Lin, T.-S. (2005). Effects of dental implant length and bone quality on biomechanical responses in bone around implants: a 3-d nonlinear finite element analysis. Biomedical Engineering: Applications, Basis and Communications, 17(01):44–49. [Lin et al., 2010a] Lin, C.-L., Lin,
dc.relation.references[Lin et al., 2010b] Lin, D., Li, Q., Li, W., Duckmanton, N., and Swain, M. (2010b). Mandibular bone remodeling induced by dental implant. Journal of biomechanics, 43(2):287–293.
dc.relation.references[He et al., 2019] He, Y., Fok, A., Aparicio, C., and Teng, W. (2019). Contact analysis of gap formation at dental implant-abutment interface under oblique loading: A numericalexperimental study. Clinical Implant Dentistry and Related Research, 21(4):741–752.
dc.relation.references[Tonin et al., 2023] Tonin, B. S., Fu, J., He, Y., Ye, N., Chew, H. P., and Fok, A. (2023). The effect of abutment material stiffness on the mechanical behavior of dental implant assemblies: A 3d finite element study. Journal of the Mechanical Behavior of Biomedical Materials, page 105847.
dc.relation.references[Tonin et al., 2022] Tonin, B. S. H., He, Y., Ye, N., Chew, H. P., and Fok, A. (2022). Effects of tightening torque on screw stress and formation of implant-abutment microgaps: A finite element analysis. The Journal of Prosthetic Dentistry, 127(6):882–889.
dc.relation.references[Abaqus, 2014] Abaqus, I. (2014). Abaqus documentation. Version, 6:1–5.
dc.relation.referencesAdell et al., 1981] Adell, R., Lekholm, U., Rockler, B., and Br˚anemark, P.-I. (1981). A 15-year study of osseointegrated implants in the treatment of the edentulous jaw. International journal of oral surgery, 10(6):387–416.
dc.relation.references[Akula et al., 2021] Akula, S. K. J., Ramakrishnan, H., and Sivaprakasam, A. N. (2021). Comparative evaluation of the microbial leakage at two different implant-abutment interfaces using a new sealant.
dc.relation.references[Al-Sanea et al., 2023] Al-Sanea, A., Aktas, S., Celik, T., and Kisioglu, Y. (2023). Effects of the internal contact surfaces of dental implants on screw loosening: A 3-dimensional finite element analysis. The Journal of Prosthetic Dentistry, 130(4):603–e1.
dc.relation.references[Albrektsson et al., 2017] Albrektsson, T., Chrcanovic, B., Ostman, P.-O., and Sennerby, L. (2017). Initial and long-term crestal bone responses to modern dental implants. Periodontology 2000, 73(1):41–50.
dc.relation.references[Albrektsson and Sennerby, 1991] Albrektsson, T. and Sennerby, L. (1991). State of the art in oral implants. Journal of clinical periodontology, 18(6):474–481.
dc.relation.references[Albrektsson et al., 1986] Albrektsson, T., Zarb, G., Worthington, P., and Eriksson, A. (1986). The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int j oral maxillofac implants, 1(1):11–25.
dc.relation.references[Allen and Burr, 2014] Allen, M. R. and Burr, D. B. (2014). Bone modeling and remodeling. In Basic and applied bone biology, pages 75–90. Elsevier.
dc.relation.references[Ambard and Swider, 2006] Ambard, D. and Swider, P. (2006). A predictive mechanobiological model of the bone-implant healing. European Journal of Mechanics-A/Solids, 25(6):927–937.
dc.relation.references[Andrade-Campos et al., 2012] Andrade-Campos, A., Ramos, A., Sim, J. A., et al. (2012). A model of bone adaptation as a topology optimization process with contact.
dc.relation.referencesArmentia et al., 2020] Armentia, M., Abasolo, M., Coria, I., and Albizuri, J. (2020). Fatigue design of dental implant assemblies: a nominal stress approach. Metals, 10(6):744.
dc.relation.referencesAssenza et al., 2012] Assenza, B., Tripodi, D., Scarano, A., Perrotti, V., Piattelli, A., Iezzi, G., and D’Ercole, S. (2012). Bacterial leakage in implants with different implant–abutment connections: An in vitro study. Journal of periodontology, 83(4):491–497.
dc.relation.references[Berglundh et al., 2003] Berglundh, T., Abrahamsson, I., Lang, N. P., and Lindhe, J. (2003). De novo alveolar bone formation adjacent to endosseous implants: a model study in the dog. Clinical oral implants research, 14(3):251–262.
dc.relation.references[Bertolini et al., 2019] Bertolini, M. M., Del Bel Cury, A. A., Pizzoloto, L., Acapa, I. R. H., Shibli, J. A., and Bordin, D. (2019). Does traumatic occlusal forces lead to peri-implant bone loss? a systematic review. Brazilian oral research, 33.
dc.relation.references[Bittencourt et al., 2021] Bittencourt, A. B. B. C., Neto, C. L. d. M. M., Penitente, P. A., Pellizzer, E. P., Santos, D. M. d., and Goiato, M. C. (2021). Comparison of the morse cone connection with the internal hexagon and external hexagon connections based on microleakage–review. Prague medical report, 122(3):181–190.
dc.relation.references[Block, 2018] Block, M. S. (2018). Dental implants: the last 100 years. Journal of Oral and Maxillofacial Surgery, 76(1):11–26.
dc.relation.references[Bolamperti et al., 2022] Bolamperti, S., Villa, I., and Rubinacci, A. (2022). Bone remodeling: An operational process ensuring survival and bone mechanical competence. Bone Research, 10(1):48.
dc.relation.referencesBoskey and Coleman, 2010] Boskey, A. L. and Coleman, R. (2010). Aging and bone. Journal of dental research, 89(12):1333–1348.
dc.relation.referencesBranemark, 1983] Branemark, P.-I. (1983). Osseointegration and its experimental background. J prosthet Dent, 50:399–410.
dc.relation.references[Branemark et al., 1969] Branemark, P.-I., Breine, U., Adell, R., Hansson, B., Lindstrom, J., and Ohlsson, ˚A. (1969). Intra-osseous anchorage of dental prostheses: I. experimental studies. Scandinavian journal of plastic and reconstructive surgery, 3(2):81–100.
dc.relation.references[Burr, 2019] Burr, D. B. (2019). Changes in bone matrix properties with aging. Bone, 120:85–93.
dc.relation.referencesCalandriello et al., 2003] Calandriello, R., Tomatis, M., Vallone, R., Rangert, B., and Gottlow, J. (2003). Immediate occlusal loading of single lower molars using br˚anemark system® wide-platform tiunite™ implants: an interim report of a prospective open-ended clinical multicenter study. Clinical implant dentistry and related research, 5:74–80.
dc.relation.references[Camps-Font et al., 2021] Camps-Font, O., Rubianes-Porta, L., Valmaseda-Castell´on, E., Jung, R. E., Gay-Escoda, C., and Figueiredo, R. (2021). Comparison of external, internal flat-to-flat, and conical implant abutment connections for implant-supported prostheses: A systematic review and network meta-analysis of randomized clinical trials. The Journal of Prosthetic Dentistry.
dc.relation.references[Carter, 1984] Carter, D. R. (1984). Mechanical loading histories and cortical bone remodeling. Calcified tissue international, 36(Suppl 1):S19–S24.
dc.relation.references[Carter and Hayes, 1977] Carter, D. R. and Hayes, W. C. (1977). The compressive behavior of bone as a two-phase porous structure. The Journal of bone and joint surgery. American volume, 59(7):954–962.
dc.relation.referencesCARVALHO et al., 2023] CARVALHO, L. F. d., CARVALHO, A. M. d., Sotto-Maior, B. S., Francischone, C. E., Martinez, E. F., Dias, A. L., and CARVALHO, L. P. d. (2023). Microbiological analysis of bacterial sealing of internal conical implants with different taper angles. Brazilian Oral Research, 37:e43.
dc.relation.referencesChapin and Hajjar, 2015] Chapin, J. C. and Hajjar, K. A. (2015). Fibrinolysis and the control of blood coagulation. Blood reviews, 29(1):17–24.
dc.relation.references[Chen et al., 2007] Chen, G., Pettet, G., Pearcy, M., and McElwain, D. (2007). Comparison of two numerical approaches for bone remodelling. Medical engineering & physics, 29(1):134–139.
dc.relation.referencesChen et al., 2022] Chen, Z., Zhang, S., Zhou, J., and Liang, H. (2022). Immediate versus delayed implantation for single-tooth restoration of maxillary anterior teeth: A comparative analysis on efficacy. Computational and Mathematical Methods in Medicine, 2022.
dc.relation.references[Cowin, 2001] Cowin, S. C. (2001). Bone mechanics handbook. CRC press.
dc.relation.references[da Costa Valente et al., 2017] da Costa Valente, M. L., de Castro, D. T., Macedo, A. P., Shimano, A. C., and Dos Reis, A. C. (2017). Comparative analysis of stress in a new proposal of dental implants. Materials Science and Engineering: C, 77:360–365.
dc.relation.references[Darcey and Eldridge, 2016] Darcey, J. and Eldridge, D. (2016). Fifty years of dental implant development: a continuous evolution. Dental historian: Lindsay Club newsletter, 61(2):75–92.
dc.relation.references[Dicati et al., 2020] Dicati, G. W. O., Gubaua, J. E., and Pereira, J. T. (2020). Analysis of the uniqueness and stability of solutions to problems regarding the bone-remodeling process. Medical Engineering & Physics, 85:113–122
dc.relation.references[Do et al., 2020] Do, T. A., Le, H. S., Shen, Y.-W., Huang, H.-L., and Fuh, L.-J. (2020). Risk factors related to late failure of dental implant—a systematic review of recent studies. International journal of environmental research and public health, 17(11):3931.
dc.relation.referencesDonnelly et al., 2012] Donnelly, E., Meredith, D. S., Nguyen, J. T., and Boskey, A. L. (2012). Bone tissue composition varies across anatomic sites in the proximal femur and the iliac crest. Journal of orthopaedic research, 30(5):700–706.
dc.relation.references[Dorogoy et al., 2017] Dorogoy, A., Rittel, D., Shemtov-Yona, K., and Korabi, R. (2017). Modeling dental implant insertion. Journal of the mechanical behavior of biomedical materials, 68:42–50.
dc.relation.referencesD’Ercole et al., 2022] D’Ercole, S., Dotta, T. C., Farani, M. R., Etemadi, N., Iezzi, G., Comuzzi, L., Piattelli, A., and Petrini, M. (2022). Bacterial microleakage at the implantabutment interface: An in vitro study. Bioengineering, 9(7):277.
dc.relation.referencesElias, 2011] Elias, C. N. (2011). Factors affecting the success of dental implants. Implant dentistry: a rapidly evolving practice. Rijeka: InTech, pages 319–64.
dc.relation.references[Ellingsen et al., 2006] Ellingsen, J. E., Thomsen, P., and Lyngstadaas, S. P. (2006). Advances in dental implant materials and tissue regeneration. Periodontology 2000, 41(1):136–156.
dc.relation.references[Epperson, 2021] Epperson, J. F. (2021). An introduction to numerical methods and analysis. John Wiley & Sons.
dc.relation.references[Florencio-Silva et al., 2015] Florencio-Silva, R., Sasso, G. R. d. S., Sasso-Cerri, E., Sim˜oes, M. J., and Cerri, P. S. (2015). Biology of bone tissue: structure, function, and factors that influence bone cells. BioMed research international, 2015.
dc.relation.referencesFontijn-Tekampl et al., 1998] Fontijn-Tekampl, E., Slagter, A., van’t Hof, M., Geertman, M., and Kalk, W. (1998). Bite Forces with Mandibular Implant-retained Overdentures. Journal of Dental Research, 77(10):1832–1839.
dc.relation.references[Garzón-Alvarado and Linero, 2012] Garzón-Alvarado, D. and Linero, D. (2012). Comparative analysis of numerical integration schemes of density equation for a computational model of bone remodelling. Computer Methods in Biomechanics and Biomedical Engineering, 15(11):1189–1196.
dc.relation.references[Gasser and Kneissel, 2017] Gasser, J. A. and Kneissel, M. (2017). Bone physiology and biology. In Bone Toxicology, pages 27–94. Springer.
dc.relation.references[Gaviria et al., 2014] Gaviria, L., Salcido, J. P., Guda, T., and Ong, J. L. (2014). Current trends in dental implants. Journal of the Korean Association of Oral and Maxillofacial Surgeons, 40(2):50.
dc.relation.references[Geckili et al., 2012] Geckili, O., Bilhan, H., Mumcu, E., and Tuncer, N. (2012). The influence of maximum bite force on patient satisfaction and quality of life of patients wearing mandibular implant overdentures. Journal of Oral Implantology, 38(3):271–277.
dc.relation.references[Goiato et al., 2014] Goiato, M. C., Dos Santos, D., Santiago, J. J., Moreno, A., and Pellizzer, E. P. (2014). Longevity of dental implants in type iv bone: a systematic review. International journal of oral and maxillofacial surgery, 43(9):1108–1116.
dc.relation.references[Gong et al., 2015] Gong, T., Xie, J., Liao, J., Zhang, T., Lin, S., and Lin, Y. (2015). Nanomaterials and bone regeneration. Bone research, 3:15029.
dc.relation.references[Goodacre et al., 2003] Goodacre, C. J., Bernal, G., Rungcharassaeng, K., and Kan, J. Y. (2003). Clinical complications in fixed prosthodontics. The Journal of prosthetic dentistry, 90(1):31–41.
dc.relation.references[Greaves et al., 2013] Greaves, N. S., Ashcroft, K. J., Baguneid, M., and Bayat, A. (2013). Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. Journal of dermatological science, 72(3):206–217.
dc.relation.references[Gubaua et al., 2020] Gubaua, J. E., Dicati, G. W. O., Mercuri, E. G. F., and Pereira, J. T. (2020). Simulation of bone remodeling around a femoral prosthesis using a model that accounts for biological and mechanical interactions. Medical Engineering & Physics, 84:126–135.
dc.relation.references[Guntur and Rosen, 2012] Guntur, A. and Rosen, C. (2012). Bone as an endocrine organ. Endocrine Practice, 18(5):758–762.
dc.relation.references[Haiat et al., 2014] Haiat, G., Wang, H.-L., and Brunski, J. (2014). Effects of biomechanical properties of the bone–implant interface on dental implant stability: from in silico approaches to the patient’s mouth. Annual review of biomedical engineering, 16:187–213.
dc.relation.references[Harwood et al., 2010] Harwood, P. J., Newman, J. B., and Michael, A. L. (2010). (ii) an update on fracture healing and non-union. Orthopaedics and Trauma, 24(1):9–23.
dc.relation.referencesHasan et al., 2012] Hasan, I., Rahimi, A., Keilig, L., Brinkmann, K.-T., and Bourauel, C. (2012). Computational simulation of internal bone remodelling around dental implants: a sensitivity analysis. Computer methods in biomechanics and biomedical engineering, 15(8):807–814.
dc.relation.references[Heinemann et al., 2015] Heinemann, F., Hasan, I., Bourauel, C., Biffar, R., and Mundt, T. (2015). Bone stability around dental implants: Treatment related factors. Annals of Anatomy-Anatomischer Anzeiger, 199:3–8.
dc.relation.references[Helkimo et al., 1977] Helkimo, E., Carlsson, G. E., and Helkimo, M. (1977). Bite force and state of dentition. Acta odontologica scandinavica, 35(6):297–303.
dc.relation.referencesHo, 2021] Ho, C. C. (2021). Loading protocols in implantology. Practical Procedures in Implant Dentistry, pages 129–135.
dc.relation.references[Hoffman and Frankel, 2018] Hoffman, J. D. and Frankel, S. (2018). Numerical methods for engineers and scientists. CRC press.
dc.relation.references[Hughes et al., 2015] Hughes, F., Vishwakarma, A., Sharpe, P., Shi, S., and Ramalingam, M. (2015). Chapter 34-periodontium and periodontal disease.
dc.relation.references[Hughes et al., 2020] Hughes, J. M., Castellani, C. M., Popp, K. L., Guerriere, K. I., Matheny Jr, R. W., Nindl, B. C., and Bouxsein, M. L. (2020). The central role of osteocytes in the four adaptive pathways of bone’s mechanostat. Exercise and sport sciences reviews, 48(3):140.
dc.relation.references[Ioannidis et al., 2019] Ioannidis, A., Heierle, L., H¨ammerle, C. H., H¨usler, J., Jung, R. E., and Thoma, D. S. (2019). Prospective randomized controlled clinical study comparing two types of two-piece dental implants supporting fixed reconstructions—results at 5 years of loading. Clinical Oral Implants Research, 30(11):1126–1133.
dc.relation.references[Jacobs et al., 1995] Jacobs, C. R., Levenston, M. E., Beaupr´e, G. S., Simo, J. C., and Carter, D. R. (1995). Numerical instabilities in bone remodeling simulations: the advantages of a node-based finite element approach. Journal of biomechanics, 28(4):449–459.
dc.relation.references[Jafari et al., 2022] Jafari, B., Katoozian, H. R., Tahani, M., and Ashjaee, N. (2022). A comparative study of bone remodeling around hydroxyapatite-coated and novel radial functionally graded dental implants using finite element simulation. Medical Engineering & Physics, 102:103775.
dc.relation.references[Junior et al., 2016] Junior, J. F. S., Verri, F. R., de Faria Almeida, D. A., de Souza Batista, V. E., Lemos, C. A. A., and Pellizzer, E. P. (2016). Finite element analysis on influence of implant surface treatments, connection and bone types. Materials Science and Engineering: C, 63:292–300.
dc.relation.references[Kim et al., 2020] Kim, J.-H., Noh, G., Hong, S.-J., and Lee, H. (2020). Biomechanical stress and microgap analysis of bone-level and tissue-level implant abutment structure according to the five different directions of occlusal loads. The Journal of Advanced Prosthodontics, 12(5):316.
dc.relation.references[Ko et al., 2007] Ko, C.-C., Somerman, M. J., and An, K.-N. (2007). Motion and bone regeneration. In Engineering of functional skeletal tissues, pages 110–128. Springer.
dc.relation.referencesKonukoglu, 2019] Konukoglu, D. (2019). Bone markers. Int J Med Biochem, 2(2):65–78.
dc.relation.references[Kozlovsky et al., 2007] Kozlovsky, A., Tal, H., Laufer, B.-Z., Leshem, R., Rohrer, M. D., Weinreb, M., and Artzi, Z. (2007). Impact of implant overloading on the peri-implant bone in inflamed and non-inflamed peri-implant mucosa. Clinical oral implants research, 18(5):601–610.
dc.relation.references[Kurniawan et al., 2012] Kurniawan, D., Nor, F., Lee, H., and Lim, J. (2012). Finite element analysis of bone–implant biomechanics: refinement through featuring various osseointegration conditions. International journal of oral and maxillofacial surgery, 41(9):1090–1096.
dc.relation.references[Lambert et al., 2009] Lambert, F. E., Weber, H.-P., Susarla, S. M., Belser, U. C., and Gallucci, G. O. (2009). Descriptive analysis of implant and prosthodontic survival rates with fixed implant–supported rehabilitations in the edentulous maxilla. Journal of periodontology, 80(8):1220–1230.
dc.relation.references[Lauritano et al., 2020] Lauritano, D., Moreo, G., Lucchese, A., Viganoni, C., Limongelli, L., and Carinci, F. (2020). The impact of implant–abutment connection on clinical outcomes and microbial colonization: A narrative review. Materials, 13(5):1131.
dc.relation.references[Lee et al., 2021] Lee, H., Jo, M., and Noh, G. (2021). Biomechanical effects of dental implant diameter, connection type, and bone density on microgap formation and fatigue failure: A finite element analysis. Computer Methods and Programs in Biomedicine, 200:105863.
dc.relation.references[Li et al., 2011] Li, P., Liu, P., Xiong, R.-P., Chen, X.-Y., Zhao, Y., Lu, W.-P., Liu, X., Ning, Y.-L., Yang, N., and Zhou, Y.-G. (2011). Ski, a modulator of wound healing and scar formation in the rat skin and rabbit ear. The Journal of pathology, 223(5):659–671.
dc.relation.references[Lian et al., 2010] Lian, Z., Guan, H., Loo, Y.-C., Ivanovski, S., and Johnson, N. W. (2010). Finite element simulation of bone remodelling in human mandible around osseointegrated dental implant. In IOP Conference Series: Materials Science and Engineering, volume 10, page 012125. IOP Publishing.
dc.relation.references[Lin et al., 2010a] Lin, C.-L., Lin, Y.-H., and Chang, S.-H. (2010a). Multi-factorial analysis of variables influencing the bone loss of an implant placed in the maxilla: prediction using fea and sed bone remodeling algorithm. Journal of biomechanics, 43(4):644–651.
dc.relation.references[Lin et al., 2009] Lin, D., Li, Q., Li, W., Rungsiyakull, P., and Swain, M. (2009). Bone resorption induced by dental implants with ceramics crowns. Journal of the Australian Ceramic Society, 45(2):1–7.
dc.relation.references[Liu and Wang, 2017] Liu, Y. and Wang, J. (2017). Influences of microgap and micromotion of implant–abutment interface on marginal bone loss around implant neck. Archives of oral biology, 83:153–160.
dc.relation.references[Lorusso et al., 2023] Lorusso, F., Lucchina, A. G., Romano, F., Falisi, G., Di Carmine, M., Bugea, C., and Scarano, A. (2023). Microleakage and mechanical behavior of conical vs. internal hexagon implant-abutment connection under a cyclic load fatigue test. European Review for Medical and Pharmacological Sciences, 27(3 Suppl):122–127.
dc.relation.references[Macri and Clark, 2009] Macri, L. and Clark, R. (2009). Tissue engineering for cutaneous wounds: selecting the proper time and space for growth factors, cells and the extracellular matrix. Skin pharmacology and physiology, 22(2):83–93.
dc.relation.references[Manea et al., 2019] Manea, A., Baciut, G., Baciut, M., Pop, D., Comsa, D. S., Buiga, O., Trombitas, V., Colosi, H., Mitre, I., Bordea, R., et al. (2019). New dental implant with 3d shock absorbers and tooth-like mobility—prototype development, finite element analysis (fea), and mechanical testing. Materials, 12(20):3444.
dc.relation.references[Melo et al., 2018] Melo, A. C. M., Ledra, I. M., Vieira, R. A., Cor´o, E. R., and Sartori, I. A. d. M. (2018). Maximum bite force of edentulous patients before and after dental implant rehabilitation: Long-term follow-up and facial type influence. Journal of Prosthodontics, 27(6):523–527.
dc.relation.references[Mericske-Stern et al., 1995] Mericske-Stern, R., Assal, P., Mericske, E., and B¨urgin, W. (1995). Occlusal force and oral tactile sensibility measured in partially edentulous patients with iti implants. International Journal of Oral & Maxillofacial Implants, 10(3).
dc.relation.references[Merz et al., 2000] Merz, B. R., Hunenbart, S., and Belser, U. C. (2000). Mechanics of the implant-abutment connection: an 8-degree taper compared to a butt joint connection. International Journal of Oral & Maxillofacial Implants, 15(4).
dc.relation.references[Moraschini et al., 2015] Moraschini, V., Poubel, L. d. C., Ferreira, V., and dos Sp Barboza, E. (2015). Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: a systematic review. International journal of oral and maxillofacial surgery, 44(3):377–388.
dc.relation.references[Mosavar et al., 2015] Mosavar, A., Ziaei, A., and Kadkhodaei, M. (2015). The effect of implant thread design on stress distribution in anisotropic bone with different osseointegration conditions: a finite element analysis. International Journal of Oral & Maxillofacial Implants, 30(6).
dc.relation.references[Mullender et al., 1994] Mullender, M., Huiskes, R., and Weinans, H. (1994). A physiological approach to the simulation of bone remodeling as a self-organizational control process. Journal of biomechanics, 27(11):1389–1394.
dc.relation.references[Naert et al., 2012] Naert, I., Duyck, J., and Vandamme, K. (2012). Occlusal overload and bone/implant loss. Clinical oral implants research, 23:95–107.
dc.relation.references[Nassar and Abdalla, 2015] Nassar, H. I. and Abdalla, M. F. (2015). Bacterial leakage of different internal implant/abutment connection. Future Dental Journal, 1(1):1–5.
dc.relation.references[Neves et al., 2018] Neves, J., de Ara´ujo Nobre, M., Oliveira, P., Martins dos Santos, J., and Malo, P. (2018). Risk factors for implant failure and peri-implant pathology in systemic compromised patients. Journal of Prosthodontics, 27(5):409–415.
dc.relation.references[Nishihira et al., 2003] Nishihira, M., Yamamoto, K., Sato, Y., Ishikawa, H., and Natali, A. (2003). Mechanics of periodontal ligament m nishihira, k yamamoto, y sato, h ishikawa, an natali. In Dental biomechanics, pages 38–52. CRC Press.
dc.relation.references[Ødegaard et al., 2020] Ødegaard, K. S., Torgersen, J., and Elverum, C. W. (2020). Structural and biomedical properties of common additively manufactured biomaterials: A concise review. Metals, 10(12):1677.
dc.relation.references[O’Mahony et al., 2000] O’Mahony, A. M., Williams, J. L., Katz, J. O., and Spencer, P. (2000). Anisotropic elastic properties of cancellous bone from a human edentulous mandible. Clinical oral implants research, 11(5):415–421.
dc.relation.references[Ovesy et al., 2018] Ovesy, M., Voumard, B., and Zysset, P. (2018). A nonlinear homogenized finite element analysis of the primary stability of the bone–implant interface. Biomechanics and modeling in mechanobiology, 17(5):1471–1480.
dc.relation.references[Owen and Reilly, 2018] Owen, R. and Reilly, G. C. (2018). In vitro models of bone remodelling and associated disorders. Frontiers in bioengineering and biotechnology, 6:134.
dc.relation.references[Paliwal et al., 2014] Paliwal, S., Saxena, D., Mittal, R., and Chaudhary, S. (2014). Occlusal principles and considerations for implants: An overview. Journal of Academy of Dental Education, 1(2):17–21.
dc.relation.references[Pant et al., 2021] Pant, A., Paul, E., Niebur, G. L., and Vahdati, A. (2021). Integration of mechanics and biology in computer simulation of bone remodeling. Progress in Biophysics and Molecular Biology, 164:33–45.
dc.relation.references[Park et al., 2022a] Park, J., Park, S., Kang, I., and Noh, G. (2022a). Biomechanical effects of bone quality and design features in dental implants in long-term bone stability. Journal of Computational Design and Engineering, 9(5):1538–1548.
dc.relation.references[Park et al., 2022b] Park, S., Park, J., Kang, I., Lee, H., and Noh, G. (2022b). Effects of assessing the bone remodeling process in biomechanical finite element stability evaluations of dental implants. Computer methods and programs in biomedicine, 221:106852.
dc.relation.references[Pessoa et al., 2010] Pessoa, R. S., Muraru, L., J´unior, E. M., Vaz, L. G., Sloten, J. V., Duyck, J., and Jaecques, S. V. (2010). Influence of implant connection type on the biomechanical environment of immediately placed implants–ct-based nonlinear, threedimensional finite element analysis. Clinical implant dentistry and related research, 12(3):219–234.
dc.relation.references[Piotrowski et al., 2014] Piotrowski, B., Baptista, A., Patoor, E., Bravetti, P., Eberhardt, A., and Laheurte, P. (2014). Interaction of bone–dental implant with new ultra low modulus alloy using a numerical approach. Materials Science and Engineering: C, 38:151–160.
dc.relation.references[Pommer et al., 2021] Pommer, B., Danzinger, M., Leite Aiquel, L., Pitta, J., and Haas, R. (2021). Long-term outcomes of maxillary single-tooth implants in relation to timing protocols of implant placement and loading: Systematic review and meta-analysis. Clinical Oral Implants Research, 32:56–66.
dc.relation.references[Poovarodom et al., 2023] Poovarodom, P., Rungsiyakull, C., Suriyawanakul, J., Li, Q., Sasaki, K., Yoda, N., and Rungsiyakull, P. (2023). Effect of implant placement depth on bone remodeling on implant-supported single zirconia abutment crown: A 3d finite element study. Journal of Prosthodontic Research, 67(2):278–287.
dc.relation.references[Raghavendra et al., 2005] Raghavendra, S., Wood, M. C., and Taylor, T. D. (2005). Early wound healing around endosseous implants: a review of the literature. International Journal of Oral & Maxillofacial Implants, 20(3).
dc.relation.references[Renvert et al., 2014] Renvert, S., Aghazadeh, A., Hallstr¨om, H., and Persson, G. R. (2014). Factors related to peri-implantitis–a retrospective study. Clinical oral implants research, 25(4):522–529.
dc.relation.references[Resnik, 2020] Resnik, R. (2020). Misch’s contemporary implant dentistry e-book. Elsevier Health Sciences.
dc.relation.references[Rho et al., 1998] Rho, J.-Y., Kuhn-Spearing, L., and Zioupos, P. (1998). Mechanical properties and the hierarchical structure of bone. Medical engineering & physics, 20(2):92–102.
dc.relation.references[Robling et al., 2006] Robling, A. G., Castillo, A. B., and Turner, C. H. (2006). Biomechanical and molecular regulation of bone remodeling. Annu. Rev. Biomed. Eng., 8:455–498.
dc.relation.references[Rodrigues, 2018] Rodrigues, B. (2018). Bone remodelling model including overload simulation. PhD thesis, Thesis.
dc.relation.references[Sabet et al., 2016] Sabet, F. A., Raeisi Najafi, A., Hamed, E., and Jasiuk, I. (2016). Modelling of bone fracture and strength at different length scales: a review. Interface focus, 6(1):20150055.
dc.relation.references[Sahin and Ayyildiz, 2014] Sahin, C. and Ayyildiz, S. (2014). Correlation between microleakage and screw loosening at implant-abutment connection. The journal of advanced prosthodontics, 6(1):35–38.
dc.relation.references[Saidin et al., 2012] Saidin, S., Kadir, M. R. A., Sulaiman, E., and Kasim, N. H. A. (2012). Effects of different implant–abutment connections on micromotion and stress distribution: Prediction of microgap formation. Journal of dentistry, 40(6):467–474
dc.relation.references[Satpathy et al., 2022] Satpathy, M., Jose, R. M., Duan, Y., and Griggs, J. A. (2022). Effects of abutment screw preload and preload simulation techniques on dental implant lifetime. JADA Foundational Science, 1:100010.
dc.relation.references[Scarano et al., 2016] Scarano, A., Mortellaro, C., Mavriqi, L., Pecci, R., and Valbonetti, L. (2016). Evaluation of microgap with three-dimensional x-ray microtomography: Internal hexagon versus cone morse. Journal of Craniofacial Surgery, 27(3):682–685.
dc.relation.references[Sculean et al., 2014] Sculean, A., Gruber, R., and Bosshardt, D. D. (2014). Soft tissue wound healing around teeth and dental implants. Journal of clinical periodontology, 41:S6–S22.
dc.relation.references[Seth and Kalra, 2013] Seth, S. and Kalra, P. (2013). Effect of dental implant parameters on stress distribution at bone-implant interface. Inter J Sci Res, 2(6):121–124.
dc.relation.references[Shah et al., 2018] Shah, F. A., Thomsen, P., and Palmquist, A. (2018). Osseointegration and current interpretations of the bone-implant interface. Acta biomaterialia.
dc.relation.references[Shiu et al., 2014] Shiu, H. T., Goss, B., Lutton, C., Crawford, R., and Xiao, Y. (2014). Formation of blood clot on biomaterial implants influences bone healing. Tissue Engineering Part B: Reviews, 20(6):697–712.
dc.relation.references[Sikavitsas et al., 2001] Sikavitsas, V. I., Temenoff, J. S., and Mikos, A. G. (2001). Biomaterials and bone mechanotransduction. Biomaterials, 22(19):2581–2593.
dc.relation.references[Sotto-Maior et al., 2016] Sotto-Maior, B. S., Mercuri, E. G. F., Senna, P. M., Assis, N. M. S. P., Francischone, C. E., and Del Bel Cury, A. A. (2016). Evaluation of bone remodeling around single dental implants of different lengths: a mechanobiological numerical simulation and validation using clinical data. Computer methods in biomechanics and biomedical engineering, 19(7):699–706.
dc.relation.references[Su et al., 2022] Su, K., Gao, C., Qiu, G., Yuan, L., Yang, J., and Du, J. (2022). Numerical simulation of mechanically adaptive bone remodeling around teeth and implants: A comparison with clinical images. JOM, 74(12):4640–4651.
dc.relation.references[Sullivan, 2001] Sullivan, R. M. (2001). Implant dentistry and the concept of osseointegration: a historical perspective. Journal of the California Dental Association, 29(11):737– 744.
dc.relation.references[Taheri et al., 2020] Taheri, M., Akbari, S., Shamshiri, A. R., and Shayesteh, Y. S. (2020). Marginal bone loss around bone-level and tissue-level implants: A systematic review and meta-analysis. Annals of Anatomy-Anatomischer Anzeiger, 231:151525.
dc.relation.references[Thiruvoth et al., 2015] Thiruvoth, F. M., Mohapatra, D. P., Sivakumar, D. K., Chittoria, R. K., Nandhagopal, V., et al. (2015). Current concepts in the physiology of adult wound healing. Plast Aesthetic Res, 2(5):250–6.
dc.relation.references[Torstrick et al., 2018] Torstrick, F. B., Lin, A. S., Potter, D., Safranski, D. L., Sulchek, T. A., Gall, K., and Guldberg, R. E. (2018). Porous peek improves the bone-implant interface compared to plasma-sprayed titanium coating on peek. Biomaterials, 185:106– 116.
dc.relation.references[Traini et al., 2006] Traini, T., Assenza, B., San Roman, F., Thams, U., Caputi, S., and Piattelli, A. (2006). Bone microvascular pattern around loaded dental implants in a canine model. Clinical oral investigations, 10(2):151–156.
dc.relation.references[Turner, 2006] Turner, C. H. (2006). Bone strength: current concepts. Annals of the New York Academy of Sciences, 1068(1):429–446.
dc.relation.references[Udomsawat et al., 2019] Udomsawat, C., Rungsiyakull, P., Rungsiyakull, C., and Khongkhunthian, P. (2019). Comparative study of stress characteristics in surrounding bone during insertion of dental implants of three different thread designs: A three-dimensional dynamic finite element study. Clinical and experimental dental research, 5(1):26–37.
dc.relation.references[Vadiraj et al., 2022] Vadiraj, B., Rao, P. K. V., and Kumar, K. K. (2022). Application of biomaterials and finite element analysis in dentistry–a review. Materials Today: Proceedings.
dc.relation.references[Van Rietbergen et al., 1993] Van Rietbergen, B., Huiskes, R., Weinans, H., Sumner, D., Turner, T., and Galante, J. (1993). The mechanism of bone remodeling and resorption around press-fitted tha stems. Journal of biomechanics, 26(4-5):369–382.
dc.relation.references[Velnar et al., 2009] Velnar, T., Bailey, T., and Smrkolj, V. (2009). The wound healing process: an overview of the cellular and molecular mechanisms. Journal of International Medical Research, 37(5):1528–1542.
dc.relation.references[Vianna et al., 2018] Vianna, T. T., Taiete, T., Casarin, R. C., Giorgi, M. C., Aguiar, F. H. B., Silvério, K. G., Nociti Junior, F. H., Sallum, E. A., and Casati, M. Z. (2018). Evaluation of peri-implant marginal tissues around tissue-level and bone-level implants in patients with a history of chronic periodontitis. Journal of clinical periodontology, 45(10):1255–1265.
dc.relation.referencesW. Nicholson, 2020] W. Nicholson, J. (2020). Titanium alloys for dental implants: A review. Prosthesis, 2(2):11.
dc.relation.references[Wang et al., 2002] Wang, X., Shen, X., Li, X., and Agrawal, C. M. (2002). Age-related changes in the collagen network and toughness of bone. Bone, 31(1):1–7.
dc.relation.references[Weinans et al., 1992] Weinans, H., Huiskes, R., and Grootenboer, H. (1992). The behavior of adaptive bone-remodeling simulation models. Journal of biomechanics, 25(12):1425– 1441.
dc.relation.references[Weinans et al., 1994] Weinans, H., Huiskes, R., and Grootenboer, H. (1994). Effects of fit and bonding characteristics of femoral stems on adaptive bone remodeling.
dc.relation.references[Wiest et al., 2018] Wiest, W., Rack, A., Zabler, S., Schaer, A., Swain, M., and Nelson, K. (2018). Validation of finite-element simulations with synchrotron radiography–a descriptive study of micromechanics in two-piece dental implants. Heliyon, 4(2).
dc.relation.references[Wolff, 1893] Wolff, J. (1893). Das gesetz der transformation der knochen. DMW-Deutsche Medizinische Wochenschrift, 19(47):1222–1224.
dc.relation.references[Yoda et al., 2016] Yoda, N., Liao, Z., Chen, J., Sasaki, K., Swain, M., and Li, Q. (2016). Role of implant configurations supporting three-unit fixed partial denture on mandibular bone response: biological-data-based finite element study. Journal of oral rehabilitation, 43(9):692–701.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsImplantes Dentales
dc.subject.lembAtención odontológica
dc.subject.lembDental care
dc.subject.lembDental Implants
dc.subject.proposalImplantes dentales
dc.subject.proposalInterfaz implante-pilar
dc.subject.proposalConexión cónica
dc.subject.proposalConexión hexagonal
dc.subject.proposalBone remodeling
dc.subject.proposalMicrogap formation
dc.subject.proposalFinite element method
dc.title.translatedComparative Analysis of the Biomechanical Behavior of the Implant-Abutment Interface in Dental Implants with Conical and Hexagonal Connections
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-CompartirIgual 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito