Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorGranados Olivero, Gilma
dc.contributor.advisorMcClenaghan, Nathan
dc.contributor.authorOrtiz Calderon, Fredy Giovany
dc.date.accessioned2024-01-15T21:33:08Z
dc.date.available2024-01-15T21:33:08Z
dc.date.issued2023-11-22
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85310
dc.descriptionilustraciones, diagramas, fotografías
dc.description.abstractQuantum dots (QDs) are luminescent nanocrystals with sizes around 2-10 nm. These nanomaterials have unique characteristics due to the quantum confinement effect. These features include broad excitation spectra, versatile surfaces, narrow emission spectra, and high quantum yield. Their optical and structural properties depend on the size and surface modification with metal ions or ligands. These properties make their application possible in fluorescence sensing, wherein QDs such as CdSe, CdTe, and CdS are used. This thesis shows the influence of S and Zn treatments used in the synthesis of three CdSe-ZnS coreshell QDs on the optical properties and the functionalization of CdSe-ZnS with two ligands: an aryl dithiocarbamate (DTC) and aromatic Dye to probe the effect of Hg2+ ion sensing on the photoluminescence of QDs. All the core-shell QDs and QDs-L were characterized by X-ray diffractometry to measure the crystallinity, high-resolution electron microscopy (HR TEM) to determine the size and crystallinity, X-ray photoelectron spectroscopy and FT-IR spectroscopy were used to analyze the coordination of ligands on the surface of CdSe-ZnS QDs; the optical properties such as absorption, emission, quantum yield (QY) and time-resolved photoluminescence were determined. Chapter 2 shows the influence of S and Zn treatments during the synthesis of three CdSe-ZnS core-shell QDs on the structural and optical properties. For example, in the structural characterization, the XRD patterns analysis showed three peaks at 25.5, 42.7, and 50.2 2θ degrees, corresponding to the (111), (220), and (311) lattice planes of cubic zinc blend CdSe. The diffraction peaks of the core-shell show a shift to higher 2θ degrees due to the formation of the ZnS shell around the CdSe core. The HRTEM analysis showed particles non-aggregated with distribution sizes around 2.7 nm, 3.2 nm, and 3.3 nm. The XPS measurements showed changes in the Zn2p, and Cd3d regions, indicating the existence of different species of these elements on the surface of CdSe-ZnS QDs with different S and Zn treatments used during synthesis. The FT-IR results showed the oleic acid and TOP-capped CdSe-ZnS QDs. The optical properties of QDs with different Zn:S ratios were developed using UV-Vis, fluorescence, and time-resolved photoluminescence spectroscopies. The S-excess used in the synthesis of CdSe-ZnS QD (QD-0.3 ML) produces a lower QY than other QDs studied. The S acts as a hole trap, favoring the decrease in photoluminescence, and nonradiative recombination is favored. However, the increase in the amount of Zn removes/eliminates the hole traps produced by S-excess, the photoluminescence is regenerated, and QY increases, as in QD-0.9 ML (QY: 0.54). The Zn treatment produces a passivation effect of this trap on the surface of QDs to improve photoluminescence. On the other hand, when the Zn-treatment is the highest (QD-1.0 ML), the quantum yield (QY) of corresponding core/shell QDs will decrease due to the traps at the CdSe-ZnS. The analysis of three CdSe-ZnS core-shell QDs (QD-0.3 ML, QD-0.9 ML, and QD-1.0 ML) as Hg2+ ion sensors was performed using a solution of QDs in a mixture CHCl3/ethanol (1/1, v/v) and aqueous solution with different concentrations of Hg2+ using UV-Vis, fluorescence, and time-resolved photoluminescence spectroscopies. The addition of Hg2+ produces different changes in the photoluminescence of QDs. For example, in QD-0.3 ML, a quenching of photoluminescence is produced due to the formation of HgSe particles on the CdSe core of QD; these HgSe particles are produced by a cation exchange reaction between Cd from core and Hg, the Ksp of HgSe is lower than CdSe, and this reaction is favored. The S-excess from (TMS)2S used in the synthesis of QD-0.3 ML produces HgS due to the high affinity from S and Hg in concordance with the HSAB theory. On the other hand, adding Hg2+ ions in CdSe-ZnS QDs with thicker shells (QD-0.9 ML and QD-1.0 ML) showed the opposite effect, i.e., an enhancement in the photoluminescence is produced. In these QDs, the Hg2+ produces HgS particles on the shell surface, forming a pseudo-shell that passivates the surface traps and improves the photoluminescence. A cation exchange reaction forms these HgS particles from Zn-to-Hg on the ZnS shell because the Ksp of HgS is lower than ZnS, so the reaction is favored. In addition, the detection limit (LOD) of Hg2+ ions was determined with the response obtained in the QD-emission spectra as a function of Hg2+ concentrations (0.5-5.0 µM). The LOD for QD-0.3 ML was determined using the Stern-Volmer equation; the LOD calculated was 11.2 nM. The LOD for QDs with thicker shells was 8.98 nM and 10.7 nM for QD-0.9 ML and QD-1.0 ML, respectively. These values of LOD are lower than other QDs reported. Finally, the analysis with other transition metal ions was developed using aqueous solutions of Zn2+ , Mn2+, Cd2+, Pb2+, Co2+, Ni2+ , and Hg2+ chloride salts and QDs in a solution of CHCl3/ethanol (1/1, v/v). This analysis showed a photoluminescence quenching with all the metal ions evaluated in QD-0.3 ML; however, the most significant quenching observed was produced by Hg2+ ions due to the formation of HgSe particles on the core because the Ksp of HgSe is lower than other metal ions evaluated. While in the case of QD-0.9 ML and QD-1.0 ML, photoluminescence is enhanced due to the passivation of surface traps formed during the synthesis of QDs. The versatile character of the surface of QDs is an interesting and advantageous property. Thus, different ligands can coordinate with the surface to modulate the structural and optical properties to improve th scope of their possible application. The ligands capped on the surface of QDs can improve the physical properties, such as solubility in aqueous media, and produce changes in the optical properties, such as QY, absorption, and photoluminescence spectra. However, the energy levels of capping ligands can affect the optical properties of QDs such as photoluminescence. For example, the literature has shown that the thiolated ligands generally act as hole traps due to the HOMO levels from the ligand being near the valence band (VB), producing overlapped orbitals; when the QD is photoexcited, the ligand trapping the hole photogenerated and delocalization of exciton is produced favoring the formation of new nonradiative centers and the photoluminescence is quenched. Chapter 3 shows the influence of two surface ligands on the structural and optical properties of CdSeZnS core-shell QD (QD-0.9 ML): 1) an aromatic dithiocarbamate (DTC) and 2) an aromatic dye ligand (Dye) capped to the surface of this QD. The QD-0.9 ML was selected because this QD has the highest determined QY (Chapter 2). Both ligands were capped to the QD with a ligand exchange process, using a saturated solution of ligands (DTC and Dye) in methanol and a solution of QD in hexane at 60°C for 1 h (QD/DTC, 1/3 (mass/mass)). The ligand exchange produced a red-shift in the maximum absorption and emission bands of new QDs: QDTC and QDTCDye, a new emission band appeared in the fluorescence spectra of QDTCDye, which is from the Dye ligand. The effect of two ligands on the structural properties of QDs was analyzed. The XRD patterns do not show significant changes in the diffraction peaks of QD; the ligand exchange process did not affect the crystallinity. The HRTEM analysis showed an increase in the size of QDs from 3.2 nm (QD-0.9 ML) to 3.4 nm and 3.7 nm for QDTC and QDTCDye, respectively, with no significant changes in the d-spacing factor. The crystallinity is conserved, confirming the XRD analysis observed. The FT-IR analysis showed the coordination of DTC by the CSS- headgroup due to the band at 1000 cm-1 of this functional group disappearing and the Dye ligand being coordinated by both carboxylates in their structure because the band at 1707 cm-1 corresponding to the C=O bonds in carboxylic acids is not observed confirming the capping. XPS measurements showed new peaks in C1s and O1s due to the apparition of new bonds such as C-N and C-OH. Furthermore, in Zn2p and Cd3d, the peaks were deconvoluted in several components, indicating the presence of different species of Zn and Cd coordinated with the capped ligands. This characterization showed the influence of the coordination of the ligand on the structural properties of QDs. Consequently, the effect of capped ligands on QDs and their optical properties, such as absorption, emission, and time-resolved photoluminescence, were studied. The coordination of DTC ligands produces a decrease in photoluminescence (quenching). The HOMO orbital of DTC is overlapped with the valence band (VB), trapping the hole photogenerated, delocalizing the excitonic recombination, and photoluminescence is quenched. The DTC ligand acts as a hole trap affecting the photoluminescence properties of QD, such as QY. The Hg2+ ion sensing analysis was developed using a solution of QDTC and QDTCDye in ethanol as solvent and aqueous solutions with different concentrations of Hg2+ ions in 0.5-5.0 µM range. The absorption and emission changes were analyzed with UV-Vis, fluorescence, and time-resolved photoluminescence spectroscopies. The Hg2+ ions enhance the fluorescence intensity of QDTC and QDTCDye due to the formation of HgS particles on the ZnS shell of QDs passivating the traps produced by the DTC ligand. These HgS particles are produced on the ZnS surface due to the cation exchange reaction because the Ksp of HgS is lower than the Ksp of ZnS, favoring this reaction.12 The behavior of QDTCDye with the addition of different concentrations of Hg2+ ions is ratiometric. The detection limit (LOD) of QDTC and QDTCDye was determined using fluorescence intensity response as a function of different concentrations of Hg2+ ions. The LOD was calculated as 3.7 nM and 4.4 nm for QDTC and QDTCDye, respectively. These LOD obtained are lower than other similar QDs systems compared including the value reported by EPA and WHO institutions. Finally, the analysis with other transition metal ions was developed in the same way as in Chapter 2. All the transition metal ions evaluated enhance the photoluminescence in QDTC and QDTCDye. However, Hg2+ produces the highest increase in fluorescence intensity in QDTC. Photoluminescence enhancement indicates the passivation of traps on the surface of QD. The enhancement phenomenon, sensitivity (low LOD), and selectivity demonstrated that these materials are promising to apply in Hg2+ ions sensing
dc.description.abstractLos puntos cuánticos (QD) son nanocristales luminiscentes con tamaños en torno a 2-10 nm. Estos nanomateriales presentan características únicas debidas al efecto de confinamiento cuántico. Entre estas características se incluyen espectros de excitación amplios, superficies versátiles, espectros de emisión estrechos y un alto rendimiento cuántico. Sus propiedades ópticas y estructurales dependen del tamaño y de la modificación de la superficie con iones metálicos o ligandos. Estas propiedades hacen posible su aplicación en la detección por fluorescencia, en la que se utilizan QDs como CdSe, CdTe y CdS. Esta tesis muestra la influencia de los tratamientos con S y Zn utilizados en la síntesis de tres QDs core-shell CdSe-ZnS sobre las propiedades ópticas y la funcionalización de CdSe-ZnS con dos ligandos: un ditiocarbamato de arilo (DTC) y un colorante aromático para sondear el efecto del sensado de iones Hg2+ sobre la fotoluminiscencia de los QDs. Todos los QDs core-shell y QDs-L se caracterizaron por difractometría de rayos X para medir la cristalinidad, microscopía electrónica de alta resolución (HR TEM) para determinar el tamaño y la cristalinidad, espectroscopía fotoelectrónica de rayos X y espectroscopía FT-IR se utilizaron para analizar la coordinación de ligandos en la superficie de CdSe-ZnS QDs; se determinaron las propiedades ópticas tales como absorción, emisión, rendimiento cuántico (QY) y fotoluminiscencia resuelta en el tiempo. El capítulo 2 muestra la influencia de los tratamientos con S y Zn durante la síntesis de tres CdSe-ZnS core-shell QDs en las propiedades estructurales y ópticas. Por ejemplo, en la caracterización estructural, el análisis de los patrones de DRX mostró tres picos a 25.5, 42,7 y 50.2 2θ grados, correspondientes a los planos de red (111), (220) y (311) de la mezcla cúbica de zinc CdSe. Los picos de difracción del núcleo-cáscara muestran un desplazamiento hacia grados 2θ superiores debido a la formación de la cáscara de ZnS alrededor del núcleo de CdSe. El análisis HRTEM mostró partículas no agregadas con tamaños de distribución en torno a 2.7 nm, 3.2 nm y 3.3 nm. Las medidas XPS mostraron cambios en las regiones Zn2p, y Cd3d, indicando la existencia de diferentes especies de estos elementos en la superficie de CdSe-ZnS QDs con diferentes tratamientos de S y Zn utilizados durante la síntesis. Los resultados de FT-IR mostraron la existencia de QDs CdSe-ZnS con ácido oleico y recubrimiento TOP. Las propiedades ópticas de los QDs con diferentes proporciones de Zn:S se desarrollaron mediante espectroscopias UV-Vis, de fluorescencia y de fotoluminiscencia resuelta en el tiempo. El exceso de S utilizado en la síntesis de CdSe-ZnS QD (QD-0.3 ML) produce un QY inferior al de otros QDs estudiados. El S actúa como una trampa de huecos, favoreciendo la disminución de la fotoluminiscencia, y se favorece la recombinación no radiativa. Sin embargo, el aumento de la cantidad de Zn elimina/elimina las trampas de huecos producidas por el exceso de S, se regenera la fotoluminiscencia y aumenta el QY, como en el QD-0.9 ML (QY: 0.54). El tratamiento con Zn produce un efecto de pasivación de esta trampa en la superficie de los QDs para mejorar la fotoluminiscencia. Por otro lado, cuando el tratamiento con Zn es el más alto (QD-1.0 ML), el rendimiento cuántico (QY) de los QDs núcleo/capa correspondientes disminuirá debido a las trampas en la interfaz CdSe-ZnS. El análisis de tres CdSe-ZnS core-shell QDs (QD-0.3 ML, QD-0.9 ML, y QD-1.0 ML) como sensores de iones Hg2+ se desarrolló en fase homogénea utilizando una solución de QDs en una mezcla CHCl3/Etanol (1/1) y solución acuosa con diferentes concentraciones de Hg2+ utilizando espectroscopias UV-Vis, de fluorescencia y de fotoluminiscencia resuelta en el tiempo. La adición de Hg2+ produce diferentes cambios en la fotoluminiscencia de los QDs. Por ejemplo, en QD-0.3 ML, se produce un apagamiento de la fotoluminiscencia debido a la formación de partículas de HgSe sobre el núcleo de CdSe del QD; estas partículas de HgSe se producen por una reacción de intercambio catiónico entre el Cd del núcleo y el Hg, el Ksp de HgSe es menor que el de CdSe, y esta reacción se ve favorecida.12 El exceso de S del (TMS)2S utilizado en la síntesis de QD-0.3 ML produce HgS debido a la alta afinidad del S y el Hg en concordancia con la teoría HSAB. Por otro lado, la adición de iones Hg2+ en QDs CdSe-ZnS con cáscaras más gruesas (QD-0.9 ML y QD-1.0 ML) mostró el efecto contrario, es decir, se produce una mejora en la fotoluminiscencia. En estos QDs, el Hg2+ produce partículas de HgS en la superficie de la cáscara, formando una pseudocáscara que pasiva las trampas superficiales y mejora la fotoluminiscencia. Una reacción de intercambio catiónico forma estas partículas de HgS de Zn a Hg en la cáscara de ZnS porque el Ksp del HgS es menor que el del ZnS,12 por lo que la reacción se ve favorecida. Además, se determinó el límite de detección (LOD) de los iones Hg2+ con la respuesta obtenida en los espectros de emisión del QD en función de las concentraciones de Hg2+ (0.5-5.0 µM). El LOD para QD-0.3 ML fue de 11.2 nM. El LOD para QDs con cáscaras más gruesas fue de 8.98 nM y 10.7 nM para QD-0.9 ML y QD-1.0 ML, respectivamente. Estos valores de LOD son inferiores a los de otros QDs reportados. Finalmente, se desarrolló el análisis con otros iones de metales de transición utilizando soluciones acuosas de sales de cloruro de Zn2+, Mn2+, Cd2+, Pb2+, Co2+, Ni2+, y Hg2+ y QDs en una solución de CHCl3/Etanol (1/1). Este análisis mostró disminución de fotoluminiscencia con todos los iones metálicos evaluados en QD-0.3 ML; sin embargo, el quenching más significativo observado fue el producido por los iones Hg2+ debido a la formación de partículas de HgSe en el núcleo ya que el Ksp del HgSe es menor que el de otros iones metálicos evaluados. Mientras que en el caso de QD-0.9 ML y QD-1.0 ML, la fotoluminiscencia se ve potenciada debido a la pasivación de las trampas superficiales formadas durante la síntesis de los QDs. El carácter versátil de la superficie de los QDs es una propiedad interesante y ventajosa. Así, diferentes ligandos pueden coordinarse con la superficie para modular las propiedades estructurales y ópticas con el fin de mejorar su posible aplicación. Los ligandos capados en la superficie de los QDs pueden mejorar las propiedades físicas, como la solubilidad en medios acuosos, y producir cambios en las propiedades ópticas, como los espectros QY, de absorción y de fotoluminiscencia. Sin embargo, los ligandos pueden introducir niveles de energía favorables o desfavorables (HOMO-LUMO) en los QDs y afectar a las propiedades ópticas, como la fotoluminiscencia. Por ejemplo, la literatura ha demostrado que los ligandos tiolados generalmente actúan como trampas de huecos debido a que los niveles HOMO del ligando están cerca de la banda de valencia (VB), produciendo orbitales solapados; cuando el QD es fotoexcitado, el ligando atrapa el hueco fotogenerado y la deslocalización del excitón se produce favoreciendo la formación de nuevos centros no radiativos y la fotoluminiscencia disminuye. El capítulo 3 muestra la influencia de dos ligandos superficiales en las propiedades estructurales y ópticas del QD con núcleo de CdSe-ZnS (QD-0.9 ML): 1) un ditiocarbamato aromático (DTC) y 2) un ligando colorante aromático (Dye) capado en la superficie de este QD. Se seleccionó el QD-0.9 ML porque este QD tiene el QY más alto calculado (Capítulo 2). Ambos ligandos se fijaron al QD mediante un proceso de intercambio de ligandos, utilizando una solución saturada de ligandos (DTC y Dye) en metanol y una solución de QD en hexano a 60°C durante 1 h (QD/DTC, 1/3). El intercambio de ligandos produjo un desplazamiento al rojo de las bandas máximas de absorción y emisión de los nuevos QDs: QDTC y QDTCDye, apareciendo una nueva banda de emisión en los espectros de fluorescencia de QDTCDye, que procede del ligando Dye. Se analizó el efecto de dos ligandos sobre las propiedades estructurales de los QDs. Los patrones de DRX no muestran cambios significativos en los picos de difracción de los QD; el proceso de intercambio de ligandos no afectó a la cristalinidad. El análisis HRTEM mostró un aumento del tamaño de los QDs de 3.0 nm (QD-0.9 ML) a 3.4 nm y 3.7 nm para QDTC y QDTCDye, respectivamente. No hay cambios significativos en el factor d-spacing. La cristalinidad se conserva, confirmando lo observado en el análisis DRX. El análisis FT-IR mostró la coordinación del DTC por el grupo -CSS- debido a que desaparece la banda a 1000 cm-1 de este grupo funcional y el ligando Dye está coordinado por ambos carboxilatos en su estructura ya que no se observa la banda a 1707 cm-1 correspondiente a los enlaces C=O en ácidos carboxílicos confirmando su coordinación. Las medidas XPS mostraron nuevos picos en C1s y O1s debido a la aparición de nuevos enlaces como C-N y C-OH. Además, en Zn2p y Cd3d, los picos se deconvolucionaron en varios componentes, indicando la presencia de diferentes especies de Zn y Cd coordinadas con los ligandos capados. Esta caracterización mostró la influencia de la coordinación del ligando en las propiedades estructurales de los QDs. En consecuencia, se estudió el efecto de los ligandos sobre los QDs y sus propiedades ópticas, como la absorción, la emisión y la fotoluminiscencia resuelta en el tiempo. La coordinación de ligandos DTC produce una disminución de la fotoluminiscencia (quenching). El orbital HOMO del DTC se solapa con la banda de valencia (VB), atrapando el hueco fotogenerado, deslocalizando la recombinación excitónica, y la fotoluminiscencia disminuye drásticamente. El ligando DTC actúa como una trampa de huecos que afecta las propiedades de fotoluminiscencia de los QD, como el QY. Sin embargo, el ligando Dye produce una ligera mejora en esta propiedad óptica, y la fotoluminiscencia aumenta con la coordinación del ligando Dye debido a su acción como compuesto electrón-donador que produce una repoblación de electrones en la banda de conducción (CB) para regenerar la recombinación excitónica y pasivar las trampas de huecos producida por el ligando DTC. El QY mejora con la coordinación del ligando Dye. El análisis de detección de iones Hg2+ se desarrolló utilizando una solución de QDTC y QDTCDye en etanol como disolvente y soluciones acuosas con diferentes concentraciones de iones Hg2+ en un rango lineal de 0.5-5.0 µM. Los cambios de absorción y emisión se analizaron con espectroscopias UV-Vis, de fluorescencia y de fotoluminiscencia resuelta en el tiempo. Los iones Hg2+ aumentan la intensidad de fluorescencia de QDTC y QDTCDye debido a la formación de partículas de HgS en la capa de ZnS de los QDs pasivando las trampas producidas por el ligando DTC. Estas partículas de HgS se producen en la superficie del ZnS debido a la reacción de intercambio catiónico ya que el Ksp del HgS es menor que el Ksp del ZnS, favoreciendo esta reacción. El comportamiento del QDTCDye con la adición de diferentes concentraciones de iones Hg2+ es ratiométrico. El límite de detección (LOD) de QDTC y QDTCDye se determinó utilizando la respuesta de intensidad de fluorescencia en función de diferentes concentraciones de iones Hg2+. El LOD se calculó como 3.7 nM y 4.4 nm para QDTC y QDTCDye, respectivamente. Estos LOD obtenidos son inferiores a los de otros sistemas de QDs similares comparados e incluso a los establecidos por la EPA y la OMS. Finalmente, el análisis con otros iones de metales de transición se desarrolló con la misma forma desarrollada en el Capítulo 2. Todos los iones metálicos de transición evaluados aumentan la fotoluminiscencia en QDTC y QDTCDye. Sin embargo, el Hg2+ produce el mayor incremento en la intensidad de fluorescencia en QDTC. El aumento de la fotoluminiscencia indica la pasivación de trampas en la superficie del QD. Este fenómeno mejora la sensibilidad (bajo LOD) y la selectividad demostrando que estos materiales son prometedores para su aplicación en la detección de iones Hg2+. (Texto tomado de la fuente).
dc.description.sponsorshipMINISTERIO DE CIENCIAS
dc.format.extent177 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc540 - Química y ciencias afines::541 - Química física
dc.titleEffect of mercury ions on the optical and structural properties of quantum dots with aromatic dithiocarbamates ligands
dc.typeTrabajo de grado - Doctorado
dc.type.versioninfo:eu-repo/semantics/draft
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Química
dc.contributor.refereeRodríguez, Laura
dc.contributor.refereeCallan, Bridgeen
dc.contributor.refereeJonusauskas, Gediminas
dc.contributor.refereeRamos, Andrea
dc.contributor.refereeBaquero, Edwin
dc.contributor.researchgroupNano-Inorgánica
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias - Química
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesChoudhary, Y. S.; Nageswaran, G. Branched Mercapto Acid Capped CdTe Quantum Dots as Fluorescence Probes for Hg 2+ Detection. Sens Biosensing Res 2019, 23, 100278. https://doi.org/10.1016/j.sbsr.2019.100278.
dc.relation.referencesZhang, K.; Yu, Y.; Sun, S. Facile Synthesis L-Cysteine Capped CdS:Eu Quantum Dots and Their Hg 2+ Sensitive Properties. Appl Surf Sci 2013, 276, 333–339. https://doi.org/10.1016/j.apsusc.2013.03.093
dc.relation.referencesSharma, E.; Vashisht, D.; Vashisht, A.; Vats, V. K.; Mehta, S. K.; Singh, K. Facile Synthesis of Sulfur and Nitrogen Codoped Graphene Quantum Dots for Optical Sensing of Hg and Ag Ions. Chem Phys Lett 2019, 730 (June), 436–444. https://doi.org/10.1016/j.cplett.2019.06.040
dc.relation.referencesPendyala, N. B.; Koteswara Rao, K. S. R. Efficient Hg and Ag Ion Detection with Luminescent PbS Quantum Dots Grown in Poly Vinyl Alcohol and Capped with Mercaptoethanol. Colloids Surf A Physicochem Eng Asp 2009, 339 (1–3), 43–47. https://doi.org/10.1016/j.colsurfa.2009.01.013.
dc.relation.referencesGidwani, B.; Sahu, V.; Shukla, S. S.; Pandey, R.; Joshi, V.; Jain, V. K.; Vyas, A. Quantum Dots: Prospectives, Toxicity, Advances and Applications. Journal of Drug Delivery Science and Technology. Editions de Sante February 1, 2021. https://doi.org/10.1016/j.jddst.2020.102308.
dc.relation.referencesTalapin, D. V; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. Highly Luminescent Monodisperse CdSe and CdSe / ZnS Nanocrystals Synthesized in a Hexadecylamine − Trioctylphosphine Oxide − Trioctylphospine Mixture. Nano Lett 2001, 1 (4), 207–211. https://doi.org/10.1021/nl0155126.
dc.relation.referencesBoatman, E. M.; Lisensky, G. C.; Nordell, K. J. A Safer, Easier, Faster Synthesis for CdSe Quantum Dot Nanocrystals; 2005. www.JCE.DivCHED.org
dc.relation.referencesZhao, H.; Chaker, M.; Wu, N.; Ma, D. Towards Controlled Synthesis and Better Understanding of Highly Luminescent PbS/CdS Core/Shell Quantum Dots. J Mater Chem 2011, 21 (24), 8898–8904. https://doi.org/10.1039/c1jm11205h.
dc.relation.referencesMedintz, I. L.; Tetsuo Uyeda, H.; Goldman, E. R.; Mattoussi, H. Quantum Dot Bioconjugates for Imaging, Labelling and Sensing; 2005. www.nature.com/naturematerials.
dc.relation.referencesLou, Y.; Zhu, J. Metal Ions Optical Sensing by Semiconductor Quantum Dots. J Mater Chem C Mater 2014, 2 (4), 585–772. https://doi.org/10.1039/c3tc31937g
dc.relation.referencesLin, H. J.; Vedraine, S.; Le-Rouzo, J.; Flory, F.; Lin, H. J.; Chen, S. H.; Lee, C. C.; Flory, F. Optical Properties of Quantum Dots Layers: Application to Photovoltaic Solar Cells. Solar Energy Materials and Solar Cells 2013, 117, 652–656. https://doi.org/10.1016/j.solmat.2012.12.005
dc.relation.referencesSamuel, B.; Mathew, S.; Anand, V. R.; Correya, A. A.; Nampoori, V. P. N.; Mujeeb, A. Surface Defect Assisted Broad Spectra Emission from CdSe Quantum Dots for White LED Application. Mater Res Express 2018, 5 (2). https://doi.org/10.1088/2053-1591/aaaa83
dc.relation.referencesHao, J.; Liu, H.; Miao, J.; Lu, R.; Zhou, Z.; Zhao, B.; Xie, B. A Facile Route to Synthesize CdSe / ZnS Thick-Shell Quantum Dots with Precisely Controlled Green Emission Properties : Towards QDs Based LED Applications. Sci Rep 2019, No. August, 1–8. https://doi.org/10.1038/s41598-019-48469-7.
dc.relation.referencesGraetzel, M.; Janssen, R. A. J.; Mitzi, D. B.; Sargent, E. H. Materials Interface Engineering for Solution Processed Photovoltaics. Nature. August 16, 2012, pp 304–312. https://doi.org/10.1038/nature11
dc.relation.referencesHines, M. A.; Guyot-Sionnest, P. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals; 1996
dc.relation.referencesFarías, O. J.; Latune, C. L.; Walborn, S. P.; Davidovich, L.; Ribeiro, P. H. S. Determining the Dynamics of Entanglement. Science (1979) 2009, 324 (5933), 1414–1417. https://doi.org/10.1126/science.1171544.
dc.relation.referencesBoles, M. A.; Ling, D.; Hyeon, T.; Talapin, D. V. Erratum : The Surface Science of Nanocrystals. Nature Publishing Group 2016, 15 (3), 364. https://doi.org/10.1038/nmat4578.
dc.relation.referencesLim, S. J.; Ma, L.; Schleife, A.; Smith, A. M. Quantum Dot Surface Engineering: Toward Inert Fluorophores with Compact Size and Bright, Stable Emission. Coordination Chemistry Reviews. Elsevier B.V. August 1, 2016, pp 216–237. https://doi.org/10.1016/j.ccr.2016.03.012
dc.relation.referencesMcBride, J. R.; Pennycook, T. J.; Pennycook, S. J.; Rosenthal, S. J. The Possibility and Implications of Dynamic Nanoparticle Surfaces. ACS Nano. October 22, 2013, pp 8358–8365. https://doi.org/10.1021/nn403478h.
dc.relation.referencesPeterson, M. D.; Cass, L. C.; Harris, R. D.; Edme, K.; Sung, K.; Weiss, E. A. The Role of Ligands in Determining the Exciton Relaxation Dynamics in Semiconductor Quantum Dots. Annu Rev Phys Chem 2014, 65, 317–339. https://doi.org/10.1146/annurev-physchem-040513-103649
dc.relation.referencesBozyigit, D.; Volk, S.; Yarema, O.; Wood, V. Quantification of Deep Traps in Nanocrystal Solids, Their Electronic Properties, and Their Influence on Device Behavior. Nano Lett 2013, 13 (11), 5284–5288. https://doi.org/10.1021/nl402803h
dc.relation.referencesRathee, N.; Jaggi, N. Time Controlled Growth of CdSe QDs for Applications in White Light Emitting Diodes. Vacuum 2019, 169. https://doi.org/10.1016/j.vacuum.2019.108910.
dc.relation.referencesNguyen, H. Q. Synthesis and Optical Properties of CdSe Nanocrystals and CdSe/ZnS Core/Shell Nanostructures in Non-Coordinating Solvents. Advances in Natural Sciences: Nanoscience and Nanotechnology 2010, 1 (2). https://doi.org/10.1088/2043-6254/1/2/025004
dc.relation.referencesDabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. J Phys Chem B 1997, 101 (46), 9463–9475. https://doi.org/10.1021/jp971091y
dc.relation.referencesSamanta, A.; Deng, Z.; Liu, Y. Aqueous Synthesis of Glutathione-Capped CdTe/CdS/ZnS and CdTe/CdSe/ZnS Core/Shell/Shell Nanocrystal Heterostructures. Langmuir 2012, 28 (21), 8205–8215. https://doi.org/10.1021/la300515a.
dc.relation.referencesReiss, P.; Protière, M.; Li, L. Core/Shell Semiconductor Nanocrystals. Small 2009, 5 (2), 154–168. https://doi.org/10.1002/smll.200800841.
dc.relation.referencesRen, C.; Hao, J.; Chen, H.; Wang, K.; Wu, D. Prepare Core-Multishell CdSe/ZnS Nanocrystals with Pure Color and Controlled Emission by Tri-n-Octylphosphine-Assisted Method. Appl Surf Sci 2015, 353, 480–488. https://doi.org/10.1016/j.apsusc.2015.06.149.
dc.relation.referencesZhou, J.; Liu, Y.; Tang, J.; Tang, W. Surface Ligands Engineering of Semiconductor Quantum Dots for Chemosensory and Biological Applications. Biochem Pharmacol 2017, 20 (7), 360–376. https://doi.org/10.1016/j.mattod.2017.02.006
dc.relation.referencesDos Santos, J. A. L.; Baum, F.; Kohlrausch, E. C.; Tavares, F. C.; Pretto, T.; Dos Santos, F. P.; Leite Santos, J. F.; Khan, S.; Leite Santos, M. J. 3-Mercaptopropionic, 4-Mercaptobenzoic, and Oleic Acid Capped CdSe Quantum Dots: Interparticle Distance, Anchoring Groups, and Surface Passivation. J Nanomater 2019, 2019. https://doi.org/10.1155/2019/2796746.
dc.relation.referencesGranados-Oliveros, G.; Pineros, B. S. G.; Calderon, F. G. O. CdSe/ZnS Quantum Dots Capped with Oleic Acid and L-Glutathione: Structural Properties and Application in Detection of Hg2+. J Mol Struct 2022, 1254. https://doi.org/10.1016/j.molstruc.2021.132293.
dc.relation.referencesFrederick, M. T.; Weiss, E. A. Relaxation of Exciton Confinement in CdSe Quantum Dots by Modification with a Conjugated Dithiocarbamate Ligand. ACS Nano 2010, 4 (6), 3195–3200. https://doi.org/10.1021/nn1007435
dc.relation.referencesFrederick, M. T.; Amin, V. A.; Cass, L. C.; Weiss, E. A. A Molecule to Detect and Perturb the Confinement of Charge Carriers in Quantum Dots. Nano Lett 2011, 11 (12), 5455–5460. https://doi.org/10.1021/nl203222m
dc.relation.referencesLiu, I. S.; Lo, H. H.; Chien, C. T.; Lin, Y. Y.; Chen, C. W.; Chen, Y. F.; Su, W. F.; Liou, S. C. Enhancing Photoluminescence Quenching and Photoelectric Properties of CdSe Quantum Dots with Hole Accepting Ligands. J Mater Chem 2008, 18 (6), 675–682. https://doi.org/10.1039/b715253a.
dc.relation.referencesZhang, J.; Cheng, F.; Li, J.; Zhu, J.; Lu, Y. Fluorescent Nanoprobes for Sensing and Imaging of Metal Ions: Recent Advances and Future Perspectives. NanoToday 2016, 11 (3), 309–329. https://doi.org/10.1016/j.nantod.2016.05.010.
dc.relation.referencesWang, H.; Song, D.; Zhou, Y.; Liu, J.; Zhu, A.; Long, F. Fluorescence Enhancement of CdSe/ZnS Quantum Dots Induced by Mercury Ions and Its Applications to the on-Site Sensitive Detection of Mercury Ions. https://doi.org/10.1007/s00604-021-04871-5/Published.
dc.relation.referencesYuan, C.; Zhang, K.; Zhang, Z.; Wang, S. Highly Selective and Sensitive Detection of Mercuric Ion Based on a Visual Fluorescence Method. Anal Chem 2012, 84 (22), 9792–9801. https://doi.org/10.1021/ac302822c.
dc.relation.referencesZhu, C.; Li, L.; Fang, F.; Chen, J.; Wu, Y. Functional InP Nanocrystals as Novel Near-Infrared Fluorescent Sensors for Mercury Ions. Chem Lett 2005, 34 (7), 898–899. https://doi.org/10.1246/cl.2005.898.
dc.relation.referencesWang, B.; Anslyn, E. V. Chemosensors: Principles, Strategies, and Applications; 2011. https://doi.org/10.1002/9781118019580
dc.relation.referencesJeong, Y.; Yoon, J. Recent Progress on Fluorescent Chemosensors for Metal Ions. Inorganica Chim Acta 2012, 381 (1), 2–14. https://doi.org/10.1016/j.ica.2011.09.011
dc.relation.referencesFormica, M.; Fusi, V.; Giorgi, L.; Micheloni, M. New Fluorescent Chemosensors for Metal Ions in Solution. Coord Chem Rev 2012, 256 (1–2), 170–192. https://doi.org/10.1016/j.ccr.2011.09.010.
dc.relation.referencesLin, Y.; Yang, Y.; Li, Y.; Yang, L.; Hou, X.; Feng, X.; Zheng, C. Ultrasensitive Speciation Analysis of Mercury in Rice by Headspace Solid Phase Microextraction Using Porous Carbons and Gas Chromatography-Dielectric Barrier Discharge Optical Emission Spectrometry. Environ Sci Technol 2016, 50 (5), 2468–2476. https://doi.org/10.1021/acs.est.5b04328
dc.relation.referencesFang, Y.; Pan, Y.; Li, P.; Xue, M.; Pei, F.; Yang, W.; Ma, N.; Hu, Q. Simultaneous Determination of Arsenic and Mercury Species in Rice by Ion-Pairing Reversed Phase Chromatography with Inductively Coupled Plasma Mass Spectrometry. Food Chem 2016, 213, 609–615. https://doi.org/10.1016/j.foodchem.2016.07.003.
dc.relation.referencesHarrington, C. F. The Speciation of Mercury and Organomercury Compounds by Using High Performance Liquid Chromatography.
dc.relation.referencesAranda, P. R.; Colombo, L.; Perino, E.; De Vito, I. E.; Raba, J. Solid-Phase Preconcentration and Determination of Mercury(II) Using Activated Carbon in Drinking Water by X-Ray Fluorescence Spectrometry. X-Ray Spectrometry 2013, 42 (2), 100–104. https://doi.org/10.1002/xrs.2440
dc.relation.referencesIoannidou, M. D.; Zachariadis, G. A.; Anthemidis, A. N.; Stratis, J. A. Direct Determination of Toxic Trace Metals in Honey and Sugars Using Inductively Coupled Plasma Atomic Emission Spectrometry. Talanta 2005, 65 (1), 92–97. https://doi.org/10.1016/j.talanta.2004.05.018.
dc.relation.referencesWu, L.; Long, Z.; Liu, L.; Zhou, Q.; Lee, Y. I.; Zheng, C. Microwave-Enhanced Cold Vapor Generation for Speciation Analysis of Mercury by Atomic Fluorescence Spectrometry. Talanta 2012, 94, 146–151. https://doi.org/10.1016/j.talanta.2012.03.009.
dc.relation.referencesVasudevan, D.; Gaddam, R. R.; Trinchi, A.; Cole, I. Core-Shell Quantum Dots: Properties and Applications. J Alloys Compd 2015, No. February. https://doi.org/10.1016/j.jallcom.2015.02.102.
dc.relation.referencesBera, D.; Qian, L.; Tseng, T. K.; Holloway, P. H. Quantum Dots and Their Multimodal Applications: A Review. Materials. MDPI AG 2010, pp 2260–2345. https://doi.org/10.3390/ma3042260
dc.relation.referencesLacroix, L.-M.; Delpech, F.; Nayral, C.; Lachaize, S. New Generation of Magnetic and Luminescent Nanoparticles for In-Vivo Real-Time Imaging. 2013, 3 (3). https://doi.org/10.1098/rsfs.2012.0103ï.
dc.relation.referencesHartley, C. L.; Kessler, M. L.; Dempsey, J. L. Molecular-Level Insight into Semiconductor Nanocrystal Surfaces. J Am Chem Soc 2021, 143 (3), 1251–1266. https://doi.org/10.1021/jacs.0c10658.
dc.relation.referencesAlivisatos, A. P. Perspectives on the Physical Chemistry of Semiconductor Nanocrystals. J Phys Chem 1996, 100 (31), 13226–13239. https://doi.org/10.1021/jp9535506.
dc.relation.referencesXia, X.; Liu, Z.; Du, G.; Li, Y.; Ma, M. Wurtzite and Zinc-Blende CdSe Based Core/Shell Semiconductor Nanocrystals: Structure, Morphology and Photoluminescence. J Lumin 2010, 130 (7), 1285–1291. https://doi.org/10.1016/j.jlumin.2010.02.040
dc.relation.referencesMurphy, C. J.; Coffer, J. L. Quantum Dots: APrimer; SOUTH CAROLINA, 2002; Vol. 56.
dc.relation.referencesMa, C.; Liu, X.; Zhou, M.; Feng, M.; Wu, Y.; Huo, P.; Pan, J.; Shi, W.; Yan, Y. Metal Ion Doped CdSe Quantum Dots Prepared by Hydrothermal Synthesis: Enhanced Photocatalytic Activity and Stability under Visible Light. Desalination Water Treat 2015, 56 (11), 2896–2905. https://doi.org/10.1080/19443994.2014.963152.
dc.relation.referencesMalik, P.; Singh, J.; Kakkar, R. A Review on CdSe Quantum Dots in Sensing. Advanced Materials Letters. VBRI Press 2014, pp 612–628. https://doi.org/10.5185/amlett.2014.4562
dc.relation.referencesBottrill, M.; Green, M.; Green, M. ChemComm Some Aspects of Quantum Dot Toxicity. 2011, 7039– 7050. https://doi.org/10.1039/c1cc10692a.
dc.relation.referencesMurcia, M. J.; Shaw, D. L.; Woodruff, H.; Naumann, C. A.; Young, B. A.; Long, E. C.; Street, N. B.; March, R. v; Re, V.; Recei, M.; March, V. Facile Sonochemical Synthesis of Highly Luminescent ZnS - Shelled CdSe Quantum Dots. 2006, No. 6, 2219–2225
dc.relation.referencesPark, J. J.; de Paoli Lacerda, S. H.; Stanley, S. K.; Vogel, B. M.; Kim, S.; Douglas, J. F.; Raghavan, D.; Karim, A. Langmuir Adsorption Study of the Interaction of CdSe/ZnS Quantum Dots with Model Substrates: Influence of Substrate Surface Chemistry and PH. Langmuir 2009, 25 (1), 443–450. https://doi.org/10.1021/la802324c.
dc.relation.referencesR. W. Knoss. Quantum Dots: Research, Technology and Applications; 2008.
dc.relation.referencesDorfs, D.; Krahne, R.; Falqui, A.; Manna, L.; Giannini, C.; Zanchet, D. Quantum Dots: Synthesis and Characterization; Elsevier Ltd., 2011; Vol. 1. https://doi.org/10.1016/B978-0-12-812295-2.00028-3.
dc.relation.referencesAmini, P.; Rostami, G.; Eissa, A. R. E.-M. M. High Throughput Quantum Dot Based LEDs. In Energy Efficiency Improvements in Smart Grid Components; Dolatyari, M., Ed.; IntechOpen: Rijeka, 2015; p Ch. 11. https://doi.org/10.5772/59092.
dc.relation.referencesBera, D.; Qian, L.; Tseng, T.; Holloway, P. H. Quantum Dots and Their Multimodal Applications: A Review. 2010, 2260–2345. https://doi.org/10.3390/ma3042260.
dc.relation.referencesHines, M. A.; Guyot-Sionnest, P. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals. J Phys Chem 1996, 100 (2), 468–471. https://doi.org/10.1021/jp9530562.
dc.relation.referencesRakovich, Y. P.; Donegan, J. F.; Filonovich, S. A.; Gomes, M. J. M.; Talapin, D. v. Up-Conversion Luminescence via a below-Gap State in CdSe / ZnS Quantum Dots. 2003, 17, 99–100. https://doi.org/10.1016/S1386-9477(02)00712-9.
dc.relation.referencesDzhagan, V. M.; Valakh, M. Y.; Raevskaya, A. E.; Stroyuk, A. L.; Kuchmiy, S. Y.; Zahn, D. R. T. Applied Surface Science Characterization of Semiconductor Core – Shell Nanoparticles by Resonant Raman Scattering and Photoluminescence Spectroscopy. 2008, 255, 725–727. https://doi.org/10.1016/j.apsusc.2008.07.018.
dc.relation.referencesGaponik, N.; Hickey, S. G.; Dorfs, D.; Rogach, A. L.; Eychmüller, A. Progress in the Light Emission of Colloidal Semiconductor Nanocrystals. Small. Wiley-VCH Verlag July 5, 2010, pp 1364–1378. https://doi.org/10.1002/smll.200902006.
dc.relation.referencesPeng, X.; Schlamp, M. C.; Kadavanich, A. v; Alivisatos, A. P. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. J Am Chem Soc 1997, 119 (30), 7019–7029. https://doi.org/10.1021/ja970754m.
dc.relation.referencesNirmal, M.; Brus, L. Luminescence Photophysics in Semiconductor Nanocrystals. 1999, 32 (5), 407– 414.
dc.relation.referencesEkimov, A. I.; A.A.Onushchenko. Quantum Size Effect in Three-Dimensional Micorscopic Semiconductor Crystals. Jetp Letters. 1981, pp 345–349. https://doi.org/0021-3640/81/18345-05.
dc.relation.referencesMurray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and Characterization of Nearly Monodisperse CdE (E = S, Se, Te) Semiconductor Nanocrystallites. J Am Chem Soc 1993, 115 (19), 8706–8715. https://doi.org/10.1021/ja00072a025
dc.relation.referencesPoderys, V.; Matulionyte, M.; Selskis, A.; Rotomskis, R. Interaction of Water-Soluble CdTe Quantum Dots with Bovine Serum Albumin. Nanoscale Res Lett 2011, 6 (1), 1–6. https://doi.org/10.1007/s11671- 010-9740-9.
dc.relation.referencesMedintz, I. L.; Tetsuo Uyeda, H.; Goldman, E. R.; Mattoussi, H. Quantum Dot Bioconjugates for Imaging, Labelling and Sensing; 2005. www.nature.com/naturematerials.
dc.relation.referencesPeng, Z. A.; Peng, X. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor [6]. Journal of the American Chemical Society. January 10, 2001, pp 183–184. https://doi.org/10.1021/ja003633m.
dc.relation.referencesJasieniak, J.; Bullen, C.; van Embden, J.; Mulvaney, P. Phosphine-Free Synthesis of CdSe Nanocrystals. Journal of Physical Chemistry B 2005, 109 (44), 20665–20668. https://doi.org/10.1021/jp054289o
dc.relation.referencesChandan, H. R.; Saravanan, V.; Pai, R. K.; Geetha Balakrishnaa, R. Synergistic Effect of Binary Ligands on Nucleation and Growth/Size Effect of Nanocrystals: Studies on Reusability of the Solvent. J Mater Res 2014, 29 (14), 1556–1564. https://doi.org/10.1557/jmr.2014.180.
dc.relation.referencesSyed, A.; Ahmad, A. Extracellular Biosynthesis of CdTe Quantum Dots by the Fungus Fusarium Oxysporum and Their Anti-Bacterial Activity. Spectrochim Acta A Mol Biomol Spectrosc 2013, 106, 41– 47. https://doi.org/10.1016/j.saa.2013.01.002
dc.relation.referencesYan, Z.; Qian, J.; Gu, Y.; Su, Y.; Ai, X.; Wu, S. Green Biosynthesis of Biocompatible CdSe Quantum Dots in Living Escherichia Coli Cells. Mater Res Express 2014, 1 (1). https://doi.org/10.1088/2053- 1591/1/1/015401.
dc.relation.referencesBorovaya, M.; Pirko, Y.; Krupodorova, T.; Naumenko, A.; Blume, Y.; Yemets, A. Biosynthesis of Cadmium Sulphide Quantum Dots by Using Pleurotus Ostreatus (Jacq.) P. Kumm. Biotechnology and Biotechnological Equipment 2015, 29 (6), 1156–1163. https://doi.org/10.1080/13102818.2015.1064264
dc.relation.referencesStürzenbaum, S. R.; Höckner, M.; Panneerselvam, A.; Levitt, J.; Bouillard, J. S.; Taniguchi, S.; Dailey, L. A.; Khanbeigi, R. A.; Rosca, E. v.; Thanou, M.; Suhling, K.; Zayats, A. v.; Green, M. Biosynthesis of Luminescent Quantum Dots in an Earthworm. Nat Nanotechnol 2013, 8 (1), 57–60. https://doi.org/10.1038/nnano.2012.232.
dc.relation.referencesBao, H.; Hao, N.; Yang, Y.; Zhao, D. Biosynthesis of Biocompatible Cadmium Telluride Quantum Dots Using Yeast Cells. Nano Res 2010, 3 (7), 481–489. https://doi.org/10.1007/s12274-010-0008-6.
dc.relation.referencesSapra, S.; Rogach, A. L.; Feldmann, J. Phosphine-Free Synthesis of Monodisperse CdSe Nanocrystals in Olive Oil. J Mater Chem 2006, 16 (33), 3391–3395. https://doi.org/10.1039/b607022a
dc.relation.referencesBiju, V.; Makita, Y.; Sonoda, A.; Yokoyama, H.; Baba, Y.; Ishikawa, M. Temperature-Sensitive Photoluminescence of CdSe Quantum Dot Clusters. Journal of Physical Chemistry B 2005, 109 (29), 13899–13905. https://doi.org/10.1021/jp050424l.
dc.relation.referencesValerini, D.; Cretí, A.; Lomascolo, M.; Manna, L.; Cingolani, R.; Anni, M. Temperature Dependence of the Photoluminescence Properties of Colloidal CdSeZnS Core/Shell Quantum Dots Embedded in a Polystyrene Matrix. Phys Rev B Condens Matter Mater Phys 2005, 71 (23). https://doi.org/10.1103/PhysRevB.71.235409.
dc.relation.referencesAhamefula, C.; Baa, N.; Ibrahim, yah; Ahamefula Ubani, C.; Sulaiman, M. Y.; Ibarahim, Z.; Ibrahim, N. B.; Othman, M. Y.; Pengajian Fizik Gunaan, P.; Sains dan Teknologi, F. Synthesis and Characterization of CdSe Quantum Dot Via Pyrolysis OfOrganometalic Reagent; 2011; Vol. 1. http://ssrn.com/abstract=1963222.
dc.relation.referencesFarzin, M. A.; Abdoos, H. A Critical Review on Quantum Dots: From Synthesis toward Applications in Electrochemical Biosensors for Determination of Disease-Related Biomolecules. Talanta. Elsevier B.V. March 1, 2021. https://doi.org/10.1016/j.talanta.2020.121828
dc.relation.referencesRafienia, M.; Bigham, A.; Hassanzadeh-Tabrizi, S. A. Solvothermal Synthesis of Magnetic Spinel Ferrites. J Med Signals Sens 2018, 8 (2), 108–118. https://doi.org/10.4103/2228-7477.232087
dc.relation.referencesByranvand, M. M.; Kharat, A. N.; Fatholahi, L.; Beiranvand, Z. M. A Review on Synthesis of Nano TiO2 via Different Methods. JNS 2013, 3 (1), 1–9.
dc.relation.referencesSubila, K. B.; Kumar, G. K.; Shivaprasad, S. M.; Thomas, K. G. Luminescence Properties of CdSe Quantum Dots: Role of Crystal Structure and Surface Composition. 2013.
dc.relation.referencesShi, D.; Guo, Z.; Bedford, N. Characterization and Analysis of Nanomaterials. Nanomaterials and Devices 2015, 26, 25–47. https://doi.org/10.1016/B978-1-4557-7754-9.00002-0.
dc.relation.referencesGadalla, A.; Abd El-Sadek, M. S.; Hamood, R. Characterization of CdSe Core and CdSe/ZnS Core/Shell Quantum Dots Synthesized Using a Modified Method. Chalcogenide Letters 2017, 14 (7), 239–249.
dc.relation.referencesBonilla, C. A. M.; Flórez, M. H. T.; Molina Velasco, D. R.; Kouznetsov, V. v. Surface Characterization of Thiol Ligands on CdTe Quantum Dots: Analysis by 1H NMR and DOSY. New Journal of Chemistry 2019, 43 (22), 8452–8458. https://doi.org/10.1039/c8nj05914d.
dc.relation.referencesFernández-delgado, N.; Herrera, M.; Tavabi, A. H.; Luysberg, M.; Dunin-borkowski, R. E. Applied Surface Science Structural and Chemical Characterization of CdSe-ZnS Core-Shell Quantum Dots. Appl Surf Sci 2018, 457 (April), 93–97. https://doi.org/10.1016/j.apsusc.2018.06.149
dc.relation.referencesMourdikoudis, S.; Pallares, R. M.; Thanh, N. T. K. Characterization Techniques for Nanoparticles: Comparison and Complementarity upon Studying Nanoparticle Properties. Nanoscale. Royal Society of Chemistry July 21, 2018, pp 12871–12934. https://doi.org/10.1039/c8nr02278j.
dc.relation.referencesDerfus, A. M.; Chan, W. C. W.; Bhatia, S. N. Probing the Cytotoxicity of Semiconductor Quantum Dots. Nano Lett 2004, 4 (1), 11–18. https://doi.org/10.1021/nl0347334
dc.relation.referencesHoshino, A.; Fujioka, K.; Oku, T.; Suga, M.; Sasaki, Y. F.; Ohta, T.; Yasuhara, M.; Suzuki, K.; Yamamoto, K. Physicochemical Properties and Cellular Toxicity of Nanocrystal Quantum Dots Depend on Their Surface Modification. Nano Lett 2004, 4 (11), 2163–2169. https://doi.org/10.1021/nl048715d.
dc.relation.referencesMancini, M. C.; Kairdolf, B. A.; Smith, A. M.; Nie, S. Oxidative Quenching and Degradation of Polymer-Encapsulated Quantum Dots: New Insights into the Long-Term Fate and Toxicity of Nanocrystals in Vivo. J Am Chem Soc 2008, 130 (33), 10836–10837. https://doi.org/10.1021/ja8040477
dc.relation.referencesMoussodia, R. O.; Balan, L.; Merlin, C.; Mustin, C.; Schneider, R. Biocompatible and Stable ZnO Quantum Dots Generated by Functionalization with Siloxane-Core PAMAM Dendrons. J Mater Chem 2010, 20 (6), 1147–1155. https://doi.org/10.1039/b917629b.
dc.relation.referencesOh, J. K. Surface Modification of Colloidal CdX-Based Quantum Dots for Biomedical Applications. Journal of Materials Chemistry. October 21, 2010, pp 8433–8445. https://doi.org/10.1039/c0jm01084g.
dc.relation.referencesMedintz, I. L.; Tetsuo Uyeda, H.; Goldman, E. R.; Mattoussi, H. Quantum Dot Bioconjugates for Imaging, Labelling and Sensing; 2005. www.nature.com/naturematerials.
dc.relation.referencesDubois, F.; Mahler, B.; Dubertret, B.; Doris, E.; Mioskowski, C. A Versatile Strategy for Quantum Dot Ligand Exchange. J Am Chem Soc 2007, 129 (3), 482–483. https://doi.org/10.1021/ja067742y.
dc.relation.referencesAlivisatos, P. The Use of Nanocrystals in Biological Detection. Nature Biotechnology. January 2004, pp 47–52. https://doi.org/10.1038/nbt927.
dc.relation.referencesSchlamp, M. C.; Peng, X.; Alivisatos, A. P. Improved Efficiencies in Light Emitting Diodes Made with CdSe(CdS) Core/Shell Type Nanocrystals and a Semiconducting Polymer. J Appl Phys 1997, 82 (11), 5837–5842. https://doi.org/10.1063/1.366452
dc.relation.referencesWang, J.; Han, S.; Ke, D.; Wang, R. Semiconductor Quantum Dots Surface Modification for Potential Cancer Diagnostic and Therapeutic Applications. Journal of Nanomaterials. 2012. https://doi.org/10.1155/2012/129041.
dc.relation.referencesGreen, M. The Nature of Quantum Dot Capping Ligands. J Mater Chem 2010, 20 (28), 5797. https://doi.org/10.1039/c0jm00007h
dc.relation.referencesZhou, D.; Lin, M.; Chen, Z.; Sun, H.; Zhang, H.; Sun, H.; Yang, B. Simple Synthesis of Highly Luminescent Water-Soluble CdTe Quantum Dots with Controllable Surface Functionality. Chemistry of Materials 2011, 23 (21), 4857–4862. https://doi.org/10.1021/cm202368w.
dc.relation.referencesWang, C. L.; Xu, S. H.; Wang, Y. B.; Wang, Z. Y.; Cui, Y. P. Aqueous Synthesis of Multilayer Mn:ZnSe/Cu:ZnS Quantum Dots with White Light Emission. J Mater Chem C Mater 2014, 2 (4), 660– 666. https://doi.org/Doi 10.1039/C3tc31602e
dc.relation.referencesDubois, F.; Mahler, B.; Dubertret, B.; Doris, E.; Mioskowski, C. A Versatile Strategy for Quantum Dot Ligand Exchange. J Am Chem Soc 2007, 129 (3), 482–483. https://doi.org/10.1021/ja067742y.
dc.relation.referencesZhan, N.; Palui, G.; Mattoussi, H. Preparation of Compact Biocompatible Quantum Dots Using Multicoordinating Molecular-Scale Ligands Based on a Zwitterionic Hydrophilic Motif and Lipoic Acid Anchors. Nat Protoc 2015, 10 (6), 859–874. https://doi.org/10.1038/nprot.2015.050
dc.relation.referencesColvin, V. L.; Goldstein, A. N.; Alivisatos, A. P. Semiconductor Nanocrystals Covalently Bound to Metal Surfaces with Self-Assembled Monolayers
dc.relation.referencesWang, Q.; Kuo, Y.; Wang, Y.; Shin, G.; Ruengruglikit, C.; Huang, Q. Luminescent Properties of Water Soluble Denatured Bovine Serum Albumin-Coated CdTe Quantum Dots. Journal of Physical Chemistry B 2006, 110 (34), 16860–16866. https://doi.org/10.1021/jp062279x
dc.relation.referencesDabbousi, B. 0; Murray, C. B.; Rubner, M. F.; Bawendi, M. G. Langmuir-Blodgett Manipulation of Size Selected CdSe Nanocrystallites; 1994; Vol. 6
dc.relation.referencesBerezin, M. Y.; Achilefu, S. Fluorescence Lifetime Measurements and Biological Imaging. Chem Rev 2010, 110 (5), 2641–2684. https://doi.org/10.1021/cr900343z
dc.relation.referencesGu, L.; Hall, D. J.; Qin, Z.; Anglin, E.; Joo, J.; Mooney, D. J.; Howell, S. B.; Sailor, M. J. In Vivo Time Gated Fluorescence Imaging with Biodegradable Luminescent Porous Silicon Nanoparticles. Nat Commun 2013, 4. https://doi.org/10.1038/ncomms3326
dc.relation.referencesChern, M.; Nguyen, T. T.; Mahler, A. H.; Dennis, A. M. Shell Thickness Effects on Quantum Dot Brightness and Energy Transfer. Nanoscale 2017, 9 (42), 16446–16458. https://doi.org/10.1039/c7nr04296e.
dc.relation.referencesDabbousi, B. O.; Mikulec, F. v; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. ( CdSe ) ZnS Core - Shell Quantum Dots : Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. 1997, 9463 (97), 9463–9475. https://doi.org/10.1021/jp971091y.
dc.relation.referencesBozrova, S. v; Baryshnikova, M. A.; Sokolova, Z. A.; Nabiev, I. R.; Sukhanova, A. v. In Vitro Cytotoxicity of CdSe/ZnS Quantum Dots and Their Interaction with Biological Systems. KnE Energy 2018, 3, 58–63
dc.relation.referencesTian, Y.; Newton, T.; Kotov, N. A.; Guldi, D. M.; Fendler, J. H. Coupled Composite CdS-CdSe and Core Shell Types of (CdS)CdSe and (CdSe)CdS Nanoparticles; Syracuse, 1995
dc.relation.referencesYoun, H.-C.; Baral, S.; Fendler, J. H. Dihexadecyl Phosphate, Vesicle-Stabilized and I n Situ Generated Mixed CdS and ZnS Semiconductor Particles. Preparation and Utilization for Photosensitized Charge Separation and Hydrogen Generation; 1988; Vol. 92.
dc.relation.referencesHenglein, A.; Ploog, K.; Leland, J. K.; Bard, A. Nucleation and Growth of CdSe on ZnS Quantum Crystallite Seeds, and Vice Versa, in Inverse Micelle Media; 1990; Vol. 112
dc.relation.referencesDanek, M.; Jensen, K. F.; Murray, C. B.; Bawendi, M. G. Synthesis of Luminescent Thin-Film CdSe/ZnSe Quantum Dot Composites Using CdSe Quantum Dots Passivated with an Overlayer of ZnSe; 1996.
dc.relation.referencesLa Rosa, M.; Avellini, T.; Lincheneau, C.; Silvi, S.; Wright, I. A.; Constable, E. C.; Credi, A. An Efficient Method for the Surface Functionalization of Luminescent Quantum Dots with Lipoic Acid Based Ligands. Eur J Inorg Chem 2017, 2017 (44), 5143–5151. https://doi.org/10.1002/ejic.201700781.
dc.relation.referencesAlgar, W. R.; Krull, U. J. Luminescence and Stability of Aqueous Thioalkyl Acid Capped CdSe/ZnS Quantum Dots Correlated to Ligand Ionization. ChemPhysChem 2007, 8 (4), 561–568. https://doi.org/10.1002/cphc.200600686.
dc.relation.referencesZheng, H.; Mortensen, L. J.; Delouise, L. A. Thiol Antioxidant-Functionalized CdSe/ZnS Quantum Dots: Synthesis, Characterization, Cytotoxicity.
dc.relation.referencesDurán, G. M.; Plata, M. R.; Zougagh, M.; Contento, A. M.; Ríos, Á. Microwave-Assisted Synthesis of Water Soluble Thiol Capped CdSe/ZnS Quantum Dots and Its Interaction with Sulfonylurea Herbicides. J Colloid Interface Sci 2014, 428, 235–241. https://doi.org/10.1016/j.jcis.2014.04.050.
dc.relation.referencesZhu, H.; Hu, M. Z.; Shao, L.; Yu, K.; Dabestani, R.; Zaman, M. B.; Liao, S. Synthesis and Optical Properties of Thiol Functionalized CdSe/ZnS (Core/Shell) Quantum Dots by Ligand Exchange. J Nanomater 2014, 2014. https://doi.org/10.1155/2014/324972
dc.relation.referencesRahman, S. A.; Ariffin, N.; Yusof, N. A.; Abdullah, J.; Mohammad, F.; Zubir, Z. A.; Aziz, N. M. A. N. A. Thiolate-Capped CdSe/ZnS Core-Shell Quantum Dots for the Sensitive Detection of Glucose. Sensors (Switzerland) 2017, 17 (7). https://doi.org/10.3390/s17071537
dc.relation.referencesMontaseri, H.; Adegoke, O.; Forbes, P. B. C. Development of a Thiol-Capped Core/Shell Quantum Dot Sensor for Acetaminophen. South African Journal of Chemistry 2019, 72, 108–117. https://doi.org/10.17159/0379-4350/2019/V72A14
dc.relation.referencesLuan, W.; Yang, H.; Wan, Z.; Yuan, B.; Yu, X.; Tu, S. T. Mercaptopropionic Acid Capped CdSe/ZnS Quantum Dots as Fluorescence Probe for Lead(II). Journal of Nanoparticle Research 2012, 14 (3). https://doi.org/10.1007/s11051-012-0762-3
dc.relation.referencesZhang, Y.; Schnoes, A. M.; Clapp, A. R. Dithiocarbamates as Capping Ligands for Water-Soluble Quantum Dots. ACS Appl Mater Interfaces 2010, 2 (11), 3384–3395. https://doi.org/10.1021/am100996g
dc.relation.referencesDrozd, M.; Pietrzak, M.; Kalinowska, D.; Grabowska-Jadach, I.; Malinowska, E. Glucose Dithiocarbamate Derivatives as Capping Ligands of Water-Soluble CdSeS/ZnS Quantum Dots. Colloids Surf A Physicochem Eng Asp 2016, 509, 656–665. https://doi.org/10.1016/j.colsurfa.2016.09.072.
dc.relation.referencesLiu, I. S.; Lo, H. H.; Chien, C. T.; Lin, Y. Y.; Chen, C. W.; Chen, Y. F.; Su, W. F.; Liou, S. C. Enhancing Photoluminescence Quenching and Photoelectric Properties of CdSe Quantum Dots with Hole Accepting Ligands. J Mater Chem 2008, 18 (6), 675–682. https://doi.org/10.1039/b715253a.
dc.relation.referencesFrederick, M. T.; Amin, V. A.; Weiss, E. A. Optical Properties of Strongly Coupled Quantum Dot-Ligand Systems. Journal of Physical Chemistry Letters 2013, 4 (4), 634–640. https://doi.org/10.1021/jz301905n.
dc.relation.referencesFrederick, M. T.; Amin, V. A.; Swenson, N. K.; Ho, A. Y.; Weiss, E. A. Control of Exciton Confinement in Quantum Dot-Organic Complexes through Energetic Alignment of Interfacial Orbitals. Nano Lett 2013, 13 (1), 287–292. https://doi.org/10.1021/nl304098e
dc.relation.referencesZhao, H.; Rosei, F. Colloidal Quantum Dots for Solar Technologies. Chem 2017, 3 (2), 229–258. https://doi.org/10.1016/j.chempr.2017.07.007
dc.relation.referencesAlbero, J.; Clifford, J. N.; Palomares, E. Quantum Dot Based Molecular Solar Cells. Coord Chem Rev 2014, 263–264 (1), 53–64. https://doi.org/10.1016/j.ccr.2013.07.005.
dc.relation.referencesRosi, N. L.; Mirkin, C. A. Nanostructures in Biodiagnostics. 2005
dc.relation.referencesGao, X.; Yang, L.; Petros, J. A.; Marshall, F. F.; Simons, J. W.; Nie, S. In Vivo Molecular and Cellular Imaging with Quantum Dots. 2005. https://doi.org/10.1016/j.copbio.2004.11.003
dc.relation.referencesDrummond, T. G.; Hill, M. G.; Barton, J. K. Electrochemical DNA Sensors. 2003, 21 (10), 1192–1199. https://doi.org/10.1038/nbt873.
dc.relation.referencesCai, W.; Chen, X. Reviews Nanoplatforms for Targeted Molecular Imaging in Living Subjects. 2007, No. 11, 1840–1854. https://doi.org/10.1002/smll.200700351
dc.relation.referencesBurns, A.; Wiesner, U.; Burns, A. Fluorescent Core – Shell Silica Nanoparticles : Towards ‘“ Lab on a Particle ”’ Architectures for Nanobiotechnology. 2006, 1028–1042. https://doi.org/10.1039/b600562b.
dc.relation.referencesAlivisatos, P. The Use of Nanocrystals in Biological Detection. 2004, 22 (1), 47–52. https://doi.org/10.1038/nbt927
dc.relation.referencesStewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Nanostructured Plasmonic Sensors. 2008, 494–521. https://doi.org/10.1021/cr068126n
dc.relation.referencesDaniel, M.; Astruc, D. Gold Nanoparticles : Assembly , Supramolecular Chemistry , Quantum-Size Related Properties , and Applications toward Biology , Catalysis , and Nanotechnology. 2004.
dc.relation.referencesPeterson, M. D.; Cass, L. C.; Harris, R. D.; Edme, K.; Sung, K.; Weiss, E. A. The Role of Ligands in Determining the Exciton Relaxation Dynamics in Semiconductor Quantum Dots. Annu Rev Phys Chem 2014, 65, 317–339. https://doi.org/10.1146/annurev-physchem-040513-103649
dc.relation.referencesAnikeeva, P. O.; Halpert, J. E.; Bawendi, M. G.; Bulovic, V. Quantum Dot Light-Emitting Devices with Electroluminescence Tunable over the Entire Visible Spectrum 2009. 2009
dc.relation.referencesMichalet, X.; Weiss, S. Single-Molecule Spectroscopy and Microscopy. C R Phys 2002, 3 (5), 619–644. https://doi.org/10.1016/S1631-0705(02)01343-9.
dc.relation.referencesJin, W. J.; Fernández-Argüelles, M. T.; Costa-Fernández, J. M.; Pereiro, R.; Sanz-Medel, A. Photoactivated Luminescent CdSe Quantum Dots as Sensitive Cyanide Probes in Aqueous Solutions. Chemical Communications 2005, No. 7, 883–885. https://doi.org/10.1039/b414858d.
dc.relation.referencesChen, Y.; Rosenzweig, Z. Luminescent CdS Quantum Dots as Selective Ion Probes. Anal Chem 2002, 74 (19), 5132–5138. https://doi.org/10.1021/ac0258251
dc.relation.referencesGattás-asfura, K. M.; Leblanc, R. M. Peptide-Coated CdS Quantum Dots for the Optical Detection of Copper ( II ) and Silver ( I )†‡. Chem 2003, 2684–2685.
dc.relation.referencesJin, W. J.; Pereiro, R.; Sanz-medel, A. Surface-Modified CdSe Quantum Dots as Luminescent Probes for Cyanide Determination. 2004, 522, 1–8. https://doi.org/10.1016/j.aca.2004.06.057
dc.relation.referencesFern, M. T.; Pereiro, R.; Sanz-medel, A. Surface-Modified CdSe Quantum Dots for the Sensitive and Selective Determination of Cu ( II ) in Aqueous Solutions by Luminescent Measurements. 2005, 549, 20–25. https://doi.org/10.1016/j.aca.2005.06.013
dc.relation.referencesWu, H.; Liang, J.; Han, H. Original Paper A Novel Method for the Determination of Pb 2 1 Based on the Quenching of the Fluorescence of CdTe Quantum Dots. 2008, 81–86. https://doi.org/10.1007/s00604-007-0801-4.
dc.relation.referencesZhang, J.; Cheng, F.; Li, J.; Zhu, J.; Lu, Y.; Lou, Y.; Zhu, J.; Wu, P.; Zhao, T.; Hou, X. Semicondutor Quantum Dots-Based Metal Ion. 2014, 2 (4), 43–64. https://doi.org/10.1039/c3nr04628a.
dc.relation.referencesLee, H. L.; Dhenadhayalan, N.; Lin, K. C. Metal Ion Induced Fluorescence Resonance Energy Transfer between Crown Ether Functionalized Quantum Dots and Rhodamine B: Selectivity of K+ Ion. RSC Adv 2015, 5 (7), 4926–4933. https://doi.org/10.1039/c4ra10925b
dc.relation.referencesCai, C.; Cheng, H.; Wang, Y.; Bao, H. Mercaptosuccinic Acid Modified CdTe Quantum Dots as a Selective Fluorescence Sensor for Ag+ Determination in Aqueous Solutions. RSC Adv 2014, 4 (103), 59157–59163. https://doi.org/10.1039/c4ra07891h.
dc.relation.referencesSwarnkar, A.; Shanker, G. S.; Nag, A. Organic-Free Colloidal Semiconductor Nanocrystals as Luminescent Sensors for Metal Ions and Nitroaromatic Explosives. Chemical Communications 2014, 50 (36), 4743–4746. https://doi.org/10.1039/c4cc00829d
dc.relation.referencesWu, P.; Yan, X. P. A Simple Chemical Etching Strategy to Generate “Ion-Imprinted” Sites on the Surface of Quantum Dots for Selective Fluorescence Turn-on Detecting of Metal Ions. Chemical Communications 2010, 46 (37), 7046–7048. https://doi.org/10.1039/c0cc01762k.
dc.relation.referencesWu, D.; Chen, Z.; Huang, G.; Liu, X. ZnSe Quantum Dots Based Fluorescence Sensors for Cu2+ Ions. Sens Actuators A Phys 2014, 205, 72–78. https://doi.org/10.1016/j.sna.2013.10.020
dc.relation.referencesBu, X.; Zhou, Y.; He, M.; Chen, Z.; Zhang, T. Bioinspired, Direct Synthesis of Aqueous CdSe Quantum Dots for High-Sensitive Copper(Ii) Ion Detection. Dalton Transactions 2013, 42 (43), 15411–15420. https://doi.org/10.1039/c3dt51399h.
dc.relation.referencesLiang, G. X.; Liu, H. Y.; Zhang, J. R.; Zhu, J. J. Ultrasensitive Cu2+ Sensing by Near-Infrared-Emitting CdSeTe Alloyed Quantum Dots. Talanta 2010, 80 (5), 2172–2176. https://doi.org/10.1016/j.talanta.2009.11.025
dc.relation.referencesSha, J.; Tong, C.; Zhang, H.; Feng, L.; Liu, B.; Lü, C. CdTe QDs Functionalized Mesoporous Silica Nanoparticles Loaded with Conjugated Polymers: A Facile Sensing Platform for Cupric (II) Ion Detection in Water through FRET. Dyes and Pigments 2015, 113, 102–109. https://doi.org/10.1016/j.dyepig.2014.07.040.
dc.relation.referencesDing, Y.; Shen, S. Z.; Sun, H.; Sun, K.; Liu, F. Synthesis of L-Glutathione-Capped-ZnSe Quantum Dots for the Sensitive and Selective Determination of Copper Ion in Aqueous Solutions. Sens Actuators B Chem 2014, 203, 35–43. https://doi.org/10.1016/j.snb.2014.06.054.
dc.relation.referencesZhao, X.; Du, J.; Wu, Y.; Liu, H.; Hao, X. Synthesis of Highly Luminescent POSS-Coated CdTe Quantum Dots and Their Application in Trace Cu2+ Detection. J Mater Chem A Mater 2013, 1 (38), 11748–11753. https://doi.org/10.1039/c3ta12335a.
dc.relation.referencesYang, P.; Zhao, Y.; Lu, Y.; Xu, Q. Z.; Xu, X. W.; Dong, L.; Yu, S. H. Phenol Formaldehyde Resin Nanoparticles Loaded with CdTe Quantum Dots: A Fluorescence Resonance Energy Transfer Probe for Optical Visual Detection of Copper(II) Ions. ACS Nano 2011, 5 (3), 2147–2154. https://doi.org/10.1021/nn103352b
dc.relation.referencesLiu, B.; Zeng, F.; Wu, G.; Wu, S. Nanoparticles as Scaffolds for FRET-Based Ratiometric Detection of Mercury Ions in Water with QDs as Donors. Analyst 2012, 137 (16), 3717–3724. https://doi.org/10.1039/c2an35434a
dc.relation.referencesTao, H.; Liao, X.; Xu, M.; Li, S.; Zhong, F.; Yi, Z. Determination of Trace Hg2+ Ions Based on the Fluorescence Resonance Energy Transfer between Fluorescent Brightener and CdTe Quantum Dots. J Lumin 2014, 146, 376–381. https://doi.org/10.1016/j.jlumin.2013.10.005.
dc.relation.referencesMu, Q.; Li, Y.; Xu, H.; Ma, Y.; Zhu, W.; Zhong, X. Quantum Dots-Based Ratiometric Fluorescence Probe for Mercuric Ions in Biological Fluids. Talanta 2014, 119, 564–571. https://doi.org/10.1016/j.talanta.2013.11.036.
dc.relation.referencesLi, T.; Zhou, Y.; Sun, J.; Tang, D.; Guo, S.; Ding, X. Ultrasensitive Detection of Mercury(II) Ion Using CdTe Quantum Dots in Sol-Gel-Derived Silica Spheres Coated with Calix[6]Arene as Fluorescent Probes. Microchimica Acta 2011, 175 (1–2), 113–119. https://doi.org/10.1007/s00604-011-0655-7
dc.relation.referencesPage, L. E.; Zhang, X.; Jawaid, A. M.; Snee, P. T. Detection of Toxic Mercury Ions Using a Ratiometric CdSe/ZnS Nanocrystal Sensor. Chemical Communications 2011, 47 (27), 7773–7775. https://doi.org/10.1039/c1cc11442e
dc.relation.referencesZhu, X.; Zhao, Z.; Chi, X.; Gao, J. Facile, Sensitive, and Ratiometric Detection of Mercuric Ions Using GSH-Capped Semiconductor Quantum Dots. Analyst 2013, 138 (11), 3230–3237. https://doi.org/10.1039/c3an00011g
dc.relation.referencesZhao, Q.; Rong, X.; Chen, L.; Ma, H.; Tao, G. Layer-by-Layer Self-Assembly Xylenol Orange Functionalized CdSe/CdS Quantum Dots as a Turn-on Fluorescence Lead Ion Sensor. Talanta 2013, 114, 110–116. https://doi.org/10.1016/j.talanta.2013.04.016
dc.relation.referencesde Souza, G. C. S.; de Santana, É. E. A.; da Silva, P. A. B.; Freitas, D. v.; Navarro, M.; Paim, A. P. S.; Lavorante, A. F. Employment of Electrochemically Synthesized TGA-CdSe Quantum Dots for Cr3+ Determination in Vitamin Supplements. Talanta 2015, 144, 986–991. https://doi.org/10.1016/j.talanta.2015.07.054.
dc.relation.referencesHan, J.; Bu, X.; Zhou, D.; Zhang, H.; Yang, B. Discriminating Cr(Iii) and Cr(vi) Using Aqueous CdTe Quantum Dots with Various Surface Ligands. RSC Adv 2014, 4 (62), 32946–32952. https://doi.org/10.1039/c4ra04535a.
dc.relation.referencesLi, S.; Chen, D.; Zheng, F.; Zhou, H.; Jiang, S.; Wu, Y. Water-Soluble and Lowly Toxic Sulphur Quantum Dots. Adv Funct Mater 2014, 24 (45), 7133–7138. https://doi.org/10.1002/adfm.201402087.
dc.relation.referencesGe, S.; Zhang, C.; Zhu, Y.; Yu, J.; Zhang, S. BSA Activated CdTe Quantum Dot Nanosensor for Antimony Ion Detection. Analyst 2010, 135 (1), 111–115. https://doi.org/10.1039/b915622d
dc.relation.referencesMahapatra, N.; Panja, S.; Mandal, A.; Halder, M. A Single Source-Precursor Route for the One-Pot Synthesis of Highly Luminescent CdS Quantum Dots as Ultra-Sensitive and Selective Photoluminescence Sensor for Co2+ and Ni2+ Ions. J Mater Chem C Mater 2014, 2 (35), 7373–7384. https://doi.org/10.1039/c4tc00887a
dc.relation.referencesVölker, J.; Zhou, X.; Ma, X.; Flessau, S.; Lin, H.; Schmittel, M.; Mews, A. Semiconductor Nanocrystals with Adjustable Hole Acceptors: Tuning the Fluorescence Intensity by Metal-Ion Binding. Angewandte Chemie - International Edition 2010, 49 (38), 6865–6868. https://doi.org/10.1002/anie.201001441.
dc.relation.referencesXia, Y.; Wang, J.; Zhang, Y.; Song, L.; Ye, J.; Yang, G.; Tan, K. Quantum Dot Based Turn-on Fluorescent Probes for Anion Sensing. Nanoscale 2012, 4 (19), 5954–5959. https://doi.org/10.1039/c2nr31809a
dc.relation.referencesChen, J.; Gao, Y. C.; Xu, Z. B.; Wu, G. H.; Chen, Y. C.; Zhu, C. Q. A Novel Fluorescent Array for Mercury (II) Ion in Aqueous Solution with Functionalized Cadmium Selenide Nanoclusters. Anal Chim Acta 2006, 577 (1), 77–84. https://doi.org/10.1016/j.aca.2006.06.039
dc.relation.referencesShang, Z. bin; Wang, Y.; Jin, W. J. Triethanolamine-Capped CdSe Quantum Dots as Fluorescent Sensors for Reciprocal Recognition of Mercury (II) and Iodide in Aqueous Solution. Talanta 2009, 78 (2), 364– 369. https://doi.org/10.1016/j.talanta.2008.11.025.
dc.relation.referencesShang, Z. bin; Hu, S.; Wang, Y.; Jin, W. J. Interaction of β-Cyclodextrin-Capped CdSe Quantum Dots with Inorganic Anions and Cations. Luminescence 2011, 26 (6), 585–591. https://doi.org/10.1002/bio.1274
dc.relation.referencesLi, H.; Zhang, Y.; Wang, X.; Xiong, D.; Bai, Y. Calixarene Capped Quantum Dots as Luminescent Probes for Hg2+ Ions. Mater Lett 2007, 61 (7), 1474–1477. https://doi.org/10.1016/j.matlet.2006.07.064.
dc.relation.referencesLi, H.; Zhang, Y.; Wang, X.; Gao, Z. A Luminescent Nanosensor for Hg(II) Based on Functionalized CdSe/ZnS Quantum Dots. Microchimica Acta 2008, 160 (1–2), 119–123. https://doi.org/10.1007/s00604-007-0816-x
dc.relation.referencesClever, G. H.; Kaul, C.; Carell, T. DNA-Metal Base Pairs. Angewandte Chemie - International Edition. 2007, pp 6226–6236. https://doi.org/10.1002/anie.200701185
dc.relation.referencesVasudevan, D.; Gaddam, R. R.; Trinchi, A.; Cole, I. Core-Shell Quantum Dots: Properties and Applications. J Alloys Compd 2015, No. February. https://doi.org/10.1016/j.jallcom.2015.02.102.
dc.relation.referencesR. W. Knoss. Quantum Dots: Research, Technology and Applications; 2008.
dc.relation.referencesDorfs, D.; Krahne, R.; Falqui, A.; Manna, L.; Giannini, C.; Zanchet, D. Quantum Dots: Synthesis and Characterization; Elsevier Ltd., 2011; Vol. 1. https://doi.org/10.1016/B978-0-12-812295-2.00028-3
dc.relation.referencesAsor, L.; Liu, J.; Ossia, Y.; Tripathi, D. C.; Tessler, N.; Frenkel, A. I.; Banin, U. InAs Nanocrystals with Robust P-Type Doping. Adv Funct Mater 2021, 31 (6). https://doi.org/10.1002/adfm.202007456.
dc.relation.referencesSahu, A.; Kang, M. S.; Kompch, A.; Notthoff, C.; Wills, A. W.; Deng, D.; Winterer, M.; Frisbie, C. D.; Norris, D. J. Electronic Impurity Doping in CdSe Nanocrystals. Nano Lett 2012, 12 (5), 2587–2594. https://doi.org/10.1021/nl300880g.
dc.relation.referencesMorgan, D. P.; Kelley, D. F. Mechanism of Hole Trap Passivation in CdSe Quantum Dots by Alkylamines. Journal of Physical Chemistry C 2018, 122 (44), 25661–25667. https://doi.org/10.1021/acs.jpcc.8b08798
dc.relation.referencesGreen, M. The Nature of Quantum Dot Capping Ligands. J Mater Chem 2010, 20 (28), 5797. https://doi.org/10.1039/c0jm00007h.
dc.relation.referencesZhou, J.; Liu, Y.; Tang, J.; Tang, W. Surface Ligands Engineering of Semiconductor Quantum Dots for Chemosensory and Biological Applications. Biochem Pharmacol 2017, 20 (7), 360–376. https://doi.org/10.1016/j.mattod.2017.02.006.
dc.relation.referencesMalik, P.; Singh, J.; Kakkar, R. A Review on CdSe Quantum Dots in Sensing. Advanced Materials Letters. VBRI Press 2014, pp 612–628. https://doi.org/10.5185/amlett.2014.4562
dc.relation.referencesGoicoechea, J.; Arregui, F. J.; Matias, I. R. Quantum Dots for Sensing. In Sensors Based on Nanostructured Materials; Springer US, 2009; pp 131–181. https://doi.org/10.1007/978-0-387-77753- 5_6.
dc.relation.referencesLou, Y.; Zhu, J. Metal Ions Optical Sensing by Semiconductor Quantum Dots. J Mater Chem C Mater 2014, 2 (4), 585–772. https://doi.org/10.1039/c3tc31937g
dc.relation.referencesKim, K. M.; Jeon, J. H.; Kim, Y. Y.; Lee, H. K.; Park, O. O.; Wang, D. H. Effects of Ligand Exchanged CdSe Quantum Dot Interlayer for Inverted Organic Solar Cells. Org Electron 2015, 25 (November), 44– 49. https://doi.org/10.1016/j.orgel.2015.05.040
dc.relation.referencesPremaratne, W. A. P. J.; Priyadarshana, W. M. G. I.; Gunawardena, S. H. P.; De Alwis, A. A. P. Synthesis of Nanosilica from Paddy Husk Ash and Their Surface Functionalization. Journal of Science of the University of Kelaniya Sri Lanka 2014, 8 (July 2013), 33. https://doi.org/10.4038/josuk.v8i0.7238
dc.relation.referencesDe Trizio, L.; Manna, L. Forging Colloidal Nanostructures via Cation Exchange Reactions. Chemical Reviews. American Chemical Society September 28, 2016, pp 10852–10887. https://doi.org/10.1021/acs.chemrev.5b00739
dc.relation.referencesPearson, R. G.; Busch, D. H. Hard and Soft Acids and Bases; 1963.
dc.relation.referencesLi, H.; Zhang, Y.; Wang, X.; Xiong, D.; Bai, Y. Calixarene Capped Quantum Dots as Luminescent Probes for Hg2+ Ions. Mater Lett 2007, 61 (7), 1474–1477. https://doi.org/10.1016/j.matlet.2006.07.064.
dc.relation.referencesChu, H.; Yao, D.; Chen, J.; Yu, M.; Su, L. Double-Emission Ratiometric Fluorescent Sensors Composed of Rare-Earth-Doped ZnS Quantum Dots for Hg2+Detection. ACS Omega 2020, 5 (16), 9558–9565. https://doi.org/10.1021/acsomega.0c00861
dc.relation.referencesLi, H.; Zhang, Y.; Wang, X.; Gao, Z. A Luminescent Nanosensor for Hg(II) Based on Functionalized CdSe/ZnS Quantum Dots. Microchimica Acta 2008, 160 (1–2), 119–123. https://doi.org/10.1007/s00604-007-0816-x.
dc.relation.referencesZhang, K.; Zhang, J. M. A Fluorescent Probe for the Detection of Hg2+ Based on Rhodamine Derivative and Modified CdTe Quantum Dots. Research on Chemical Intermediates 2020, 46 (2), 987–997. https://doi.org/10.1007/s11164-015-2298-5
dc.relation.referencesZhang, K.; Yu, Y.; Sun, S. Facile Synthesis L-Cysteine Capped CdS:Eu Quantum Dots and Their Hg 2+ Sensitive Properties. Appl Surf Sci 2013, 276, 333–339. https://doi.org/10.1016/j.apsusc.2013.03.093.
dc.relation.referencesReiss, P.; Protière, M.; Li, L. Core/Shell Semiconductor Nanocrystals. Small 2009, 5 (2), 154–168. https://doi.org/10.1002/smll.200800841.
dc.relation.referencesFernández-delgado, N.; Herrera, M.; Tavabi, A. H.; Luysberg, M.; Dunin-borkowski, R. E. Applied Surface Science Structural and Chemical Characterization of CdSe-ZnS Core-Shell Quantum Dots. Appl Surf Sci 2018, 457 (April), 93–97. https://doi.org/10.1016/j.apsusc.2018.06.149.
dc.relation.referencesJin, L. H.; Han, C. S. Ultrasensitive and Selective Fluorimetric Detection of Copper Ions Using Thiosulfate-Involved Quantum Dots. Anal Chem 2014, 86 (15), 7209–7213. https://doi.org/10.1021/ac501515f.
dc.relation.referencesRen, J.; Chen, H. L.; Ren, C. L.; Sun, J. F.; Liu, Q.; Wang, M.; Chen, X. G. L-Cysteine Capped CdSe as Sensitive Sensor for Detection of Trace Lead Ion in Aqueous Solution. Materials Research Innovations 2010, 14 (2), 133–137. https://doi.org/10.1179/143307510X12639910071476
dc.relation.referencesLiang, J. G.; Ai, X. P.; He, Z. K.; Pang, D. W. Functionalized CdSe Quantum Clots as Selective Silver Ion Chemodosimeter. Analyst 2004, 129 (7), 619–622. https://doi.org/10.1039/b317044f.
dc.relation.referencesFernández-Argüelles, M. T.; Wei, J. J.; Costa-Fernández, J. M.; Pereiro, R.; Sanz-Medel, A. Surface Modified CdSe Quantum Dots for the Sensitive and Selective Determination of Cu(II) in Aqueous Solutions by Luminescent Measurements. Anal Chim Acta 2005, 549 (1–2), 20–25. https://doi.org/10.1016/j.aca.2005.06.013.
dc.relation.referencesWu, P.; Yan, X. P. A Simple Chemical Etching Strategy to Generate “Ion-Imprinted” Sites on the Surface of Quantum Dots for Selective Fluorescence Turn-on Detecting of Metal Ions. Chemical Communications 2010, 46 (37), 7046–7048. https://doi.org/10.1039/c0cc01762k.
dc.relation.referencesPendyala, N. B.; Koteswara Rao, K. S. R. Efficient Hg and Ag Ion Detection with Luminescent PbS Quantum Dots Grown in Poly Vinyl Alcohol and Capped with Mercaptoethanol. Colloids Surf A Physicochem Eng Asp 2009, 339 (1–3), 43–47. https://doi.org/10.1016/j.colsurfa.2009.01.013
dc.relation.referencesChen, J. L.; Zhu, C. Q. Functionalized Cadmium Sulfide Quantum Dots as Fluorescence Probe for Silver Ion Determination. Anal Chim Acta 2005, 546 (2), 147–153. https://doi.org/10.1016/j.aca.2005.05.006
dc.relation.referencesChern, M.; Kays, J. C.; Bhuckory, S.; Dennis, A. M. Sensing with Photoluminescent Semiconductor Quantum Dots. Methods Appl Fluoresc 2019, 7 (1). https://doi.org/10.1088/2050-6120/aaf6f8
dc.relation.referencesDemchenko, A. P. Introduction to Fluorescence Sensing.
dc.relation.referencesGranados-Oliveros, G.; Pineros, B. S. G.; Calderon, F. G. O. CdSe/ZnS Quantum Dots Capped with Oleic Acid and L-Glutathione: Structural Properties and Application in Detection of Hg2+. J Mol Struct 2022, 1254. https://doi.org/10.1016/j.molstruc.2021.132293.
dc.relation.referencesRodrigues, S. S. M.; Ribeiro, D. S. M.; Soares, J. X.; Passos, M. L. C.; Saraiva, M. L. M. F. S.; Santos, J. L. M. Application of Nanocrystalline CdTe Quantum Dots in Chemical Analysis: Implementation of Chemo-Sensing Schemes Based on Analyte-Triggered Photoluminescence Modulation. Coordination Chemistry Reviews. Elsevier B.V. January 1, 2017, pp 127–143. https://doi.org/10.1016/j.ccr.2016.10.001
dc.relation.referencesHartley, C. L.; Kessler, M. L.; Dempsey, J. L. Molecular-Level Insight into Semiconductor Nanocrystal Surfaces. J Am Chem Soc 2021, 143 (3), 1251–1266. https://doi.org/10.1021/jacs.0c10658
dc.relation.referencesHoutepen, A. J.; Hens, Z.; Owen, J. S.; Infante, I. On the Origin of Surface Traps in Colloidal II-VI Semiconductor Nanocrystals. Chemistry of Materials 2017, 29 (2), 752–761. https://doi.org/10.1021/acs.chemmater.6b04648
dc.relation.referencesRen, C.; Hao, J.; Chen, H.; Wang, K.; Wu, D. Prepare Core-Multishell CdSe/ZnS Nanocrystals with Pure Color and Controlled Emission by Tri-n-Octylphosphine-Assisted Method. Appl Surf Sci 2015, 353, 480–488. https://doi.org/10.1016/j.apsusc.2015.06.149.
dc.relation.referencesDabbousi, B. O.; Rodriguez-Viejo, J.; Mikulec, F. V.; Heine, J. R.; Mattoussi, H.; Ober, R.; Jensen, K. F.; Bawendi, M. G. (CdSe)ZnS Core−Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites. J Phys Chem B 1997, 101 (46), 9463–9475. https://doi.org/10.1021/jp971091y.
dc.relation.referencesReiss, P.; Protière, M.; Li, L. Core/Shell Semiconductor Nanocrystals. Small 2009, 5 (2), 154–168. https://doi.org/10.1002/smll.200800841
dc.relation.referencesMathew, S.; Bhardwaj, B. S.; Saran, A. D.; Radhakrishnan, P.; Nampoori, V. P. N.; Vallabhan, C. P. G.; Bellare, J. R. Effect of ZnS Shell on Optical Properties of CdSe-ZnS Core-Shell Quantum Dots. Opt Mater (Amst) 2015, 39, 46–51. https://doi.org/10.1016/j.optmat.2014.10.061.
dc.relation.referencesReiss, P.; Pron, A. Highly Luminescent CdSe / ZnSe Core / Shell Nanocrystals of Low Size Dispersion. 2002, 21–24.
dc.relation.referencesVasudevan, D.; Gaddam, R. R.; Trinchi, A.; Cole, I. Core-Shell Quantum Dots: Properties and Applications. J Alloys Compd 2015, No. February. https://doi.org/10.1016/j.jallcom.2015.02.102.
dc.relation.referencesVinayakan, R.; Shanmugapriya, T.; Nair, P. V.; Ramamurthy, P.; Thomas, K. G. An Approach for Optimizing the Shell Thickness of Core - Shell Quantum Dots Using Photoinduced Charge Transfer. Journal of Physical Chemistry C 2007, 111 (28), 10146–10149. https://doi.org/10.1021/jp072823h.
dc.relation.referencesPisheh, H. S.; Gheshlaghi, N.; Ünlü, H. The Effects of Strain and Spacer Layer in CdSe/CdS/ZnS and CdSe/ZnS/CdS Core/Shell Quantum Dots. Physica E Low Dimens Syst Nanostruct 2017, 85, 334–339. https://doi.org/10.1016/j.physe.2016.07.007
dc.relation.referencesSperanskaya, E. S.; Goftman, V. V.; Goryacheva, I. Y. Preparation of Water Soluble Zinc-Blende CdSe/ZnS Quantum Dots. Nanotechnol Russ 2013, 8 (1–2), 129–135. https://doi.org/10.1134/S1995078013010163.
dc.relation.referencesBaranov, V.; Rakovich, Y. P.; Donegan, F.; Perova, S.; Moore, A.; Talapin, V.; Rogach, L.; Masumoto, Y.; Nabiev, I. Effect of ZnS Shell Thickness on the Phonon Spectra in CdSe Quantum Dots. Phys Rev B Condens Matter Mater Phys 2003, 68 (16). https://doi.org/10.1103/PhysRevB.68.165306
dc.relation.referencesPeng, Z. A.; Peng, X. Mechanisms of the Shape Evolution of CdSe Nanocrystals. J Am Chem Soc 2001, 123 (7), 1389–1395. https://doi.org/10.1021/ja0027766.
dc.relation.referencesBoatman, E. M.; Lisensky, G. C.; Nordell, K. J. A Safer, Easier, Faster Synthesis for CdSe Quantum Dot Nanocrystals; 2005. www.JCE.DivCHED.org.
dc.relation.referencesStiven Gómez-Piñeros, B.; Granados-Oliveros, G. Fisicoquímica y Química Inorgánica; 2015; Vol. 44.
dc.relation.referencesTan, A. C. W.; Polo-Cambronell, B. J.; Provaggi, E.; Ardila-Suárez, C.; Ramirez-Caballero, G. E.; Baldovino-Medrano, V. G.; Kalaskar, D. M. Design and Development of Low Cost Polyurethane Biopolymer Based on Castor Oil and Glycerol for Biomedical Applications. Biopolymers 2018, 109 (2). https://doi.org/10.1002/bip.23078
dc.relation.referencesBotao Ji, S. K. I. S. S. R. U. B. ZnSe-ZnS Core-Shell Quantum Dots with Superior Optical. Nano Lett 2020, 20, 2387–2395. https://doi.org/https://dx.doi.org/10.1021/acs.nanolett.9b05020
dc.relation.referencesHien, N. T.; Vinh, N. D.; Thanh, L. D.; Do, P. V; Tuyen, V. P.; Ca, N. X.; Vinh, N. D.; Thanh, L. D.; Do, P. V; Tuyen, V. P.; Ca, N. X. Synthesis, Characterization and the Photoinduced Electron-Transfer Energetics of CdTe/CdSe Type-II Core/Shell Quantum Dots. Journal of Luminiscence 2019. https://doi.org/https://doi.org/10.1016/j.jlumin.2019.116822.
dc.relation.referencesXie, R.; Kolb, U.; Li, J.; Basché, T.; Mews, A. Synthesis and Characterization of Highly Luminescent CdSe-Core CdS/Zn 0.5Cd0.5S/ZnS Multishell Nanocrystals. J Am Chem Soc 2005, 127 (20), 7480– 7488. https://doi.org/10.1021/ja042939g
dc.relation.referencesFu, Y.; Kim, D.; Jiang, W.; Yin, W.; Ahn, T. K.; Chae, H. Excellent Stability of Thicker Shell CdSe@ZnS/ZnS Quantum Dots. RSC Adv 2017, 7 (65), 40866–40872. https://doi.org/10.1039/c7ra06957
dc.relation.referencesLiu, N.; Ding, L.; Xue, H.; Ji, Y.; Ye, Y. Effect of Shell Thickness on Optical Properties of ZnSe/ZnS Quantum Dots under Solar and Laser Excitation. Journal of Nanoparticle Research 2022, 24 (7). https://doi.org/10.1007/s11051-022-05503-6.
dc.relation.referencesYu, W. W.; Qu, L.; Guo, W.; Peng, X. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals. Chemistry of Materials 2003, 15 (14), 2854–2860. https://doi.org/10.1021/cm034081k
dc.relation.referencesHao, J.; Liu, H.; Miao, J.; Lu, R.; Zhou, Z.; Zhao, B.; Xie, B. A Facile Route to Synthesize CdSe / ZnS Thick-Shell Quantum Dots with Precisely Controlled Green Emission Properties : Towards QDs Based LED Applications. Sci Rep 2019, No. August, 1–8. https://doi.org/10.1038/s41598-019-48469-7.
dc.relation.referencesGyörgy, E.; Pérez Del Pino, A.; Roqueta, J.; Ballesteros, B.; Miguel, A. S.; Maycock, C.; Oliva, A. G. Synthesis and Characterization of CdSe/ZnS Core-Shell Quantum Dots Immobilized on Solid Substrates through Laser Irradiation. Physica Status Solidi (A) Applications and Materials Science 2012, 209 (11), 2201–2207. https://doi.org/10.1002/pssa.201127749
dc.relation.referencesChang, K. P.; Yeh, Y. C.; Wu, C. J.; Yen, C. C.; Wuu, D. S. Improved Characteristics of CdSe/CdS/ZnS Core-Shell Quantum Dots Using an Oleylamine-Modified Process. Nanomaterials 2022, 12 (6). https://doi.org/10.3390/nano12060909
dc.relation.referencesChen, S.; Zhang, X.; Zhang, Q.; Tan, W. Trioctylphosphine as Both Solvent and Stabilizer to Synthesize CdS Nanorods. Nanoscale Res Lett 2009, 4 (10), 1159–1165. https://doi.org/10.1007/s11671-009-9375- x.
dc.relation.referencesGuo, H.; Chen, Y.; Ping, H.; Jin, J.; Peng, D. L. Facile Synthesis of Cu and Cu@Cu-Ni Nanocubes and Nanowires in Hydrophobic Solution in the Presence of Nickel and Chloride Ions. Nanoscale 2013, 5 (6), 2394–2402. https://doi.org/10.1039/c3nr33142c.
dc.relation.referencesKim, K. M.; Jeon, J. H.; Kim, Y. Y.; Lee, H. K.; Park, O. O.; Wang, D. H. Effects of Ligand Exchanged CdSe Quantum Dot Interlayer for Inverted Organic Solar Cells. Org Electron 2015, 25, 44–49. https://doi.org/10.1016/j.orgel.2015.05.040
dc.relation.referencesZhang, L.; He, R.; Gu, H. C. Oleic Acid Coating on the Monodisperse Magnetite Nanoparticles. Appl Surf Sci 2006, 253 (5), 2611–2617. https://doi.org/10.1016/j.apsusc.2006.05.023.
dc.relation.referencesZhang, N.; Xie, J.; Varadan, V. K. Functionalization of Carbon Nanotubes by Potassium Permanganate Assisted with Phase Transfer Catalyst; 2002
dc.relation.referencesWatts, J. F.; Wolstenholme, John. An Introduction to Surface Analysis by XPS and AES; J. Wiley, 2003.
dc.relation.referencesBriggs’, D.; Beamson, G.; Plc, Z. XPS Studies of the Oxygen Is and 2s Levels in a Wide Range of Functional Polymers; Vol. 1883.
dc.relation.referencesCingarapu, S.; Yang, Z.; Sorensen, C. M.; Klabunde, K. J. Synthesis of CdSe/ZnS and CdTe/ZnS Quantum Dots: Refined Digestive Ripening. J Nanomater 2012, 2012. https://doi.org/10.1155/2012/312087.
dc.relation.referencesGranada-Ramirez, D. A.; Arias-Cerón, J. S.; Gómez-Herrera, M. L.; Luna-Arias, J. P.; Pérez-González, M.; Tomás, S. A.; Rodríguez-Fragoso, P.; Mendoza-Alvarez, J. G. Effect of the Indium Myristate Precursor Concentration on the Structural, Optical, Chemical Surface, and Electronic Properties of InP Quantum Dots Passivated with ZnS. Journal of Materials Science: Materials in Electronics 2019, 30 (5), 4885–4894. https://doi.org/10.1007/s10854-019-00783-6.
dc.relation.referencesZhang, D.; Du, C.; Chen, J.; Shi, Q.; Wang, Q.; Li, S.; Wang, W.; Yan, X.; Fan, Q. Improvement of Structural and Optical Properties of ZnAl2O4:Cr3+ Ceramics with Surface Modification by Using Various Concentrations of Zinc Acetate. J Solgel Sci Technol 2018, 88 (2), 422–429. https://doi.org/10.1007/s10971-018-4820-x.
dc.relation.referencesTshabalala, K. G.; Cho, S. H.; Park, J. K.; Pitale, S. S.; Nagpure, I. M.; Kroon, R. E.; Swart, H. C.; Ntwaeaborwa, O. M. Luminescent Properties and X-Ray Photoelectron Spectroscopy Study of ZnAl2O4:Ce3+,Tb3+ Phosphor. J Alloys Compd 2011, 509 (41), 10115–10120. https://doi.org/10.1016/j.jallcom.2011.08.054
dc.relation.referencesGopannagari, M.; Kumar, D. P.; Park, H.; Kim, E. H.; Bhavani, P.; Reddy, D. A.; Kim, T. K. Influence of Surface-Functionalized Multi-Walled Carbon Nanotubes on CdS Nanohybrids for Effective Photocatalytic Hydrogen Production. Appl Catal B 2018, 236, 294–303. https://doi.org/10.1016/j.apcatb.2018.05.009
dc.relation.referencesBowen Katari, J. E.; Colvin, V. L.; Alivisatos, A. P. X-Ray Photoelectron Spectroscopy of CdSe Nanocrystals with Applications to Studies of the Nanocrystal Surface; 1994; Vol. 98.
dc.relation.referencesCanava, B.; Vigneron, J.; Etcheberry, A.; Guillemoles, J. F.; Lincot, D. High Resolution XPS Studies of Se Chemistry of a Cu(In, Ga)Se 2 Surface
dc.relation.referencesParani, S.; Tsolekile, N.; Pandian, K.; Oluwafemi, O. S. Thiolated Selenium as a New Precursor for the Aqueous Synthesis of CdSe/CdS Core/Shell Quantum Dots. Journal of Materials Science: Materials in Electronics 2017, 28 (15), 11151–11162. https://doi.org/10.1007/s10854-017-6902-x.
dc.relation.referencesPechstedt, K.; Whittle, T.; Baumberg, J.; Melvin, T. Photoluminescence of Colloidal CdSe/ZnS Quantum Dots: The Critical Effect of Water Molecules. Journal of Physical Chemistry C 2010, 114 (28), 12069–12077. https://doi.org/10.1021/jp100415k
dc.relation.referencesVale, B. R. C.; Mourão, R. S.; Bettini, J.; Sousa, J. C. L.; Ferrari, J. L.; Reiss, P.; Aldakov, D.; Schiavon, M. A. Ligand Induced Switching of the Band Alignment in Aqueous Synthesized CdTe/CdS Core/Shell Nanocrystals. Sci Rep 2019, 9 (1). https://doi.org/10.1038/s41598-019-44787-y.
dc.relation.referencesPu, C.; Peng, X. To Battle Surface Traps on CdSe/CdS Core/Shell Nanocrystals: Shell Isolation versus Surface Treatment. J Am Chem Soc 2016, 138 (26), 8134–8142. https://doi.org/10.1021/jacs.6b02909.
dc.relation.referencesRajapaksha, R. D.; Ranasinghe, M. I. The Shell Thickness and Surface Passivation Dependence of Fluorescence Decay Kinetics in CdSe/ZnS Core-Shell and CdSe Core Colloidal Quantum Dots. J Lumin 2017, 192, 860–866. https://doi.org/10.1016/j.jlumin.2017.08.024.
dc.relation.referencesPark, J.; Lee, K. H.; Galloway, J. F.; Searson, P. C. Synthesis of Cadmium Selenide Quantum Dots from a Non-Coordinating Solvent: Growth Kinetics and Particle Size Distribution. Journal of Physical Chemistry C 2008, 112 (46), 17849–17854. https://doi.org/10.1021/jp803746b.
dc.relation.referencesAplop, F.; Johan, M. R. Synthesis of Zn Doped CdSe Quantum Dots via Inverse Micelle Technique. Materials Science Forum 2015, 807, 115–121. https://doi.org/10.4028/www.scientific.net/MSF.807.115.
dc.relation.referencesAbouElhamd, A. R.; Al-Sallal, K. A.; Hassan, A. Review of Core/Shell Quantum Dots Technology Integrated into Building’s Glazing. Energies (Basel) 2019, 12 (6). https://doi.org/10.3390/en12061058.
dc.relation.referencesDos Santos, J. A. L.; Baum, F.; Kohlrausch, E. C.; Tavares, F. C.; Pretto, T.; Dos Santos, F. P.; Leite Santos, J. F.; Khan, S.; Leite Santos, M. J. 3-Mercaptopropionic, 4-Mercaptobenzoic, and Oleic Acid Capped CdSe Quantum Dots: Interparticle Distance, Anchoring Groups, and Surface Passivation. J Nanomater 2019, 2019. https://doi.org/10.1155/2019/2796746
dc.relation.referencesAlvarenga, S.; Ponce, H.; González Oliva, I.; Rudamas, C. Changes on the Stokes Shift in Large CdSe Colloidal Quantum Dots by a Ligand Exchange. In Proceedings of the 2nd International Conference of Theoretical and Applied Nanoscience and Nanotechnology (TANN’18); Avestia Publishing, 2018. https://doi.org/10.11159/tann18.140.
dc.relation.referencesYang, Y.; Chen, O.; Angerhofer, A.; Cao, Y. C. Radial-Position-Controlled Doping of CdS/ZnS Core/Shell Nanocrystals: Surface Effects and Position-Dependent Properties. Chemistry - A European Journal 2009, 15 (13), 3186–3197. https://doi.org/10.1002/chem.200802295
dc.relation.referencesVerma, S.; Kaniyankandy, S.; Ghosh, H. N. Charge Separation by Indirect Bandgap Transitions in CdS/ZnSe Type-II Core/Shell Quantum Dots. Journal of Physical Chemistry C 2013, 117 (21), 10901– 10908. https://doi.org/10.1021/jp400014j.
dc.relation.referencesJiang, Z. J.; Kelley, D. F. Hot and Relaxed Electron Transfer from the CdSe Core and Core/Shell Nanorods. Journal of Physical Chemistry C 2011, 115 (11), 4594–4602. https://doi.org/10.1021/jp112424z.
dc.relation.referencesShi, X.; Chen, S.; Luo, M. Y.; Huang, B.; Zhang, G.; Cui, R.; Zhang, M. Zn-Doping Enhances the Photoluminescence and Stability of PbS Quantum Dots for in Vivo High-Resolution Imaging in the NIR-II Window. Nano Res 2020, 13 (8), 2239–2245. https://doi.org/10.1007/s12274-020-2843-4.
dc.relation.referencesSambur, J. B.; Parkinson, B. A. CdSe/ZnS Core/Shell Quantum Dot Sensitization of Low Index Tio2 Single Crystal Surfaces. J Am Chem Soc 2010, 132 (7), 2130–2131. https://doi.org/10.1021/ja9098577
dc.relation.referencesLi, J.; Zheng, H.; Zheng, Z.; Rong, H.; Zeng, Z.; Zeng, H. Synthesis of CdSe and CdSe/ZnS Quantum Dots with Tunable Crystal Structure and Photoluminescent Properties. Nanomaterials 2022, Vol. 12, Page 2969 2022, 12 (17), 2969. https://doi.org/10.3390/NANO12172969.
dc.relation.referencesLa Rosa, M.; Denisov, S. A.; Jonusauskas, G.; McClenaghan, N. D.; Credi, A. Designed Long-Lived Emission from CdSe Quantum Dots through Reversible Electronic Energy Transfer with a Surface Bound Chromophore. Angewandte Chemie International Edition 2018, 57 (12), 3104–3107. https://doi.org/10.1002/ANIE.201712403.
dc.relation.referencesKempken, B.; Dzhagan, V.; Zahn, D. R. T.; Alcocer, M. J. P.; Kriegel, I.; Scotognella, F.; Parisi, J.; Kolny-Olesiak, J. Synthesis, Optical Properties, and Photochemical Activity of Zinc-Indium-Sulfide Nanoplates. RSC Adv 2015, 5 (109), 89577–89585. https://doi.org/10.1039/C5RA20570K.
dc.relation.referencesFrederick, M. T.; Weiss, E. A. Relaxation of Exciton Confinement in CdSe Quantum Dots by Modification with a Conjugated Dithiocarbamate Ligand. ACS Nano 2010, 4 (6), 3195–3200. https://doi.org/10.1021/nn1007435.
dc.relation.referencesJin, S.; Harris, R. D.; Lau, B.; Aruda, K. O.; Amin, V. A.; Weiss, E. A. Enhanced Rate of Radiative Decay in Cdse Quantum Dots upon Adsorption of an Exciton-Delocalizing Ligand. Nano Lett 2014, 14 (9), 5323–5328. https://doi.org/10.1021/nl5023699.
dc.relation.referencesDu Fossé, I.; Ten Brinck, S.; Infante, I.; Houtepen, A. J. Role of Surface Reduction in the Formation of Traps in N-Doped II-VI Semiconductor Nanocrystals: How to Charge without Reducing the Surface. Chemistry of Materials 2019, 31 (12), 4575–4583. https://doi.org/10.1021/ACS.CHEMMATER.9B01395/ASSET/IMAGES/LARGE/CM-2019- 013956_0004.JPEG.
dc.relation.referencesLi, S. L.; Jiang, P.; Hua, S.; Jiang, F. L.; Liu, Y. Near-Infrared Zn-Doped Cu2S Quantum Dots: An Ultrasmall Theranostic Agent for Tumor Cell Imaging and Chemodynamic Therapy. Nanoscale 2021, 13 (6), 3673–3685. https://doi.org/10.1039/d0nr07537j.
dc.relation.referencesMahler, B.; Spinicelli, P.; Buil, S.; Quelin, X.; Hermier, J. P.; Dubertret, B. Towards Non-Blinking Colloidal Quantum Dots. Nat Mater 2008, 7 (8), 659–664. https://doi.org/10.1038/nmat2222.
dc.relation.referencesGao, Y.; Peng, X. Photogenerated Excitons in Plain Core CdSe Nanocrystals with Unity Radiative Decay in Single Channel: The Effects of Surface and Ligands. J Am Chem Soc 2015, 137 (12), 4230–4235. https://doi.org/10.1021/jacs.5b01314.
dc.relation.referencesYadav, A. N.; Kumar, P.; Singh, K. Femtosecond Photoluminescence Up-Conversion Spectroscopy in Cu Doped CdS Quantum Dots. Mater Lett 2021, 297. https://doi.org/10.1016/j.matlet.2021.129925
dc.relation.referencesDe Trizio, L.; Prato, M.; Genovese, A.; Casu, A.; Povia, M.; Simonutti, R.; Alcocer, M. J. P.; D’Andrea, C.; Tassone, F.; Manna, L. Strongly Fluorescent Quaternary Cu-In-Zn-S Nanocrystals Prepared from Cu1-XInS 2 Nanocrystals by Partial Cation Exchange. Chemistry of Materials 2012, 24 (12), 2400–2406. https://doi.org/10.1021/cm301211e.
dc.relation.referencesWang, H.; Song, D.; Zhou, Y.; Liu, J.; Zhu, A.; Long, F. Fluorescence Enhancement of CdSe/ZnS Quantum Dots Induced by Mercury Ions and Its Applications to the on-Site Sensitive Detection of Mercury Ions. Microchimica Acta 2021, 188 (6), 1–9. https://doi.org/10.1007/S00604-021-04871- 5/METRICS.
dc.relation.referencesDe Trizio, L.; Manna, L. Forging Colloidal Nanostructures via Cation Exchange Reactions. Chemical Reviews. American Chemical Society September 28, 2016, pp 10852–10887. https://doi.org/10.1021/acs.chemrev.5b00739
dc.relation.referencesKnowles, K. E.; Hartstein, K. H.; Kilburn, T. B.; Marchioro, A.; Nelson, H. D.; Whitham, P. J.; Gamelin, D. R. Luminescent Colloidal Semiconductor Nanocrystals Containing Copper: Synthesis, Photophysics, and Applications. Chem Rev 2016, 116 (18), 10820–10851. https://doi.org/10.1021/ACS.CHEMREV.6B00048/ASSET/IMAGES/MEDIUM/CR-2016- 00048H_0029.GIF.
dc.relation.referencesChen, X.; Lou, Y.; Samia, A. C.; Burda, C. Coherency Strain Effects on the Optical Response of Core/Shell Heteronanostructures. Nano Lett 2003, 3 (6), 799–803. https://doi.org/10.1021/nl034243b.
dc.relation.referencesSmith, A. M.; Mohs, A. M.; Nie, S. Tuning the Optical and Electronic Properties of Colloidal Nanocrystals by Lattice Strain. Nat Nanotechnol 2009, 4 (1), 56–63. https://doi.org/10.1038/nnano.2008.360.
dc.relation.referencesPendyala, N. B.; Koteswara Rao, K. S. R. Efficient Hg and Ag Ion Detection with Luminescent PbS Quantum Dots Grown in Poly Vinyl Alcohol and Capped with Mercaptoethanol. Colloids Surf A Physicochem Eng Asp 2009, 339 (1–3), 43–47. https://doi.org/10.1016/j.colsurfa.2009.01.013
dc.relation.referencesJaiswal, A.; Ghsoh, S. S.; Chattopadhyay, A. Quantum Dot Impregnated-Chitosan Film for Heavy Metal Ion Sensing and Removal. Langmuir 2012, 28 (44), 15687–15696. https://doi.org/10.1021/la3027573.
dc.relation.referencesVázquez-González, M.; Carrillo-Carrion, C. Analytical Strategies Based on Quantum Dots for Heavy Metal Ions Detection. J Biomed Opt 2014, 19 (10), 101503. https://doi.org/10.1117/1.jbo.19.10.101503.
dc.relation.referencesZhu, X.; Zhao, Z.; Chi, X.; Gao, J. Facile, Sensitive, and Ratiometric Detection of Mercuric Ions Using GSH-Capped Semiconductor Quantum Dots. Analyst 2013, 138 (11), 3230–3237. https://doi.org/10.1039/c3an00011g
dc.relation.referencesLiang, J. G.; Ai, X. P.; He, Z. K.; Pang, D. W. Functionalized CdSe Quantum Clots as Selective Silver Ion Chemodosimeter. Analyst 2004, 129 (7), 619–622. https://doi.org/10.1039/b317044f.
dc.relation.referencesZhu, C.; Li, L.; Fang, F.; Chen, J.; Wu, Y. Functional InP Nanocrystals as Novel Near-Infrared Fluorescent Sensors for Mercury Ions. Chem Lett 2005, 34 (7), 898–899. https://doi.org/10.1246/cl.2005.898.
dc.relation.referencesWang, H.; Song, D.; Zhou, Y.; Liu, J.; Zhu, A.; Long, F. Fluorescence Enhancement of CdSe/ZnS Quantum Dots Induced by Mercury Ions and Its Applications to the on-Site Sensitive Detection of Mercury Ions. https://doi.org/10.1007/s00604-021-04871-5/Published
dc.relation.referencesChern, M.; Nguyen, T. T.; Mahler, A. H.; Dennis, A. M. Shell Thickness Effects on Quantum Dot Brightness and Energy Transfer. Nanoscale 2017, 9 (42), 16446–16458. https://doi.org/10.1039/c7nr04296e.
dc.relation.referencesMoore, D. E.; Patel, K. Q-CdS Photoluminescence Activation on Zn2+ and Cd2+ Salt Introduction. Langmuir 2001, 17 (8), 2541–2544. https://doi.org/10.1021/la001416t.
dc.relation.referencesShrivastava, A.; Gupta, V. Methods for the Determination of Limit of Detection and Limit of Quantitation of the Analytical Methods. Chronicles of Young Scientists 2011, 2 (1), 21. https://doi.org/10.4103/2229-5186.79345
dc.relation.referencesWorld Health Organization. Guidelines for Drinking-Water Quality.; World Health Organization, 2011.
dc.relation.referencesU.S. EPA National Primary Drinking Water Regulations.
dc.relation.referencesPaim, A. P. S.; Rodrigues, S. S. M.; Ribeiro, D. S. M.; De Souza, G. C. S.; Santos, J. L. M.; Araújo, A. N.; Amorim, C. G.; Teixeira-Neto, É.; Da Silva, V. L.; Montenegro, M. C. B. S. M. Fluorescence Probe for Mercury(II) Based on the Aqueous Synthesis of CdTe Quantum Dots Stabilized with 2- Mercaptoethanesulfonate. New Journal of Chemistry 2017, 41 (9), 3265–3272. https://doi.org/10.1039/c6nj04032b.
dc.relation.referencesKamat, P. V. Photochemistry on Nonreactive and Reactive (Semiconductor) Surfaces; 1993; Vol. 93.
dc.relation.referencesMu, Q.; Li, Y.; Xu, H.; Ma, Y.; Zhu, W.; Zhong, X. Quantum Dots-Based Ratiometric Fluorescence Probe for Mercuric Ions in Biological Fluids. Talanta 2014, 119, 564–571. https://doi.org/10.1016/j.talanta.2013.11.036.
dc.relation.referencesBear, J. C.; Hollingsworth, N.; Roffey, A.; Mcnaughter, P. D.; Mayes, A. G.; Macdonald, T. J.; Nann, T.; Ng, W. H.; Kenyon, A. J.; Hogarth, G.; Parkin, I. P. Doping Group IIB Metal Ions into Quantum Dot Shells via the One-Pot Decomposition of Metal-Dithiocarbamates. Adv Opt Mater 2015, 3 (5), 704–712. https://doi.org/10.1002/adom.201400570
dc.relation.referencesWang, P.; Gao, Y.; Li, P.; Zhang, X.; Niu, H.; Zheng, Z. Doping Zn2+ in CuS Nanoflowers into Chemically Homogeneous Zn0.49Cu0.50S1.01 Superlattice Crystal Structure as High-Efficiency n Type Photoelectric Semiconductors. ACS Appl Mater Interfaces 2016, 8 (24), 15820–15827. https://doi.org/10.1021/acsami.6b04378.
dc.relation.referencesHao, L.; Chen, X.; Liu, D.; Bian, Y.; Zhao, W.; Tang, K.; Zhang, R.; Zheng, Y.; Gu, S. Charge Transfer Dynamics of the CdTe Quantum Dots Fluorescence Quenching Induced by Ferrous (II) Ions. Appl Phys Lett 2020, 116 (1). https://doi.org/10.1063/1.5129473.
dc.relation.referencesYadav, A. N.; Kumar, P.; Singh, K. Femtosecond Photoluminescence Up-Conversion Spectroscopy in Cu Doped CdS Quantum Dots. Mater Lett 2021, 297. https://doi.org/10.1016/j.matlet.2021.129925.
dc.relation.referencesLiu, Y.; Tang, X.; Deng, M.; Zhu, T.; Edman, L.; Wang, J. Hydrophilic AgInZnS Quantum Dots as a Fluorescent Turn-on Probe for Cd2+ Detection. J Alloys Compd 2021, 864. https://doi.org/10.1016/j.jallcom.2020.158109
dc.relation.referencesDe Trizio, L.; Manna, L. Forging Colloidal Nanostructures via Cation Exchange Reactions. Chemical Reviews. American Chemical Society September 28, 2016, pp 10852–10887. https://doi.org/10.1021/acs.chemrev.5b00739
dc.relation.referencesWu, P.; Zhao, T.; Wang, S.; Hou, X. Semicondutor Quantum Dots-Based Metal Ion Probes. Nanoscale 2014, 6 (1), 43–64. https://doi.org/10.1039/c3nr04628a
dc.relation.referencesPrudnikau, A.; Artemyev, M.; Molinari, M.; Troyon, M.; Sukhanova, A.; Nabiev, I.; Baranov, A. V.; Cherevkov, S. A.; Fedorov, A. V. Chemical Substitution of Cd Ions by Hg in CdSe Nanorods and Nanodots: Spectroscopic and Structural Examination. Mater Sci Eng B Solid State Mater Adv Technol 2012, 177 (10), 744–749. https://doi.org/10.1016/j.mseb.2011.12.038
dc.relation.referencesZhou, J.; Liu, Y.; Tang, J.; Tang, W. Surface Ligands Engineering of Semiconductor Quantum Dots for Chemosensory and Biological Applications. Biochem Pharmacol 2017, 20 (7), 360– 376. https://doi.org/10.1016/j.mattod.2017.02.006
dc.relation.referencesFrederick, M. T.; Weiss, E. A. Relaxation of Exciton Confinement in CdSe Quantum Dots by Modification with a Conjugated Dithiocarbamate Ligand. ACS Nano 2010, 4 (6), 3195–3200. https://doi.org/10.1021/nn1007435
dc.relation.referencesFrederick, M. T.; Amin, V. A.; Cass, L. C.; Weiss, E. A. A Molecule to Detect and Perturb the Confinement of Charge Carriers in Quantum Dots. Nano Lett 2011, 11 (12), 5455–5460. https://doi.org/10.1021/nl203222m.
dc.relation.referencesLiu, I. S.; Lo, H. H.; Chien, C. T.; Lin, Y. Y.; Chen, C. W.; Chen, Y. F.; Su, W. F.; Liou, S. C. Enhancing Photoluminescence Quenching and Photoelectric Properties of CdSe Quantum Dots with Hole Accepting Ligands. J Mater Chem 2008, 18 (6), 675–682. https://doi.org/10.1039/b715253a
dc.relation.referencesDe Trizio, L.; Manna, L. Forging Colloidal Nanostructures via Cation Exchange Reactions. Chemical Reviews. American Chemical Society September 28, 2016, pp 10852–10887. https://doi.org/10.1021/acs.chemrev.5b00739.
dc.relation.referencesVasudevan, D.; Gaddam, R. R.; Trinchi, A.; Cole, I. Core-Shell Quantum Dots: Properties and Applications. J Alloys Compd 2015, No. February. https://doi.org/10.1016/j.jallcom.2015.02.102
dc.relation.referencesR. W. Knoss. Quantum Dots: Research, Technology and Applications; 2008.
dc.relation.referencesGidwani, B.; Sahu, V.; Shukla, S. S.; Pandey, R.; Joshi, V.; Jain, V. K.; Vyas, A. Quantum Dots: Prospectives, Toxicity, Advances and Applications. Journal of Drug Delivery Science and Technology. Editions de Sante February 1, 2021. https://doi.org/10.1016/j.jddst.2020.102308.
dc.relation.referencesDorfs, D.; Krahne, R.; Falqui, A.; Manna, L.; Giannini, C.; Zanchet, D. Quantum Dots: Synthesis and Characterization; Elsevier Ltd., 2011; Vol. 1. https://doi.org/10.1016/B978-0-12-812295- 2.00028-3.
dc.relation.referencesZhang, Y.; Schnoes, A. M.; Clapp, A. R. Dithiocarbamates as Capping Ligands for Water-Soluble Quantum Dots. ACS Appl Mater Interfaces 2010, 2 (11), 3384–3395. https://doi.org/10.1021/am100996g
dc.relation.referencesReshma, V. G.; Mohanan, P. v. Quantum Dots: Applications and Safety Consequences. Journal of Luminescence. Elsevier B.V. January 1, 2019, pp 287–298. https://doi.org/10.1016/j.jlumin.2018.09.015.
dc.relation.referencesGiansante, C. Surface Chemistry Control of Colloidal Quantum Dot Band Gap. Journal of Physical Chemistry C 2018, 122 (31), 18110–18116. https://doi.org/10.1021/acs.jpcc.8b05124.
dc.relation.referencesKnowles, K. E.; Tice, D. B.; McArthur, E. A.; Solomon, G. C.; Weiss, E. A. Chemical Control of the Photoluminescence of CdSe Quantum Dot-Organic Complexes with a Series of Para Substituted Aniline Ligands. J Am Chem Soc 2010, 132 (3), 1041–1050. https://doi.org/10.1021/ja907253s.
dc.relation.referencesFrederick, M. T.; Amin, V. A.; Weiss, E. A. Optical Properties of Strongly Coupled Quantum Dot-Ligand Systems. Journal of Physical Chemistry Letters 2013, 4 (4), 634–640. https://doi.org/10.1021/jz301905n.
dc.relation.referencesHartley, C. L.; Kessler, M. L.; Dempsey, J. L. Molecular-Level Insight into Semiconductor Nanocrystal Surfaces. J Am Chem Soc 2021, 143 (3), 1251–1266. https://doi.org/10.1021/jacs.0c10658
dc.relation.referencesPeterson, M. D.; Jensen, S. C.; Weinberg, D. J.; Weiss, E. A. Mechanisms for Adsorption of Methyl Viologen on Cds Quantum Dots. ACS Nano 2014, 8 (3), 2826–2837. https://doi.org/10.1021/nn406651a.
dc.relation.referencesJeong, S.; Achermann, M.; Nanda, J.; Ivanov, S.; Klimov, V. I.; Hollingsworth, J. A. Effect of the Thiol-Thiolate Equilibrium on the Photophysical Properties of Aqueous CdSe/ZnS Nanocrystal Quantum Dots. J Am Chem Soc 2005, 127 (29), 10126–10127. https://doi.org/10.1021/ja042591p.
dc.relation.referencesGreen, M. The Nature of Quantum Dot Capping Ligands. J Mater Chem 2010, 20 (28), 5797. https://doi.org/10.1039/c0jm00007h.
dc.relation.referencesde Mello Donegá, C.; Hickey, S. G.; Wuister, S. F.; Vanmaekelbergh, D.; Meijerink, A. Single Step Synthesis to Control the Photoluminescence Quantum Yield and Size Dispersion of CdSe Nanocrystals. Journal of Physical Chemistry B 2003, 107 (2), 489–496. https://doi.org/10.1021/jp027160c.
dc.relation.referencesBullen, C.; Mulvaney, P. The Effects of Chemisorption on the Luminescence of CdSe Quantum Dots. Langmuir 2006, 22 (7), 3007–3013. https://doi.org/10.1021/la051898e
dc.relation.referencesMunro, A. M.; Plante, I. J. la; Ng, M. S.; Ginger, D. S. Quantitative Study of the Effects of Surface Ligand Concentration on CdSe Nanocrystal Photoluminescence. Journal of Physical Chemistry C 2007, 111 (17), 6220–6227. https://doi.org/10.1021/jp068733e.
dc.relation.referencesBodnarchuk, M. I.; Kovalenko, M. v. Engineering Colloidal Quantum Dots: Synthesis, Surface Chemistry, and Self-Assembly. In Colloidal Quantum Dot Optoelectronics and Photovoltaics; Cambridge University Press, 2010; Vol. 9780521198264, pp 1–29. https://doi.org/10.1017/CBO9781139022750.002.
dc.relation.referencesTohgha, U.; Varga, K.; Balaz, M. Achiral CdSe Quantum Dots Exhibit Optical Activity in the Visible Region upon Post-Synthetic Ligand Exchange with D- or L-Cysteine. Chemical Communications 2013, 49 (18), 1844–1846. https://doi.org/10.1039/c3cc37987f.
dc.relation.referencesBaker, D. R.; Kamat, P. V. Tuning the Emission of CdSe Quantum Dots by Controlled Trap Enhancement. Langmuir 2010, 26 (13), 11272–11276. https://doi.org/10.1021/la100580g
dc.relation.referencesLiang, Y.; Thorne, J. E.; Parkinson, B. A. Controlling the Electronic Coupling between CdSe Quantum Dots and Thiol Capping Ligands via PH and Ligand Selection. Langmuir 2012, 28 (30), 11072–11077. https://doi.org/10.1021/la301237p.
dc.relation.referencesWuister, S. F.; De Mello Donegá, C.; Meijerink, A. Influence of Thiol Capping on the Exciton Luminescence and Decay Kinetics of CdTe and CdSe Quantum Dots. Journal of Physical Chemistry B 2004, 108 (45), 17393–17397. https://doi.org/10.1021/jp047078c.
dc.relation.referencesTan, A. C. W.; Polo-Cambronell, B. J.; Provaggi, E.; Ardila-Suárez, C.; Ramirez-Caballero, G. E.; Baldovino-Medrano, V. G.; Kalaskar, D. M. Design and Development of Low Cost Polyurethane Biopolymer Based on Castor Oil and Glycerol for Biomedical Applications. Biopolymers 2018, 109 (2). https://doi.org/10.1002/bip.23078.
dc.relation.referencesQuerner, C.; Reiss, P.; Bleuse, J.; Pron, A. Chelating Ligands for Nanocrystals’ Surface Functionalization. J Am Chem Soc 2004, 126 (37), 11574–11582. https://doi.org/10.1021/ja047882c.
dc.relation.referencesQuerner, C.; Benedetto, A.; Demadrille, R.; Rannou, P.; Reiss, P. Carbodithioate-Containing Oligo- and Polythiophenes for Nanocrystals’ Surface Functionalization. Chemistry of Materials 2006, 18 (20), 4817–4826. https://doi.org/10.1021/cm061105p.
dc.relation.referencesMurru, S.; Ghosh, H.; Sahoo, S. K.; Patel, B. K. Intra- and Intermodular C-S Bond Formation Using a Single Catalytic System: First Direct Access to Arylthiobenzothiazoles. Org Lett 2009, 11 (19), 4254–4257. https://doi.org/10.1021/ol9017535.
dc.relation.referencesLakowicz, J. R. Principles of Fluorescence Spectroscopy; 2006. https://doi.org/10.1007/978-0- 387-46312-4.
dc.relation.referencesFurlani, C. and L. M. L. Complexes of Dithiocarboxylic Acids. Inorg Chem 1968, 7 (8), 1586– 1592.
dc.relation.referencesDubois, F.; Mahler, B.; Dubertret, B.; Doris, E.; Mioskowski, C. A Versatile Strategy for Quantum Dot Ligand Exchange. J Am Chem Soc 2007, 129 (3), 482–483. https://doi.org/10.1021/ja067742y.
dc.relation.referencesAlvarenga, S.; Ponce, H.; González Oliva, I.; Rudamas, C. Changes on the Stokes Shift in Large CdSe Colloidal Quantum Dots by a Ligand Exchange. In Proceedings of the 2nd International Conference of Theoretical and Applied Nanoscience and Nanotechnology (TANN’18); Avestia Publishing, 2018. https://doi.org/10.11159/tann18.140
dc.relation.referencesZhu, H.; Hu, M. Z.; Shao, L.; Yu, K.; Dabestani, R.; Zaman, M. B.; Liao, S. Synthesis and Optical Properties of Thiol Functionalized CdSe/ZnS (Core/Shell) Quantum Dots by Ligand Exchange. J Nanomater 2014, 2014. https://doi.org/10.1155/2014/324972.
dc.relation.referencesZhang, K.; Yu, T.; Liu, F.; Sun, M.; Yu, H.; Liu, B.; Zhang, Z.; Jiang, H.; Wang, S. Selective Fluorescence Turn-on and Ratiometric Detection of Organophosphate Using Dual-Emitting Mn Doped ZnS Nanocrystal Probe. Anal Chem 2014, 86 (23), 11727–11733. https://doi.org/10.1021/ac503134r.
dc.relation.referencesRen, T.; Mandal, P. K.; Erker, W.; Liu, Z.; Aviasevich, Y.; Puhl, L.; Mullen, K.; Basché, T. A Simple and Versatile Route to Stable Quantum Dot-Dye Hybrids in Nonaqueous and Aqueous Solutions. J Am Chem Soc 2008, 130 (51), 17242–17243. https://doi.org/10.1021/ja8073962.
dc.relation.referencesGyörgy, E.; Pérez Del Pino, A.; Roqueta, J.; Ballesteros, B.; Miguel, A. S.; Maycock, C.; Oliva, A. G. Synthesis and Characterization of CdSe/ZnS Core-Shell Quantum Dots Immobilized on Solid Substrates through Laser Irradiation. Physica Status Solidi (A) Applications and Materials Science 2012, 209 (11), 2201–2207. https://doi.org/10.1002/pssa.201127749.
dc.relation.referencesAkintola, O. S.; Saleh, T. A.; Khaled, M. M.; al Hamouz, O. C. S. Removal of Mercury (II) via a Novel Series of Cross-Linked Polydithiocarbamates. J Taiwan Inst Chem Eng 2016, 60, 602– 616. https://doi.org/10.1016/j.jtice.2015.10.039.
dc.relation.referencesDrozd, M.; Pietrzak, M.; Kalinowska, D.; Grabowska-Jadach, I.; Malinowska, E. Glucose Dithiocarbamate Derivatives as Capping Ligands of Water-Soluble CdSeS/ZnS Quantum Dots. Colloids Surf A Physicochem Eng Asp 2016, 509, 656–665. https://doi.org/10.1016/j.colsurfa.2016.09.072
dc.relation.referencesTan, Y.; Jin, S.; Hamers, R. J. Photostability of CdSe Quantum Dots Functionalized with Aromatic Dithiocarbamate Ligands. 2013
dc.relation.referencesCasas, S.; Sanchez, August.; Bravo, J.; GARCiA-FONTAN, S.; Castellano, E. E.; Jones, M. M. Cadmium Coordination Chemistry Related to Chelate Therapy*; 1989; Vol. 158
dc.relation.referencesZhang, L.; He, R.; Gu, H. C. Oleic Acid Coating on the Monodisperse Magnetite Nanoparticles. Appl Surf Sci 2006, 253 (5), 2611–2617. https://doi.org/10.1016/j.apsusc.2006.05.023.
dc.relation.referencesPermatasari, F. A.; Aimon, A. H.; Iskandar, F.; Ogi, T.; Okuyama, K. Role of C-N Configurations in the Photoluminescence of Graphene Quantum Dots Synthesized by a Hydrothermal Route. Sci Rep 2016, 6. https://doi.org/10.1038/srep21042.
dc.relation.referencesZhang, W.; Zhong, Y.; Tan, M.; Tang, N.; Yu, K. Molecules Synthesis and Structure of Bis(Dibutyldithiocarbamate)Zinc(II): Zn 2 [(n-Bu) 2 NCSS] 4; 2003; Vol. 8. http://www.mdpi.org/.
dc.relation.referencesScharf, T. W.; Ott, R. D.; Yang, D.; Barnard, J. A. Structural and Tribological Characterization of Protective Amorphous Diamond-like Carbon and Amorphous CNx Overcoats for next Generation Hard Disks. J Appl Phys 1999, 85 (6), 3142–3154. https://doi.org/10.1063/1.369654
dc.relation.referencesGong, P.; Hou, K.; Ye, X.; Ma, L.; Wang, J.; Yang, S. Synthesis of Highly Luminescent Fluorinated Graphene Quantum Dots with Tunable Fluorine Coverage and Size. Mater Lett 2015, 143, 112–115. https://doi.org/10.1016/j.matlet.2014.12.058.
dc.relation.referencesArtemenko, A.; Shchukarev, A.; Štenclová, P.; Wagberg, T.; Segervald, J.; Jia, X.; Kromka, A. Reference XPS Spectra of Amino Acids. In IOP Conference Series: Materials Science and Engineering; IOP Publishing Ltd, 2021; Vol. 1050. https://doi.org/10.1088/1757- 899X/1050/1/012001.
dc.relation.referencesBowen Katari, J. E.; Colvin, V. L.; Alivisatos, A. P. X-Ray Photoelectron Spectroscopy of CdSe Nanocrystals with Applications to Studies of the Nanocrystal Surface; 1994; Vol. 98.
dc.relation.referencesBastidas, J. M.; Cano, E.; Torres, C. L. An XPS Study of Copper Corrosion Originated by Formic Acid Vapour at 40% and 80% Relative Humidity. Materials and Corrosion 2001, 52, 667–676. https://doi.org/10.1002/1521-4176(200109)52:9<667::AID-MACO667>3.0.CO;2-H
dc.relation.referencesBagaria, H. G.; Ada, E. T.; Shamsuzzoha, M.; Nikles, D. E.; Johnson, D. T. Understanding Mercapto Ligand Exchange on the Surface of FePt Nanoparticles. Langmuir 2006, 22 (18), 7732–7737. https://doi.org/10.1021/la0601399.
dc.relation.referencesVale, B. R. C.; Mourão, R. S.; Bettini, J.; Sousa, J. C. L.; Ferrari, J. L.; Reiss, P.; Aldakov, D.; Schiavon, M. A. Ligand Induced Switching of the Band Alignment in Aqueous Synthesized CdTe/CdS Core/Shell Nanocrystals. Sci Rep 2019, 9 (1). https://doi.org/10.1038/s41598-019- 44787-y
dc.relation.referencesRiedo, E.; Comin, F.; Chevrier, J.; Schmithusen, F.; Decossas, S.; Sancrotti, M. Structural Properties and Surface Morphology of Laser-Deposited Amorphous Carbon and Carbon Nitride Films; 2000; Vol. 125. www.elsevier.nl/locate/surfcoat
dc.relation.referencesCanava, B.; Vigneron, J.; Etcheberry, A.; Guillemoles, J. F.; Lincot, D. High Resolution XPS Studies of Se Chemistry of a Cu(In, Ga)Se 2 Surface.
dc.relation.referencesCingarapu, S.; Yang, Z.; Sorensen, C. M.; Klabunde, K. J. Synthesis of CdSe/ZnS and CdTe/ZnS Quantum Dots: Refined Digestive Ripening. J Nanomater 2012, 2012. https://doi.org/10.1155/2012/312087
dc.relation.referencesGranada-Ramirez, D. A.; Arias-Cerón, J. S.; Gómez-Herrera, M. L.; Luna-Arias, J. P.; Pérez González, M.; Tomás, S. A.; Rodríguez-Fragoso, P.; Mendoza-Alvarez, J. G. Effect of the Indium Myristate Precursor Concentration on the Structural, Optical, Chemical Surface, and Electronic Properties of InP Quantum Dots Passivated with ZnS. Journal of Materials Science: Materials in Electronics 2019, 30 (5), 4885–4894. https://doi.org/10.1007/s10854-019-00783-6
dc.relation.referencesTshabalala, K. G.; Cho, S. H.; Park, J. K.; Pitale, S. S.; Nagpure, I. M.; Kroon, R. E.; Swart, H. C.; Ntwaeaborwa, O. M. Luminescent Properties and X-Ray Photoelectron Spectroscopy Study of ZnAl2O4:Ce3+,Tb3+ Phosphor. J Alloys Compd 2011, 509 (41), 10115–10120. https://doi.org/10.1016/j.jallcom.2011.08.054.
dc.relation.referencesGopannagari, M.; Kumar, D. P.; Park, H.; Kim, E. H.; Bhavani, P.; Reddy, D. A.; Kim, T. K. Influence of Surface-Functionalized Multi-Walled Carbon Nanotubes on CdS Nanohybrids for Effective Photocatalytic Hydrogen Production. Appl Catal B 2018, 236, 294–303. https://doi.org/10.1016/j.apcatb.2018.05.009.
dc.relation.referencesWang, J.; Zhou, X.; Ma, H.; Tao, G. Diethyldithiocarbamate Functionalized CdSe/CdS Quantum Dots as a Fluorescent Probe for Copper Ion Detection. Spectrochim Acta A Mol Biomol Spectrosc 2011, 81 (1), 178–183. https://doi.org/10.1016/j.saa.2011.05.098
dc.relation.referencesKim, J. S.; Lee, C. W.; Han, K. Y. Energy Level Tuning of InP/ZnS Nanocrystals by Electronically Delocalized Dithiocarbamate Derivatives. Mater Today Commun 2019, 18, 149– 152. https://doi.org/10.1016/j.mtcomm.2018.12.002.
dc.relation.referencesYoo, J. Y.; Park, S. A.; Jung, W. H.; Lee, C. W.; Kim, J. S.; Kim, J. G.; Chin, B. D. Effect of Dithiocarbamate Chelate Ligands on the Optical Properties of InP/ZnS Quantum Dots and Their Display Devices. Mater Chem Phys 2020, 253. https://doi.org/10.1016/j.matchemphys.2020.123415.
dc.relation.referencesYuan, C.; Zhang, K.; Zhang, Z.; Wang, S. Highly Selective and Sensitive Detection of Mercuric Ion Based on a Visual Fluorescence Method. Anal Chem 2012, 84 (22), 9792–9801. https://doi.org/10.1021/ac302822c
dc.relation.referencesOnyia, A. I.; Ikeri, H. I.; Nwobodo, A. N. Theoretical Study of the Quantum Confinement Effects on Quantum Dots Using Particle in a Box Model. Journal of Ovonic Research 2018, 14 (1), 49– 54.
dc.relation.referencesMalgras, V.; Nattestad, A.; Kim, J. H.; Dou, S. X.; Yamauchi, Y. Understanding Chemically Processed Solar Cells Based on Quantum Dots. Science and Technology of Advanced Materials. Taylor and Francis Ltd. January 1, 2017, pp 334–350. https://doi.org/10.1080/14686996.2017.1317219.
dc.relation.referencesFrederick, M. T.; Amin, V. A.; Swenson, N. K.; Ho, A. Y.; Weiss, E. A. Control of Exciton Confinement in Quantum Dot-Organic Complexes through Energetic Alignment of Interfacial Orbitals. Nano Lett 2013, 13 (1), 287–292. https://doi.org/10.1021/nl304098e.
dc.relation.referencesPu, C.; Peng, X. To Battle Surface Traps on CdSe/CdS Core/Shell Nanocrystals: Shell Isolation versus Surface Treatment. J Am Chem Soc 2016, 138 (26), 8134–8142. https://doi.org/10.1021/jacs.6b02909.
dc.relation.referencesRen, T.; Mandal, P. K.; Erker, W.; Liu, Z.; Aviasevich, Y.; Puhl, L.; Mullen, K.; Basché, T. A Simple and Versatile Route to Stable Quantum Dot-Dye Hybrids in Nonaqueous and Aqueous Solutions. J Am Chem Soc 2008, 130 (51), 17242–17243. https://doi.org/10.1021/ja8073962.
dc.relation.referencesRogach, A. L.; Franzl, T.; Klar, T. A.; Feldmann, J.; Gaponik, N.; Lesnyak, V.; Shavel, A.; Eychmüller, A.; Rakovich, Y. P.; Donegan, J. F. Aqueous Synthesis of Thiol-Capped CdTe Nanocrystals: State-of-the-Art. Journal of Physical Chemistry C 2007, 111 (40), 14628–14637. https://doi.org/10.1021/jp072463y.
dc.relation.referencesSilva, F. O.; Carvalho, M. S.; Mendonça, R.; Macedo, W. A.; Balzuweit, K.; Reiss, P.; Schiavon, M. A. Effect of Surface Ligands on the Optical Properties of Aqueous Soluble CdTe Quantum Dots. Nanoscale Res Lett 2012, 7 (1). https://doi.org/10.1186/1556-276x-7-536.
dc.relation.referencesBawendi, M. G.; Carroll, P. J.; Wilson, W. L.; Brus, L. E. Luminescence Properties of CdSe Quantum Crystallites: Resonance between Interior and Surface Localized States. J Chem Phys 1992, 96 (2), 946–954. https://doi.org/10.1063/1.462114.
dc.relation.referencesUnderwood, D. F.; Kippeny, T.; Rosenthal, S. J. Ultrafast Carrier Dynamics in CdSe Nanocrystals Determined by Femtosecond Fluorescence Upconversion Spectroscopy. Journal of Physical Chemistry B 2001, 105 (2), 436–443. https://doi.org/10.1021/jp003088b.
dc.relation.referencesKloepfer, J. A.; Bradforth, S. E.; Nadeau, J. L. Photophysical Properties of Biologically Compatible CdSe Quantum Dot Structures. Journal of Physical Chemistry B 2005, 109 (20), 9996–10003. https://doi.org/10.1021/jp044581g.
dc.relation.referencesKaniyankandy, S.; Verma, S. Role of Core-Shell Formation in Exciton Confinement Relaxation in Dithiocarbamate-Capped CdSe QDs. Journal of Physical Chemistry Letters 2017, 8 (14), 3228–3233. https://doi.org/10.1021/acs.jpclett.7b01259.
dc.relation.referencesXu, H.; Wang, Z.; Li, Y.; Ma, S.; Hu, P.; Zhong, X. A Quantum Dot-Based “off-on” Fluorescent Probe for Biological Detection of Zinc Ions. Analyst 2013, 138 (7), 2181–2191. https://doi.org/10.1039/c3an36742h.
dc.relation.referencesAzpiroz, J. M.; Angelis, F. de. Ligand Induced Spectral Changes in CdSe Quantum Dots. 2015. https://doi.org/10.1021/acsami.5b05418.
dc.relation.referencesWang, B.; Anslyn, E. v. Chemosensors: Principles, Strategies, and Applications; 2011. https://doi.org/10.1002/9781118019580.
dc.relation.referencesChemosensors, F.; Recognition, M.; Series, A. C. S. S.; Society, A. C. Fluorescent Chemosensors for Ion and Molecule Recognition. 1993.
dc.relation.referencesProdi, L.; Bolletta, F.; Montalti, M.; Zaccheroni, N. Luminescent Chemosensors for Transition Metal Ions. Coord Chem Rev 2000, 205 (1), 59–83. https://doi.org/10.1016/S0010- 8545(00)00242-3.
dc.relation.referencesJeong, Y.; Yoon, J. Recent Progress on Fluorescent Chemosensors for Metal Ions. Inorganica Chim Acta 2012, 381 (1), 2–14. https://doi.org/10.1016/j.ica.2011.09.011
dc.relation.referencesFormica, M.; Fusi, V.; Giorgi, L.; Micheloni, M. New Fluorescent Chemosensors for Metal Ions in Solution. Coord Chem Rev 2012, 256 (1–2), 170–192. https://doi.org/10.1016/j.ccr.2011.09.010.
dc.relation.referencesErenburg, S. B.; Bausk, N. V; Zemskova, S. M.; Mazalov, L. N. Spatial Structure of Transition Metal Complexes in Solution Determined by EXAFS Spectroscopy; 2000; Vol. 448.
dc.relation.referencesWang, H.; Song, D.; Zhou, Y.; Liu, J.; Zhu, A.; Long, F. Fluorescence Enhancement of CdSe/ZnS Quantum Dots Induced by Mercury Ions and Its Applications to the on-Site Sensitive Detection of Mercury Ions. https://doi.org/10.1007/s00604-021-04871-5/Published
dc.relation.referencesZhu, C.; Li, L.; Fang, F.; Chen, J.; Wu, Y. Functional InP Nanocrystals as Novel Near-Infrared Fluorescent Sensors for Mercury Ions. Chem Lett 2005, 34 (7), 898–899. https://doi.org/10.1246/cl.2005.898.
dc.relation.referencesWang, C. W.; Moffitt, M. G. Surface-Tunable Photoluminescence from Block Copolymer Stabilized Cadmium Sulfide Quantum Dots. Langmuir 2004, 20 (26), 11784–11796. https://doi.org/10.1021/la048390g.
dc.relation.referencesSpanhel, L.; Haase, M.; Weller, H.; Henglein, A. Photochemistry of Colloidal Semiconductors. 20. Surface Modification and Stability of Strong Luminescing CdS Particles. J Am Chem Soc 1987, 109 (19), 5649–5655. https://doi.org/10.1021/ja00253a015
dc.relation.referencesChen, Y.; Rosenzweig, Z. Luminescent CdS Quantum Dots as Selective Ion Probes. Anal Chem 2002, 74 (19), 5132–5138. https://doi.org/10.1021/ac0258251.
dc.relation.referencesChen, J. L.; Zhu, C. Q. Functionalized Cadmium Sulfide Quantum Dots as Fluorescence Probe for Silver Ion Determination. Anal Chim Acta 2005, 546 (2), 147–153. https://doi.org/10.1016/j.aca.2005.05.006
dc.relation.referencesPage, L. E.; Zhang, X.; Jawaid, A. M.; Snee, P. T. Detection of Toxic Mercury Ions Using a Ratiometric CdSe/ZnS Nanocrystal Sensor. Chemical Communications 2011, 47 (27), 7773– 7775. https://doi.org/10.1039/c1cc11442e.
dc.relation.referencesSun, X.; Liu, B.; Xu, Y. Dual-Emission Quantum Dots Nanocomposites Bearing an Internal Standard and Visual Detection for Hg2+. Analyst 2012, 137 (5), 1125–1129. https://doi.org/10.1039/c2an16026a
dc.relation.referencesWorld Health Organization. Guidelines for Drinking-Water Quality.; World Health Organization, 2011.
dc.relation.referencesU.S. EPA National Primary Drinking Water Regulations
dc.relation.referencesKoneswaran, M.; Narayanaswamy, R. CdS/ZnS Core-Shell Quantum Dots Capped with Mercaptoacetic Acid as Fluorescent Probes for Hg(II) Ions. Microchimica Acta 2012, 178 (1–2), 171–178. https://doi.org/10.1007/s00604-012-0819-0
dc.relation.referencesCai, Z. X.; Yang, H.; Zhang, Y.; Yan, X. P. Preparation, Characterization and Evaluation of Water Soluble l-Cysteine-Capped-CdS Nanoparticles as Fluorescence Probe for Detection of Hg(II) in Aqueous Solution. Anal Chim Acta 2006, 559 (2), 234–239. https://doi.org/10.1016/j.aca.2005.11.061.
dc.relation.referencesZhou, Z. Q.; Yan, R.; Zhao, J.; Yang, L. Y.; Chen, J. L.; Hu, Y. J.; Jiang, F. L.; Liu, Y. Highly Selective and Sensitive Detection of Hg2+ Based on Fluorescence Enhancement of Mn-Doped ZnSe QDs by Hg2+-Mn2+ Replacement. Sens Actuators B Chem 2018, 254, 8–15. https://doi.org/10.1016/j.snb.2017.07.033.
dc.relation.referencesLiu, B.; Zeng, F.; Wu, G.; Wu, S. Nanoparticles as Scaffolds for FRET-Based Ratiometric Detection of Mercury Ions in Water with QDs as Donors. Analyst 2012, 137 (16), 3717–3724. https://doi.org/10.1039/c2an35434a
dc.relation.referencesCao, B.; Yuan, C.; Liu, B.; Jiang, C.; Guan, G.; Han, M. Y. Ratiometric Fluorescence Detection of Mercuric Ion Based on the Nanohybrid of Fluorescence Carbon Dots and Quantum Dots. Anal Chim Acta 2013, 786, 146–152. https://doi.org/10.1016/j.aca.2013.05.015.
dc.relation.referencesJin, S.; Harris, R. D.; Lau, B.; Aruda, K. O.; Amin, V. A.; Weiss, E. A. Enhanced Rate of Radiative Decay in Cdse Quantum Dots upon Adsorption of an Exciton-Delocalizing Ligand. Nano Lett 2014, 14 (9), 5323–5328. https://doi.org/10.1021/nl5023699.
dc.relation.referencesGui, R.; An, X.; Huang, W. An Improved Method for Ratiometric Fluorescence Detection of PH and Cd2+ Using Fluorescein Isothiocyanate-Quantum Dots Conjugates. Anal Chim Acta 2013, 767 (1), 134–140. https://doi.org/10.1016/j.aca.2013.01.006.
dc.relation.referencesMu, Q.; Li, Y.; Xu, H.; Ma, Y.; Zhu, W.; Zhong, X. Quantum Dots-Based Ratiometric Fluorescence Probe for Mercuric Ions in Biological Fluids. Talanta 2014, 119, 564–571. https://doi.org/10.1016/j.talanta.2013.11.036
dc.relation.referencesChen, J. L.; Zhu, C. Q. Functionalized Cadmium Sulfide Quantum Dots as Fluorescence Probe for Silver Ion Determination. Anal Chim Acta 2005, 546 (2), 147–153. https://doi.org/10.1016/j.aca.2005.05.006
dc.relation.referencesChen, J.; Zheng, A. F.; Gao, Y.; He, C.; Wu, G.; Chen, Y.; Kai, X.; Zhu, C. Functionalized CdS Quantum Dots-Based Luminescence Probe for Detection of Heavy and Transition Metal Ions in Aqueous Solution. Spectrochim Acta A Mol Biomol Spectrosc 2008, 69 (3), 1044–1052. https://doi.org/10.1016/j.saa.2007.06.021
dc.relation.referencesYu, W. W.; Qu, L.; Guo, W.; Peng, X. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals. Chemistry of Materials 2003, 15 (14), 2854–2860. https://doi.org/10.1021/cm034081k.
dc.relation.referencesBrouwer, A. M. Standards for Photoluminescence Quantum Yield Measurements in Solution (IUPAC Technical Report). Pure and Applied Chemistry. 2011, pp 2213–2228. https://doi.org/10.1351/PAC-REP-10-09-31
dc.relation.referencesHao, J.; Liu, H.; Miao, J.; Lu, R.; Zhou, Z.; Zhao, B.; Xie, B.; Cheng, J.; Wang, K.; Delville, M. H. A Facile Route to Synthesize CdSe/ZnS Thick-Shell Quantum Dots with Precisely Controlled Green Emission Properties: Towards QDs Based LED Applications. Sci Rep 2019, 9 (1). https://doi.org/10.1038/s41598-019-48469-7.
dc.relation.referencesPeng, Z. A.; Peng, X. Mechanisms of the Shape Evolution of CdSe Nanocrystals. J Am Chem Soc 2001, 123 (7), 1389–1395. https://doi.org/10.1021/ja0027766
dc.relation.referencesBoatman, E. M.; Lisensky, G. C.; Nordell, K. J. A Safer, Easier, Faster Synthesis for CdSe Quantum Dot Nanocrystals; 2005. www.JCE.DivCHED.org
dc.relation.referencesLuo, G.; Chen, M.; Lyu, W.; Zhao, R.; Xu, Q.; You, Q.; Xiang, H. Design, Synthesis, Biological Evaluation and Molecular Docking Studies of Novel 3-Aryl-4-Anilino-2H-Chromen-2-One Derivatives Targeting ERα as Anti-Breast Cancer Agents. Bioorg Med Chem Lett 2017, 27 (12), 2668–2673. https://doi.org/10.1016/j.bmcl.2017.04.029.
dc.relation.referencesQiu, X. P.; Korchagina, E. v.; Rolland, J.; Winnik, F. M. Synthesis of a Poly(N Isopropylacrylamide) Charm Bracelet Decorated with a Photomobile α-Cyclodextrin Charm. Polym Chem 2014, 5 (11), 3656–3665. https://doi.org/10.1039/c3py01776a.
dc.relation.referencesMurru, S.; Ghosh, H.; Sahoo, S. K.; Patel, B. K. Intra- and Intermodular C-S Bond Formation Using a Single Catalytic System: First Direct Access to Arylthiobenzothiazoles. Org Lett 2009, 11 (19), 4254–4257. https://doi.org/10.1021/ol9017535
dc.relation.referencesSong, X. P.; Bouillon, C.; Lescrinier, E.; Herdewijn, P. Iminodipropionic Acid as the Leaving Group for DNA Polymerization by HIV-1 Reverse Transcriptase. ChemBioChem 2011, 12 (12), 1868–1880. https://doi.org/10.1002/cbic.201100160
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalQuantum dots
dc.subject.proposalMercury
dc.subject.proposalCapping
dc.subject.proposalLigand
dc.subject.proposalSensitivity
dc.subject.proposalSelectivity
dc.subject.proposalPuntos cuánticos
dc.subject.proposalMercurio
dc.subject.proposalCapa
dc.subject.proposalSensibilidad
dc.subject.proposalSelectividad
dc.subject.proposalSuperficie
dc.subject.proposalPoints quantiques
dc.subject.proposalMercure
dc.subject.proposalRevêtement
dc.subject.proposalSensibilité
dc.subject.proposalSélectivité
dc.subject.proposalSurface
dc.subject.unescoInvestigación química
dc.subject.unescoChemical research
dc.subject.unescoCiencias físicas
dc.subject.unescoPhysical sciences
dc.subject.unescoCiencias químicas
dc.subject.unescoChemical sciences
dc.title.translatedEfecto de iones mercurio sobre las propiedades opticas y estructurales de puntos cuanticos con ligandos ditiocarbamatos
dc.title.translatedEffet des ions mercure sur les propriétés optiques et structurelles des points quantiques à ligands dithiocarbamates aromatiques
dc.type.coarversionhttp://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameMinisterio de Ciencias
oaire.fundernameUniversidad Nacional de Colombia
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.orcid0009-0006-7705-4383


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-CompartirIgual 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito