Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorOrdoñez Santos, Luis Eduardo
dc.contributor.advisorMartínez Girón, Jader
dc.contributor.authorTigreros, Jaime Andres
dc.date.accessioned2024-01-11T20:50:12Z
dc.date.available2024-01-11T20:50:12Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85235
dc.descriptionIlustraciones, tablas
dc.description.abstractEstablecer una relación apropiada entre la inactivación enzimática alcanzada mediante el proceso de escaldado y los impactos en nutrientes y las alteraciones en el color de los alimentos, resulta fundamental para preservar la calidad de los productos transformados. En el primer capítulo, el objetivo fue estudiar los efectos del escaldado a diferentes niveles de potencia de microondas (300, 600, 900 y 1200 W) por tiempos (15, 30, 45 y 60 segundos) sobre la inactivación de peroxidasa presente en este fruto. En comparación con el tratamiento control, el escaldado con microondas logró disminuir la actividad residual de peroxidasa por debajo del 10% en un tiempo de 45 segundos a una potencia de 900 W. Con esta información, en el segundo capítulo se evaluó el efecto de las condiciones de escaldado con microondas sobre los compuestos bioactivos, la actividad antioxidante y el color encontrando que el contenido de vitamina C, fenoles totales, carotenoides, actividad antioxidante, luminosidad, croma e índice de amarillamiento no mostraron diferencia significativa (p> 0,05) en comparación con el método convencional y el fresco. Por otro lado, vitaminas B1, B3, B5, B6, tonalidad y cambio de color, si presentaron diferencias significativas (p< 0,05). Basándose en estos hallazgos, es posible sugerir la utilización de energía de microondas como una alternativa al escaldado convencional, con el fin de inactivar la peroxidasa en un tiempo corto, conservar características nutricionales y de color en el tomate de árbol (Solanum betaceum Cav.) variedad roja. (Texto tomado de la fuente)
dc.description.abstractEstablishing an appropriate relationship between the enzymatic inactivation achieved through the blanching process and the impacts on nutrients and the alterations in the color of the food is essential to preserve the quality of the processed products. In the first chapter, the objective was to study the effects of blanching at different microwave power levels (300, 600, 900 and 1200 W) for times (15, 30, 45 and 60 seconds) on the inactivation of peroxidase present in this fruit. Compared with the control treatment, blanching with microwaves manages to reduce the residual activity of peroxidase below 10% in a time of 45 seconds at a power of 900 W. With this information, in the second chapter the effect of the microwave blanching conditions on bioactive compounds, antioxidant activity, and color, finding that the content of vitamin C, total phenols, carotenoids, antioxidant activity, lightness, chroma, and yellowing index did not show a significant difference (p> 0.05). compared to the conventional method and the fresh method. On the other hand, vitamins B1, B3, B5, B6, hue and color change did present significant differences (p< 0.05). Based on these findings, it is possible to suggest the use of microwave energy as an alternative option to conventional blanching, in order to inactivate peroxidase in a short time, preserving nutritional and color characteristics in this fruit.
dc.format.extentxiv, 80 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc664 - Tecnología de alimentos
dc.titleEfecto del tratamiento con microondas sobre la enzima peroxidasa, los compuestos bioactivos y el color en tomate de árbol (Solanum betaceum Cav.) variedad roja
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programPalmira - Ingeniería y Administración - Maestría en Ingeniería Agroindustrial
dc.contributor.researchgroupGrupo de Investigación en Procesos Agroindustriales (Gipa)
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería Agroindustrial
dc.description.methodsLos frutos de tomate de árbol (Solanum betaceum Cav.) variedad roja, se obtuvieron de un mercado local de la ciudad de Palmira, Valle del Cauca, Colombia y fueron seleccionados teniendo en cuenta que estuvieran libres de daños mecánicos y microbiológicos y en estado de madurez de consumo, escogiendo solo los frutos en escala 5 y 6 acorde con la norma NTC 4105 (ICONTEC, 1997). El material colectado se llevó inmediatamente al laboratorio de Tecnología de frutas y hortalizas de la Universidad Nacional sede Palmira para su posterior análisis. Se realizó la metodología reportada por Ordoñez-Santos & Martínez-Girón (2019). Se lavaron los frutos con agua corriente, después se desinfectaron con hipoclorito de sodio a 100 ppm durante 10 min, se retiró el pedúnculo y el pericarpio, posteriormente se obtuvieron rodajas de 0.70 cm de espesor (altura) y 4.20 cm de diámetro, las cuales se sometieron a escaldado.
dc.description.researchareaAgroindustria de productos alimentarios
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería y Administración
dc.publisher.placePalmira, Valle del Cauca, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmira
dc.relation.referencesAgüero, M. V., Ansorena, M. R., Roura, S. I., & del Valle, C. E. (2008). Thermal inactivation of peroxidase during blanching of butternut squash. LWT - Food Science and Technology, 41(3), 401–407. https://doi.org/10.1016/j.lwt.2007.03.029
dc.relation.referencesAlwan, A. (2011). Global status report on noncommunicable diseases 2010. https://doi.org/https://www.who.int/about/licensing/copyright_form/en/index.html
dc.relation.referencesAtuonwu, J. C., & Tassou, S. A. (2018). Quality assurance in microwave food processing and the enabling potentials of solid-state power generators: A review. Journal of Food Engineering, 234, 1–15. https://doi.org/10.1016/j.jfoodeng.2018.04.009
dc.relation.referencesBadui, S. (2006). Química de los alimentos. (E. PEARSON, Ed.) (Cuarta). Naucalpan de Juárez: Mexico.
dc.relation.referencesBaker, P., & Friel, S. (2014). Processed foods and the nutrition transition: Evidence from Asia. Obesity Reviews, 15(7), 564–577. https://doi.org/10.1111/obr.12174
dc.relation.referencesBascaya, D., & Demirdoven, A. (2015). The effects of microwave blanching conditions on carrot slices: optimization and comparison. Journal of Food Processing and Preservation, 39(6), 2188–2196. https://doi.org/10.1111/jfpp.12463
dc.relation.referencesBehera, G., Rayaguru, K., & Nayak, P. K. (2017). Effect of Microwave Blanching on Slice Thickness and Quality Analysis of Star Fruit. Current Research in Nutrition and Food Science, 5(3).
dc.relation.referencesBloom, D. ., Cafiero, E. ., Jané-Llopis, E., Abrahams-Gessel, S., Bloom, L. ., Fathima, S., … Weinstein, C. (2011). The Global Economic Burden of Non-communicable Diseases. Geneva: World Economic Forum.
dc.relation.referencesBohs, L. (1995). Transfer of Cyphomandra (Solanaceae) and Its Species to Solanum. Source: Taxon (Vol. 44). https://doi.org/http://bohs.biology.utah.edu/PDFs/Lynn/Bohs-1995.pdf
dc.relation.referencesBonnechère, A., Hanot, V., Jolie, R., Hendrickx, M., Bragard, C., Bedoret, T., & Loco, J. Van. (2012). Effect of household and industrial processing on levels of five pesticide residues and two degradation products in spinach. Food Control, 25, 397–406. https://doi.org/10.1016/j.foodcont.2011.11.010
dc.relation.referencesChandrasekaran, S., Ramanathan, S., & Basak, T. (2013). Microwave food processing-A review. Food Research International, 52(1), 243–261. https://doi.org/10.1080/19443994.2015.1079258
dc.relation.referencesDatta, A. K., & Davidson, P. M. (2000). Microwave and Radio Frequency Processing. Journal of Food Science, 65, 32–41. https://doi.org/10.1111/j.1750-3841.2000.tb00616.x
dc.relation.referencesDe La Vega-Miranda, B., Santiesteban-López, N. A., López-Malo, A., & Sosa-Morales, M. E. (2012). Inactivation of Salmonella Typhimurium in fresh vegetables using water-assisted microwave heating. Food Control, 26(1), 19–22. https://doi.org/10.1016/j.foodcont.2012.01.002
dc.relation.referencesde los Santos, M. B., Jacobi, S. S., Miñarro, M. C. A., Balsalobre, J. A. P., Guillén, A. A., & Gorbe, M. I. F. (2020). Kinetic characterization, thermal and pH inactivation study of peroxidase and pectin methylesterase from tomato (Solanum betaceum). Food Science and Technology, 40(June), 273–279. https://doi.org/10.1590/fst.09419
dc.relation.referencesDorantes-Alvarez, L., Jaramillo-Flores, E., González, K., Martinez, R., & Parada, L. (2011). Blanching peppers using microwaves. Procedia Food Science, 1, 178–183. https://doi.org/10.1016/j.profoo.2011.09.028
dc.relation.referencesEspin, S., Gonzalez-Manzano, S., Taco, V., Poveda, C., Ayuda-Durán, B., Gonzalez-Paramas, A. M., & Santos-Buelga, C. (2016). Phenolic composition and antioxidant capacity of yellow and purple-red Ecuadorian cultivars of tree tomato (Solanum betaceum Cav.). Food Chemistry, 194, 1073–1080. https://doi.org/10.1016/j.foodchem.2015.07.131
dc.relation.referencesFrancis, F. J. (1995). Quality as influenced by color. Food Quality and Preference, 6(3), 149–155. https://doi.org/10.1016/0950-3293(94)00026-R
dc.relation.referencesFrazier, W., & Westhoff, D. (1993). Microbiología de los alimentos (4th ed.). Zaragoza: Acribia, S.A. https://doi.org/http://148.206.53.84/tesiuami/Libros/L33.pdf
dc.relation.referencesGarcía. (2008). Manual de manejo cosecha y poscosecha del tomate de árbol. Corpoica.
dc.relation.referencesGliszczyńska-Świgło, A., Ciska, E., Pawlak-Lemańska, K., Chmielewski, J., Borkowski, T., & Tyrakowska, B. (2006). Changes in the content of health-promoting compounds and antioxidant activity of broccoli after domestic processing. Food Additives and Contaminants, 23(11), 1088–1098. https://doi.org/10.1080/02652030600887594
dc.relation.referencesGonçalves, E. M., Pinheiro, J., Abreu, M., Brandão, T. R. S., & Silva, C. L. M. (2010). Carrot (Daucus carota L.) peroxidase inactivation, phenolic content and physical changes kinetics due to blanching. Journal of Food Engineering, 97(4), 574–581. https://doi.org/10.1016/j.jfoodeng.2009.12.005
dc.relation.referencesHadidi, M., Ibarz, A., Conde, J., & Pagan, J. (2019). Optimisation of steam blanching on enzymatic activity, color and protein degradation of alfalfa (Medicago sativa) to improve some quality characteristics of its edible protein. Food Chemistry, 276(October 2018), 591–598. https://doi.org/10.1016/j.foodchem.2018.10.049
dc.relation.referencesHuang, Y., Sheng, J., Yang, F., & Hu, Q. (2007). Effect of enzyme inactivation by microwave and oven heating on preservation quality of green tea. Journal of Food Engineering, 78(2), 687–692. https://doi.org/10.1016/j.jfoodeng.2005.11.007
dc.relation.referencesHuong, N. T. T., Thinh, P., Long, D. V., Long, H. B., Dat, U. T., Phat, D. T., Nhut, P. T., Phuc, T. B., & Nhi, T. T. Y. (2022). Effects of microwave and ultrasound treatment on vitamin C, polyphenols and antioxidant activity of mango (Mangifera Indica) during low temperature drying. Materials Today: Proceedings, 59, 781–786. https://doi.org/10.1016/j.matpr.2021.12.581
dc.relation.referencesHurtado, N. H., Morales, A. L., González-Miret, M. L., Escudero-Gilete, M. L., & Heredia, F. J. (2009). Colour, pH stability and antioxidant activity of anthocyanin rutinosides isolated from tamarillo fruit (Solanum betaceum Cav.). Food Chemistry, 117(1), 88–93. https://doi.org/10.1016/j.foodchem.2009.03.081
dc.relation.referencesInstituto Colombiano Normas Técnicas (ICONTEC): NTC 4105: Frutas frescas. Tomate de árbol, Especificaciones. Bogotá (Colombia): 1997,15 p.
dc.relation.referencesIsmail, A., Marjan, Z. M., & Foong, C. W. (2004). Total antioxidant activity and phenolic content in selected vegetables. Food Chemistry, 87(4), 581–586. https://doi.org/10.1016/j.foodchem.2004.01.010
dc.relation.referencesJabbar, S., Abid, M., Hu, B., Wu, T., Muhammad, M., Lei, S., … Zeng, X. (2014). Quality of carrot juice as in fl uenced by blanching and sonication treatments. LWT - Food Science and Technology, 55(1), 16–21. https://doi.org/10.1016/j.lwt.2013.09.007
dc.relation.referencesKutlu, N., Pandiselvam, R., Saka, I., Kamiloglu, A., Sahni, P., & Kothakota, A. (2022). Impact of different microwave treatments on food texture. Journal of Texture Studies, 53(6), 709-736. https://doi.org/10.1111/jtxs.12635.
dc.relation.referencesLee, F. (1958). The Blanching Process. Advances in Food Research, 8(C), 63–109. https://doi.org/10.1016/S0065-2628(08)60018-X
dc.relation.referencesLisiewska, Jacek, S., Skoczen-Stupska, & Kmiecik, W. (2009). Content of amino acids and the quality of protein in Brussels sprouts , both raw and prepared for consumption. Interna t Ional Jo Urna l o f Refrigeration, 32, 272–278. https://doi.org/10.1016/j.ijrefrig.2008.05.011
dc.relation.referencesLisiewska, & Kmiecik. (1996). Effects of level of nitrogen fertilizer, processing conditions and period of storage of frozen broccoli and cauliflower on vitamin C retention. Food Chemistry, 57(2), 267–270. https://doi.org/10.1016/0308-8146(95)00218-9
dc.relation.referencesMADR. (2018). Estadísticas del cultivo de tomate de árbol. Retrieved October 26, 2018, from http://www.agronet.gov.co/Documents/TOMATE DE ARBOL2016.pdf
dc.relation.referencesMADR, DNP, DANE, & ASOHOFRUCOL. (2004). I Censo nacional de 10 frutas agroindustriales y promisorias: resultados 2004. Retrieved October 25, 2018, from http://bibliotecadigital.agronet.gov.co/handle/11348/4459
dc.relation.referencesMarx, M., Stuparic, M., Schieber, A., & Carle, R. (2003). Effects of thermal processing on trans–cis-isomerization of β-carotene in carrot juices and carotene-containing preparations. Food Chemistry, 83, 609–617. https://doi.org/doi:10.1016/S0308-8146(03)00255-3
dc.relation.referencesMukherjee, S., & Chattopadhyay, P. K. (2007). Whirling bed blanching of potato cubes and its effects on product quality. Journal of Food Engineering, 78(1), 52–60. https://doi.org/10.1016/j.jfoodeng.2005.09.001
dc.relation.referencesNakilcioglu-Taş, E., & Otleş, S. (2018). Degradation kinetics of bioactive compounds and antioxidant capacity of Brussels sprouts during microwave processing. International Journal of Food Properties, 20(3), S2798–S2809. https://doi.org/10.1080/10942912.2017.1375944
dc.relation.referencesOrdóñez, R. M., Vattuone, M. A., & Isla, M. I. (2005). Changes in carbohydrate content and related enzyme activity during Cyphomandra betacea (Cav.) Sendtn. fruit maturation. Postharvest Biology and Technology, 35(3), 293-301. https://doi.org/10.1016/j.postharvbio.2004.09.006
dc.relation.referencesOMS. (2016). Enfermedades No Transmisibles. Bogotá, Colombia. https://doi.org/http://www.who.int/nmh/countries/col_en.pdf?ua=1
dc.relation.referencesOszmiański, J., Wolniak, M., Wojdyło, A., & Wawer, I. (2008). Influence of apple purée preparation and storage on polyphenol contents and antioxidant activity. Food Chemistry. https://doi.org/10.1016/j.foodchem.2007.10.003
dc.relation.referencesPalma-Orozco, G., Sampedro, J. G., Ortiz-Moreno, A., & Nájera, H. (2012). In situ Inactivation of Polyphenol Oxidase in Mamey Fruit (Pouteria sapota) by Microwave Treatment. Journal of Food Science, 77(4), 359–365. https://doi.org/10.1111/j.1750-3841.2012.02632.x
dc.relation.referencesPhungamngoen, C., Chiewchan, N., & Devahastin, S. (2013). Effects of various pretreatments and drying methods on Salmonella resistance and physical properties of cabbage. Journal of Food Engineering, 115(2), 237–244. https://doi.org/10.1016/j.jfoodeng.2012.10.020
dc.relation.referencesRegier, M., Knoerzer, K., & Schubert, H. (2017). Introducing microwave-assisted processing of food. In M. Regier, K. Knoerzer, & H. Schubert (Eds.), The Microwave Processing of Foods (Second Edi, pp. 1–22). Elsevier. https://doi.org/10.1016/B978-0-08-100528-6.00001-2
dc.relation.referencesRoopa, R. A., Mantelingu, K., & Rangappa, K. S. (2016). Evaluation of peroxidase assay and effect of thermal blanching on sapota and fig fruits. Chemical Data Collections, 3–4, 46–57. https://doi.org/10.1016/j.cdc.2016.07.001
dc.relation.referencesRossi, M., Giussani, E., Morelli, R., Lo Scalzo, R., Nanic, R. C., & Torreggiani, D. (2003). Effect of fruit blanching on phenolics and radical scavenging activity of highbush blueberry juice. Food Research International, 36(9–10), 999–1005. https://doi.org/10.1016/j.foodres.2003.07.002
dc.relation.referencesSchubert, H., & Regier, M. (2005). Dielectric properties of foods. In J. Tang (Ed.), The microwave processing of foods (primera ed, pp. 22–38). Washington: Woodhead Publishing Limited.
dc.relation.referencesSeverini, C., Baiano, A., De Pilli, T., Carbone, B., & Derossi, A. (2005). Combined treatments of blanching and dehydration: study on potato cubes. Journal of Food Engineering, 68, 289–296. https://doi.org/10.1016/j.jfoodeng.2004.05.045
dc.relation.referencesStamatopoulos, K., Katsoyannos, E., Chatzilazarou, A., & Konteles, S. J. (2012). Improvement of oleuropein extractability by optimising steam blanching process as pre-treatment of olive leaf extraction via response surface methodology. Food Chemistry, 133(2), 344–351. https://doi.org/10.1016/j.foodchem.2012.01.038
dc.relation.referencesTao, Y. M., Wang, S., Luo, H. L., & Yan, W. W. (2018). Peroxidase from jackfruit: Purification, characterization and thermal inactivation. International Journal of Biological Macromolecules, 114, 898–905. https://doi.org/10.1016/j.ijbiomac.2018.04.007
dc.relation.referencesTao, Y. M., Yao, L. Y., Qin, Q. Y., & Shen, W. (2013). Purification and characterization of polyphenol oxidase from jackfruit (Artocarpus heterophyllus) bulbs. Journal of Agricultural and Food Chemistry, 61(51), 12662–12669. https://doi.org/10.1021/jf403828e
dc.relation.referencesThe High Level Panel of Experts on Food Security and Nutrition. (2017). Nutrition and food systems. Roma.
dc.relation.referencesTomadoni, B., Cassani, L., Viacava, G., Del, M., Moreira, R., & Ponce, A. (2017). Effect of ultrasound and storage time on quality attributes of strawberry juice. Journal of Food Process Engineering, (November 2016), 1–8. https://doi.org/10.1111/jfpe.12533
dc.relation.referencesUddin, M. S., Hawlader, M. N. A., & Zhou, L. (2001). Drying Technology : An kinetics of ascorbic acid degradation in dried kiwifruits during storage. Drying Technology, 19(2)(2001), 437–446. https://doi.org/10.1081/DRT-100102916
dc.relation.referencesValdez, J. (2018). Rangos de conductividad eléctrica en semilla de tomate de árbol (Solanum betaceum Cav.) utilizando el equipo SAD 9000-S. Universidad Central del Ecuador.
dc.relation.referencesVerbeyst, L., Bogaerts, R., Van der Plancken, I., Hendrickx, M., & Van Loey, A. (2013). Modelling of Vitamin C Degradation during Thermal and High-Pressure Treatments of Red Fruit. Food and Bioprocess Technology, 6(4), 1015–1023. https://doi.org/10.1007/s11947-012-0784-y
dc.relation.referencesYadav, N., Saini, P., Kaur, D., Gupta, V. K., Kaundal, B., Kumar, R., & Mishra, P. (2023). Blanching Effect on Nutritionally Important Starch Fractions of Selected Processing Potato cultivars. Food Chemistry Advances, 100404. https://doi.org/10.1016/j.focha.2023.100404.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocRadiación electromagnética
dc.subject.agrovocElectromagnetic radiation
dc.subject.agrovocMicroondas
dc.subject.agrovocMicrowave radiation
dc.subject.agrovocCompuestos bioactivos
dc.subject.agrovocBioactive compounds
dc.subject.agrovocSolanum betaceum
dc.subject.agrovocColor de las frutas
dc.subject.agrovocFruit colour
dc.subject.proposalPeroxidasa
dc.subject.proposalFitoquímicos
dc.subject.proposalTamarillo
dc.subject.proposalDPPH
dc.subject.proposalVitamina C
dc.subject.proposalVitaminas B
dc.subject.proposalPeroxidase
dc.subject.proposalPhytochemicals
dc.subject.proposalTamarillo
dc.subject.proposalDPPH
dc.subject.proposalVitamin C
dc.subject.proposalVitamins B
dc.title.translatedEffect of microwave treatment on peroxidase enzyme, bioactive compounds and color in tamarillo (Solanum betaceum Cav.) red variety
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentGrupos comunitarios
dcterms.audience.professionaldevelopmentInvestigadores
dc.description.curricularareaIngeniería.Sede Palmira
dc.contributor.orcidhttp://orcid.org/0000-0002-6883-7064


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito