Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorJiménez Pizarro, Rodrigo
dc.contributor.advisorGonzález Duque, Carlos Mario
dc.contributor.authorArdila Ardila, Andrés Venancio
dc.coverage.temporalRío Cauca, Colombia
dc.date.accessioned2024-01-16T15:11:27Z
dc.date.available2024-01-16T15:11:27Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85326
dc.descriptionilustraciones a color, diagramas, fotografías, mapas
dc.description.abstractLa calidad del aire regional se relaciona directamente con el flujo de emisiones de contaminantes atmosféricos y fenómenos como la dispersión atmosférica, sin embargo, la variabilidad anual, interanual y diaria de los fenómenos meteorológicos y su interacción con la topografía hacen que la dispersión atmosférica sea un fenómeno complejo, más aún en regiones consideradas con topografías complejas como el noroeste de Suramérica. El Valle Geográfico del Río Cauca (VGRC) se ubica al noroeste de Suramérica, entre las ramas Central y Occidental de la Cordillera de los Andes a una distancia aproximada de 80 km del Océano Pacífico, en el cual en los últimos años han presentado un deterioro en la calidad del aire relacionado principalmente con el material particulado. A través del análisis de información de las estaciones y simulaciones meteorológicas y de trazadores atmosféricos realizados con el modelo WRF en dos periodos del 2018 (febrero-abril y julio-septiembre), se han identificado los principales patrones de circulación atmosféricos al interior del VGRC. El fenómeno conocido localmente como la “marea” ventila al VGRC de Oeste a Este entre las 14 y 21 HL con intensidades entre los 6-8 m s-1, no obstante, esta intensidad está condicionada por los pasos de menor altitud de la Cordillera Occidental y el periodo analizado; el resto del día predominan los vientos de baja intensidad. La interacción entre la Cordillera Central y los vientos alisios del Este genera un efecto cizalla limitando el transporte vertical hasta los ~2 km al interior del VGRC. Esta diferencia entre los patrones de circulación durante el día genera regiones donde predominan condiciones de ventilación (centro del VGRC) y estancamiento (sur del VGRC) impactando directamente la dispersión y el transporte de contaminantes atmosféricos. (Texto tomado de la fuente)
dc.description.abstractRegional air quality is directly related to the flux of air pollutant emissions and phenomena such as atmospheric dispersion; however, the annual, interannual, and daily variability of meteorological phenomena and their interaction with topography make atmospheric dispersion a complex phenomenon, even more so in regions considered to have complex topographies such as northwestern South America. The geographic valley of the Cauca River (VGRC in Spanish) is in the northwest of South America, between the Central and Western branches of the Andes Mountains at an approximate distance of 80 km from the Pacific Ocean, in which in recent years there has been a deterioration in air quality related mainly to particulate matter. Through the analysis of information from the stations and meteorological and atmospheric tracer simulations carried out with the WRF model in two periods of 2018 (February-April and July-September), the main atmospheric circulation patterns within the VGRC have been identified. The phenomenon known locally as the "tide" ventilates the VGRC from West to East between 14 and 21 LT with intensities between 6-8 m s-1; however, this intensity is conditioned by the lower altitude passes of the Cordillera Western and the period analyzed, the rest of the day low-intensity winds predominate, in addition, the interaction between the Central Cordillera and the trade winds from the East generates a shear effect limiting vertical transport up to ~2 km inside the VGRC. This difference between circulation patterns during the day generates regions where ventilation conditions (VGRC center) and stagnation (VGRC south) predominate, directly impacting the dispersion and transport of atmospheric pollutants
dc.format.extentxvii, 123 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
dc.subject.lccIndicadores ambientales
dc.subject.lccEnvironmental indicators
dc.subject.lccCirculación atmosférica-Métodos de simulación
dc.subject.lccAtmospheric circulation-Simulation methods
dc.subject.lccAnálisis del impacto ambiental
dc.subject.lccEnvironmental impact analysis
dc.subject.lccMeteorología dinámica
dc.subject.lccDynamic meteorology
dc.titlePatrones de circulación atmosférica en el valle geográfico del Río Cauca y su impacto en la calidad del aire regional
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambiental
dc.contributor.researchgroupCalidad del Aire
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Ambiental
dc.description.researchareaCalidad del Aire
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAldana, C. R. B., Guevara, D. C. D., Vitery, F. C., de Paula Gutiérrez Bonilla, F., Camargo, G. V., Ochoa, J. R., Bedout, J. B., & Castañeda, R. G. (2019). Modelado y simulación de sistemas naturales. In Modelado y simulación de sistemas naturales. https://doi.org/10.2307/j.ctvc2rnxf
dc.relation.referencesAllwine, K. J., & Whiteman, C. D. (1994). Single-station integral measures of atmospheric stagnation, recirculation and ventilation. Atmospheric Environment, 28(4), 713–721. https://doi.org/10.1016/1352-2310(94)90048-5
dc.relation.referencesAmador, J. (1998). A climatic feature of the Tropical Americas: The Trade Wind Easterly Jet. Topicos Meteorologicos y Oceanograficos, 5(2), 91–102. https://www.kerwa.ucr.ac.cr/bitstream/handle/10669/76623/1998_2.pdf?sequence=1
dc.relation.referencesAmbrizzi, T., de Souza, E. B., & Pulwarty, R. S. (2004). The Hadley and Walker Regional Circulations and Associated ENSO Impacts on South American Seasonal Rainfall. 203–235. https://doi.org/10.1007/978-1-4020-2944-8_8
dc.relation.referencesAMS (American Meteorological Society). (2023). Tracer - Glossary of Meteorology. https://glossary.ametsoc.org/wiki/Tracer
dc.relation.referencesArregocés, H. A., Rojano, R., & Restrepo, G. (2021). Sensitivity analysis of planetary boundary layer schemes using the WRF model in Northern Colombia during 2016 dry season. Dynamics of Atmospheres and Oceans, 96(August). https://doi.org/10.1016/j.dynatmoce.2021.101261
dc.relation.referencesAsocaña. (2022). Un dulce sabor que se trasforma. Informe anual 2021 – 2022. Sector Agroindustrial de La Caña. http://www.asocana.org/documentos/672022-B663EF18-00FF00,000A000,878787,C3C3C3,0F0F0F,B4B4B4,FF00FF,FFFFFF,2D2D2D,A3C4B5.pdf
dc.relation.referencesBallesteros-González, K., Espitia-Cano, S. O., Rincón-Caro, M. A., Rincón-Riveros, J. M., Perez-Peña, M. P., Sullivan, A., & Morales Betancourt, R. (2022). Understanding organic aerosols in Bogotá, Colombia: In-situ observations and regional-scale modeling. Atmospheric Environment, 284(June 2021). https://doi.org/10.1016/j.atmosenv.2022.119161
dc.relation.referencesBallesteros-González, K., Sullivan, A. P., & Morales-Betancourt, R. (2020). Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model. Science of the Total Environment, 739, 139755. https://doi.org/10.1016/j.scitotenv.2020.139755
dc.relation.referencesBanta, R. M., Darby, L. S., Fast, J. D., Pinto, J. O., Whiteman, C. D., Shaw, W. J., & Orr, B. W. (2004). Nocturnal low-level jet in a mountain basin complex. Part I: Evolution and effects on local flows. Journal of Applied Meteorology, 43(10), 1348–1365
dc.relation.referencesBell, M. L., Davis, D. L., Gouveia, N., Borja-Aburto, V. H., & Cifuentes, L. A. (2006). The avoidable health effects of air pollution in three Latin American cities: Santiago, São Paulo, and Mexico City. Environmental Research, 100(3), 431–440. https://doi.org/10.1016/j.envres.2005.08.002
dc.relation.referencesBrock, F. V., & Richardson, S. J. (2001). Meteorological Measurement Systems. In Oxford University Press. https://doi.org/10.1093/oso/9780195134513.001.0001
dc.relation.referencesCazorla, M., Gallardo, L., & Jimenez, R. (2022). The complex Andes region needs improved efforts to face climate extremes. Elementa, 10(1), 1–9. https://doi.org/10.1525/elementa.2022.00092
dc.relation.referencesCéspedes, J. (2019). Implementación de un sistema LiDAR elástico para la observación de la dinámica de aerosoles sobre el área urbana de Cali.
dc.relation.referencesCIAT-International Center for Tropical Agriculture., & CVC-Valle del Cauca province regional environmental authority. (2018). Valle del Cauca Province (In Spanish). https://ecopedia.cvc.gov.co/sites/default/files/archivosAdjuntos/plan_integral_de_cambio_climetico_para_el_valle_del_cauca.pdf
dc.relation.referencesCifuentes, F., González, C. M., & Aristizábal, B. H. (2021). Insights to WRF-Chem sensitivity in a zone of complex terrain in the tropical Andes: Effect of boundary conditions, chemical mechanisms, nesting, and domain configuration. Atmospheric Pollution Research, December 2020, 101093. https://doi.org/10.1016/j.apr.2021.101093
dc.relation.referencesCortés, E., Chica, H., & Peña, A. (2019). Climatic zones of the Cauca River Valley (In Spanish). Carta Informativa Cenicaña, 7, 10–11. https://www.cenicana.org/zonas-climaticas-del-valle-del-rio-cauca/
dc.relation.referencesCPC-Climate Prediction Center. (2023). ONI-Cold & Warm Episodes by Season. https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
dc.relation.referencesCVC-Corporación Autónoma Regional del Valle del Cauca. (2020, September 17). A PARTIR DE HOY SE REDUCEN LAS QUEMAS DE CAÑA EN EL VALLE DEL CAUCA | Portal CVC. https://www.cvc.gov.co/2020255
dc.relation.referencesCVC-Corporación Autónoma Regional del Valle del Cauca, & Universidad Nacional de Colombia sede Palmira. (2022). Modelación de material particulado indentificando la contribución de las fuentes - Vigenncia 2022 Convenio interadministrativo No . 036 DE 2021 CVC-UNAL. https://calidadaire.cvc.gov.co/
dc.relation.referencesDAGMA-Departamento Administrativo de Gestión del Medio Ambiente de Santiago de Cali, & Universidad Nacional de Colombia sede Palmira. (2022). Simulación meteorológica y simulación preliminar de calidad del aire en Santiago de Cali-Convenio interadministrativo 4133.010.27.1.041-2022 DAGMA-UNAL.
dc.relation.referencesDANE-National Administrative Department of Statistics. (2022). Population projections at the municipal level. Period 2018-2035 (In Spanish). https://cutt.ly/04q49Kn
dc.relation.referencesDarby, L. S., Allwine, K. J., & Banta, R. M. (2006). Nocturnal low-level jet in a mountain basin complex. Part II: Transport and diffusion of tracer under stable conditions. Journal of Applied Meteorology and Climatology, 45(5), 740–753. https://doi.org/10.1175/JAM2367.1
dc.relation.referencesDATA NOVIA. (2020). K-Means Clustering in R: Algorithm and Practical Examples - Datanovia. https://www.datanovia.com/en/lessons/k-means-clustering-in-r-algorith-and-practical-examples/
dc.relation.referencesDepartamento Nacional de Planeación -DNP-. (2017). Los costos en la salud asociados a la degradación ambiental en Colombia ascienden a $20,7 billones. https://www.dnp.gov.co/Paginas/Los-costos-en-la-salud-asociados-a-la-degradación-ambiental-en-Colombia-ascienden-a-$20,7-billones-.aspx
dc.relation.referencesDiaz, L. R., Rolim, S. B. A., Santos, D. C., Käfer, P. S., Da Rocha, N. S., & Alves, R. D. C. M. (2020). Using the wrf model to refine ncep cfsv2 reanalysis atmospheric profile: A Southern Brazil test case. Revista Brasileira de Geofisica, 38(2), 5–31. https://doi.org/10.22564/rbgf.v38i2.2043
dc.relation.referencesDiaz, L. R., Santos, D. C., Käfer, P. S., Iglesias, M. L., da Rocha, N. S., da Costa, S. T. L., Kaiser, E. A., & Rolim, S. B. A. (2021). Reanalysis profile downscaling with WRF model and sensitivity to PBL parameterization schemes over a subtropical station. Journal of Atmospheric and Solar-Terrestrial Physics, 222(July). https://doi.org/10.1016/j.jastp.2021.105724
dc.relation.referencesDubovik, O., Schuster, G. L., Xu, F., Hu, Y., Bösch, H., Landgraf, J., & Li, Z. (2021). Grand Challenges in Satellite Remote Sensing. Frontiers in Remote Sensing, 2(February), 1–10. https://doi.org/10.3389/frsen.2021.619818
dc.relation.referencesEguis Cuentas, M. C., & Jiménez, J. F. (2023). Dispersión atmosférica de material particulado en ciudades de montaña y tropicales. https://repositorio.unal.edu.co/handle/unal/83891
dc.relation.referencesEmery, C., Tai, E., & Yarwood, G. (2001). Enhanced meteorological modeling and performance evaluation for two texas ozone episodes
dc.relation.referencesFernandez, R. P., Allende, D. G., Castro, F., Cremades, P., & Puliafito, E. (2010). Modelado regional de la calidad de aire utilizando el modelo WRF/Chem: Implementación de datos globales y locales para Mendoza. Avances En Energías Renovables y Medio Ambiente, 14, 43–50.
dc.relation.referencesFranco, J. ., & Montejo, A. (2023). Calidad de aire, cambio climático y salud pública (H. Consulting (ed.)).ISBN 9786289570205
dc.relation.referencesGalanti, E., Raiter, D., Kaspi, Y., Tziperman, E., & Jgr-atmosphere, S. (2021). Spatial patterns of the local Hadley circulation : drivers and consequences. 2.
dc.relation.referencesGao, S., Huang, D., Du, N., Ren, C., & Yu, H. (2022). WRF ensemble dynamical downscaling of precipitation over China using different cumulus convective schemes. Atmospheric Research, 271(December 2021), 106116. https://doi.org/10.1016/j.atmosres.2022.106116
dc.relation.referencesGiovannini, L., Ferrero, E., Karl, T., Rotach, M. W., Staquet, C., Castelli, S. T., & Zardi, D. (2020). Atmospheric pollutant dispersion over complex terrain: Challenges and needs for improving air quality measurements and modeling. Atmosphere, 11(6), 1–32. https://doi.org/10.3390/atmos11060646
dc.relation.referencesGómez Peláez, L. M., Santos, J. M., de Almeida Albuquerque, T. T., Reis, N. C., Andreão, W. L., & de Fátima Andrade, M. (2020). Air quality status and trends over large cities in South America. Environmental Science and Policy, 114(September), 422–435. https://doi.org/10.1016/j.envsci.2020.09.009
dc.relation.referencesGonzález, C. M. (2017). Dinámica e impacto de emisiones antrópicas y naturales en una ciudad andina empleando un modelo euleriano de transporte química on-line. Caso de estudio: Manizales, Colombia. 238
dc.relation.referencesGonzález, C. M., Ynoue, R. Y., Vara-Vela, A., Rojas, N. Y., & Aristizábal, B. H. (2018). High-resolution air quality modeling in a medium-sized city in the tropical Andes: Assessment of local and global emissions in understanding ozone and PM 10 dynamics. Atmospheric Pollution Research, 9(5), 934–948. https://doi.org/10.1016/j.apr.2018.03.003
dc.relation.referencesGouveia, N., Kephart, J. L., Dronova, I., McClure, L., Granados, J. T., Betancourt, R. M., O’Ryan, A. C., Texcalac-Sangrador, J. L., Martinez-Folgar, K., Rodriguez, D., & Diez-Roux, A. V. (2021). Ambient fine particulate matter in Latin American cities: Levels, population exposure, and associated urban factors. Science of the Total Environment, 772, 145035. https://doi.org/10.1016/j.scitotenv.2021.145035
dc.relation.referencesHenao, J. J., Mejía, J. F., Rendón, A. M., & Salazar, J. F. (2020). Sub-kilometer dispersion simulation of a CO tracer for an inter-Andean urban valley. Atmospheric Pollution Research, 11(5), 928–945. https://doi.org/10.1016/j.apr.2020.02.005
dc.relation.referencesHernandez-Deckers, D. (2022). Features of atmospheric deep convection in northwestern South America obtained from infrared satellite data. Quarterly Journal of the Royal Meteorological Society, 148(742), 338–350. https://doi.org/10.1002/qj.4208
dc.relation.referencesHernandez, A. J., Morales-Rincon, L. A., Wu, D., Mallia, D., Lin, J. C., & Jimenez, R. (2019). Transboundary transport of biomass burning aerosols and photochemical pollution in the Orinoco River Basin. Atmospheric Environment, 205(45), 1–8. https://doi.org/10.1016/j.atmosenv.2019.01.051
dc.relation.referencesHernández, J. D. R., & Mesa, Ó. J. (2020). A simple conceptual model for the heat induced circulation over Northern South America and MESO-America. Atmosphere, 11(11), 1–14. https://doi.org/10.3390/atmos11111235
dc.relation.referencesHernández, Jauregui, Souto, Casares, Saavedra, Guzmán, & Torres. (2015). Estado actual de los modelos de dispersión atmosférica y sus aplicaciones. UCE Ciencia. Revista de Postgrado, 3(2), 1–17.
dc.relation.referencesHolzworth, G. C. (1964). Estimates of Mean Maximum Mixing Depths in the Contiguous United States. Monthly Weather Review, 92(5), 235–242. https://doi.org/10.1175/1520-0493(1964)092<0235:eommmd>2.3.co;2
dc.relation.referencesHu, H., Landgraf, J., Detmers, R., Borsdorff, T., Aan de Brugh, J., Aben, I., Butz, A., & Hasekamp, O. (2018). Toward Global Mapping of Methane With TROPOMI: First Results and Intersatellite Comparison to GOSAT. Geophysical Research Letters, 45(8), 3682–3689. https://doi.org/10.1002/2018GL077259
dc.relation.referencesIDEAM. (2018). Metodología de la operación estadística variables meteorológicas. Instituto de Hidrología Meteorología y Estudios Ambientales, 113. http://www.ideam.gov.co/documents/11769/72085840/Documento+metodologico+variables+meteorologicas.pdf/8a71a9b4-7dd7-4af4-b98e-9b1eda3b8744
dc.relation.referencesIDEAM (Instituto de Hidrología Meteorología y Estudios Ambientales). (2022). Informe del estado de la calidad del aire en Colombia 2021.
dc.relation.referencesJiménez-Sánchez, G., Markowski, P. M., Jewtoukoff, V., Young, G. S., & Stensrud, D. J. (2019). The Orinoco Low-Level Jet: An Investigation of Its Characteristics and Evolution Using the WRF Model. Journal of Geophysical Research: Atmospheres, 124(20), 10696–10711. https://doi.org/10.1029/2019JD030934
dc.relation.referencesJimenez, R., Ardila, A. V, Vargas-burbano, A. C., Hernandez, A. J., & Leon-velasquez, E. (2022). Biomass burning-agriculture coupling in the Orinoco savannas — Particulate matter emission scenarios. November, 1–16. https://doi.org/10.3389/fenvs.2022.689844
dc.relation.referencesJury, M. R. (2019). Northward excursion of the ITCZ across the inter-Americas during boreal summer. Meteorology and Atmospheric Physics, 131(5), 1357–1366. https://doi.org/10.1007/s00703-018-0642-1
dc.relation.referencesJury, M. R. (2020). Meteorology of air pollution in Los Angeles. Atmospheric Pollution Research, 11(7), 1226–1237. https://doi.org/10.1016/j.apr.2020.04.016
dc.relation.referencesKumar, A., Jiménez, R., Belalcázar, L. C., & Rojas, N. Y. (2016). Application of WRF-Chem model to simulate PM10 concentration over Bogota. Aerosol and Air Quality Research, 16(5), 1206–1221. https://doi.org/10.4209/aaqr.2015.05.0318
dc.relation.referencesLamare, M., Dumont, M., Picard, G., Larue, F., Tuzet, F., Delcourt, C., & Arnaud, L. (2020). Simulating optical top-of-Atmosphere radiance satellite images over snow-covered rugged terrain. Cryosphere, 14(11), 3995–4020. https://doi.org/10.5194/tc-14-3995-2020
dc.relation.referencesLawrence, M. G. (2005). The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bulletin of the American Meteorological Society, 86(2), 225–233. https://doi.org/10.1175/BAMS-86-2-225
dc.relation.referencesLee, S. M., Princevac, M., Mitsutomi, S., & Cassmassi, J. (2009). MM5 simulations for air quality modeling: An application to a coastal area with complex terrain. Atmospheric Environment, 43(2), 447–457. https://doi.org/10.1016/j.atmosenv.2008.07.067
dc.relation.referencesLi Ramírez, J. A., Zambrano Nájera, J. del C., & Aristizábal Zuluaga, B. H. (2020). BVOC Emissions Along the Eastern and Western Slopes of the Andes Central Range with Strong Altitudinal Gradient over a Wide Range of Andean Ecosystems: Model Estimation/Disaggregation with BIGA. Environmental Modeling and Assessment, 25(6), 761–773. https://doi.org/10.1007/s10666-020-09698-7
dc.relation.referencesLi, Y., & Chao, J. (2018). Theoretical urban heat island circulation in the temperature inversion profile. Atmosphere, 9(3). https://doi.org/10.3390/atmos9030098
dc.relation.referencesLim, K. S. S., & Hong, S. Y. (2010). Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Monthly Weather Review, 138(5), 1587–1612. https://doi.org/10.1175/2009MWR2968.1
dc.relation.referencesLin, C. Y., Sheng, Y. F., Chen, W. C., Chou, C. C. K., Chien, Y. Y., & Chen, W. M. (2021). Air quality deterioration episode associated with a typhoon over the complex topographic environment in central Taiwan. Atmospheric Chemistry and Physics, 21(22), 16893–16910. https://doi.org/10.5194/acp-21-16893-2021
dc.relation.referencesLopez-noreña, A. I. (2016). Simulation of the dispersion of particulate matter PM2.5 in the Aburrá Valley, Colombia, using WRF-Chem (In Spanish). December 2016. https://doi.org/10.13140/RG.2.2.34078.69441/2
dc.relation.referencesLópez, M., & Howell, W. (1967). Katabatic Winds in the Equatorial Andes. Journal of the Atmospheric Sciences, 68–70. https://doi.org/10.1175/1520-0469(1967)024%3C0029:KWITEA%3E2.0.CO;2
dc.relation.referencesMadala, S., Satyanarayana, A. N. V., Srinivas, C. V., & Kumar, M. (2015). Mesoscale atmospheric flow-field simulations for air quality modeling over complex terrain region of Ranchi in eastern India using WRF. Atmospheric Environment, 107, 315–328. https://doi.org/10.1016/j.atmosenv.2015.02.059
dc.relation.referencesMapes, B. E., Warner, T. T., & Negri, A. (2003). Diurnal patterns of rainfall in northwestern South America. Part I: Observations and context. Monthly Weather Review, 131(5), 813–829. https://doi.org/10.1175/1520-0493(2003)131<0813:DPORIN>2.0.CO;2
dc.relation.referencesMateus-Fontecha, Lady, Vargas-Burbano, A., Jimenez, R., Rojas, N. Y., Rueda-Saa, G., Van Pinxteren, D., Van Pinxteren, M., Fomba, K. W., & Herrmann, H. (2022). Understanding aerosol composition in a tropical inter-Andean valley impacted by agro-industrial and urban emissions. Atmospheric Chemistry and Physics, 22(13), 8473–8495. https://doi.org/10.5194/acp-22-8473-2022
dc.relation.referencesMcNally. (2009). 12kmMM5 performance goals prepared for: ad-hoc met. group.
dc.relation.referencesMesa-Sánchez, O. J., & Rojo-Hernández, J. D. (2020). On the general circulation of the atmosphere around Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 44(172), 857–875. https://doi.org/10.18257/raccefyn.899
dc.relation.referencesMesa, Ó. J., & Rojo, J. D. (2020). On the general circulation of the atmosphere around Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Fisicas y Naturales, 44(172), 857–875. https://doi.org/10.18257/RACCEFYN.899
dc.relation.referencesMolina, L. T., Gallardo, L., Andrade, M., Baumgardner, D., Borbor-Cõrdova, M., Bõrquez, R., Casassa, G., Cereceda-Balic, F., Dawidowski, L., Garreaud, R., Huneeus, N., Lambert, F., McCarty, J. L., Mc Phee, J., Mena-Carrasco, M., Raga, G. B., Schmitt, C., & Schwarz, J. P. (2015). Pollution and its Impacts on the South American Cryosphere. Earth’s Future, 3(12), 345–369. https://doi.org/10.1002/2015EF000311
dc.relation.referencesMuñoz, L. E., Campozano, L. V., Guevara, D. C., Parra, R., Tonato, D., Suntaxi, A., Maisincho, L., Páez, C., Villacís, M., Córdova, J., & Valencia, N. (2023). Comparison of Radiosonde Measurements of Meteorological Variables with Drone, Satellite Products, and WRF Simulations in the Tropical Andes: The Case of Quito, Ecuador. Atmosphere, 14(2). https://doi.org/10.3390/atmos14020264
dc.relation.referencesNansai, K., Tohno, S., Chatani, S., Kanemoto, K., Kagawa, S., Kondo, Y., Takayanagi, W., & Lenzen, M. (2021). Consumption in the G20 nations causes particulate air pollution resulting in two million premature deaths annually. Nature Communications, 12(1), 1–6. https://doi.org/10.1038/s41467-021-26348-y
dc.relation.referencesNedbor-Gross, R., Henderson, B. H., Davis, J. R., Pachón, J. E., Rincón, A., Guerrero, O. J., & Grajales, F. (2017). Comparing standard to feature-based meteorological model evaluation techniques in Bogotá, Colombia. Journal of Applied Meteorology and Climatology, 56(2), 391–413. https://doi.org/10.1175/JAMC-D-16-0058.1
dc.relation.referencesNOAA. (2014, August 1). The Walker Circulation: ENSO’s atmospheric buddy | NOAA Climate.gov. https://www.climate.gov/news-features/blogs/enso/walker-circulation-ensos-atmospheric-buddy
dc.relation.referencesNOAA - National Oceanic and Atmospheric Administration-. (2023). El Niño & La Niña (El Niño-Southern Oscillation) | NOAA Climate.gov. https://www.climate.gov/enso
dc.relation.referencesNOAA (National and Oceanic Atmospheric and Administration). (2023). Inter-Tropical Convergence Zone | National Oceanic and Atmospheric Administration. https://www.noaa.gov/jetstream/tropical/convergence-zone
dc.relation.referencesOrtiz, E. Y., Jimenez, R., Fochesatto, G. J., & Morales-Rincon, L. A. (2019). Caracterización de la turbulencia atmosférica en una gran zona verde de una megaciudad andina tropical. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 43(166), 133. https://doi.org/10.18257/raccefyn.697
dc.relation.referencesPeng, S., Piao, S., Ciais, P., Friedlingstein, P., Ottle, C., Bréon, F. M., Nan, H., Zhou, L., & Myneni, R. B. (2012). Response to comment on “Surface urban heat island across 419 global big cities.” Environmental Science and Technology, 46(12), 6889–6890. https://doi.org/10.1021/es301811b
dc.relation.referencesPérez, I. A., García, M. Á., Sánchez, M. L., Pardo, N., & Fernández-Duque, B. (2020). Key points in air pollution meteorology. International Journal of Environmental Research and Public Health, 17(22), 1–14. https://doi.org/10.3390/ijerph17228349
dc.relation.referencesPfister, G., Pétron, G., Emmons, L. K., Gille, J. C., Edwards, D. P., Lamarque, J., Attie, J., Granier, C., Novelli, P. C., & Emmons, K. (2004). Evaluation of CO simulations and the analysis of the CO budget for Europe. J. Geophys. Res, 109, 19304. https://doi.org/10.1029/2004JD004691
dc.relation.referencesPosada-Marín, J. A., Rendón, A. M., Salazar, J. F., Mejía, J. F., & Villegas, J. C. (2019). WRF downscaling improves ERA-Interim representation of precipitation around a tropical Andean valley during El Niño: implications for GCM-scale simulation of precipitation over complex terrain. Climate Dynamics, 52(5–6), 3609–3629. https://doi.org/10.1007/s00382-018-4403-0
dc.relation.referencesPoveda., Álvarez., & Rueda. (2011). Hydro-climatic variability over the Andes of Colombia associated with ENSO: A review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Climate Dynamics, 36(11–12), 2233–2249. https://doi.org/10.1007/s00382-010-0931-y
dc.relation.referencesPoveda., & Mesa. (1999). The westerly low-level Chocó jet and two other atmospheric jets over Colombia: Climatology and variability during ENSO phases (in Spanish). Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 23(January), 517–528.
dc.relation.referencesPoveda., Waylen., & Pulwarty. (2006). Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeography, Palaeoclimatology, Palaeoecology, 234(1), 3–27. https://doi.org/10.1016/j.palaeo.2005.10.031
dc.relation.referencesPoveda, G., & Mesa, O. J. (2000). On the existence of Lloró (the rainiest locality on earth): Enhanced ocean-land-atmosphere interaction by a low-level jet. Geophysical Research Letters, 27(11), 1675–1678. https://doi.org/10.1029/1999GL006091
dc.relation.referencesPreciado, M., Chica, H., Solarte, E., Carbonell, J., & Peña, A. (2020). Regional wind pattern, a basis for defining the appropriate lapse of time for sugarcane burning in the Cauca Valley (Colombia). Environment, Development and Sustainability, 23(6), 9477–9492. https://doi.org/10.1007/s10668-020-00992-8
dc.relation.referencesRanjha, R., Svensson, G., TjernströM, M., & Semedo, A. (2013). Global distribution and seasonal variability of coastal low-level jets derived from ERA-interim reanalysis. Tellus, Series A: Dynamic Meteorology and Oceanography, 65. https://doi.org/10.3402/tellusa.v65i0.20412
dc.relation.referencesRau, B., & Gómez, L. (2018). Colombia Sugar Annual Colombian Sugar Production Bounces Back after Three Years of Difficult Weather Conditions. https://apps.fas.usda.gov/newgainapi/api/report/downloadreportbyfilename?filename=Sugar Annual_Bogota_Colombia_4-13-2018.pdf
dc.relation.referencesRen, H. L., Lu, B., Wan, J., Tian, B., & Zhang, P. (2018). Identification Standard for ENSO Events and Its Application to Climate Monitoring and Prediction in China. Journal of Meteorological Research, 32(6), 923–936. https://doi.org/10.1007/s13351-018-8078-6
dc.relation.referencesRusso, A., Gouveia, C., Levy, I., Dayan, U., Jerez, S., Mendes, M., & Trigo, R. (2016). Coastal recirculation potential affecting air pollutants in Portugal: The role of circulation weather types. Atmospheric Environment, 135, 9–19. https://doi.org/10.1016/j.atmosenv.2016.03.039
dc.relation.referencesSaha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y. T., Chuang, H. Y., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M. P., Van Den Dool, H., Zhang, Q., Wang, W., Chen, M., & Becker, E. (2014). The NCEP climate forecast system version 2. Journal of Climate, 27(6), 2185–2208. https://doi.org/10.1175/JCLI-D-12-00823.1
dc.relation.referencesSakamoto, M. S., Ambrizzi, T., & Poveda, G. (2011). Moisture Sources and Life Cycle of Convective Systems over Western Colombia. Advances in Meteorology, 2011, 1–11. https://doi.org/10.1155/2011/890759
dc.relation.referencesSeidel, D. J., Ross, R. J., Angell, J. K., & Reid, G. C. (2001). Climatological characteristics of the tropical tropopause as revealed by radiosondes. Journal of Geophysical Research Atmospheres, 106(D8), 7857–7878. https://doi.org/10.1029/2000JD900837
dc.relation.referencesSierra, J. P., Arias, P. A., Durán-Quesada, A. M., Tapias, K. A., Vieira, S. C., & Martínez, J. A. (2021). The Choco low‐level jet: past, present and future. Climate Dynamics, 56(7–8), 2667–2692. https://doi.org/10.1007/s00382-020-05611-w
dc.relation.referencesSouza, N., Nascimento, E., & Moreira, D. (2021). Performance evaluation of the WRF model in a tropical region: wind speed analysis at diferent sites. Atmósfera, August 2020, 0–27. https://doi.org/https://doi.org/10.20937/ATM.52968
dc.relation.referencesSteenburgh, W. J., Schultz, D. M., Snyder, B. J., & Meyers, M. P. (2013). Mountain Weather Research and Forecasting. 693–716. https://doi.org/10.1007/978-94-007-4098-3
dc.relation.referencesSun, D.-Z., & Oort, A. H. (1995). Humidity-Temperature relationship in the tropical troposphere. Journal of Climate, 8, 1974–1987. https://journals.ametsoc.org/view/journals/clim/8/8/1520-0442_1995_008_1974_hrittt_2_0_co_2.xml
dc.relation.referencesTalgo, K., Bowden, J., Adelman, Z., & Morris, R. (2015). Western Air Quality Study ( WAQS ) Weather Research Forecast ( WRF ) Meteorological Model Final Modeling Protocol 2014 Modeling Year.
dc.relation.referencesTapiador, F. J., Navarro, A., Moreno, R., Sánchez, J. L., & García-Ortega, E. (2020). Regional climate models: 30 years of dynamical downscaling. Atmospheric Research, 235(October 2019), 104785. https://doi.org/10.1016/j.atmosres.2019.104785
dc.relation.referencesUCAR (University Corporation for Atmospheric Research). (2023). Weather Research & Forecasting Model (WRF) | Mesoscale & Microscale Meteorology Laboratory. https://www.mmm.ucar.edu/models/wrf
dc.relation.referencesUribe, H. (2017). EL VALLE GEOGRÁFICO DEL RÍO CAUCA: UN ESPACIO TRANSFORMADO POR EL CAPITAL AGROINDUSTRIAL. Libros Universidad Nacional Abierta y a Distancia, 298–314. https://hemeroteca.unad.edu.co/index.php/book/article/view/2435
dc.relation.referencesWang, X. C., Klemeš, J. J., Dong, X., Fan, W., Xu, Z., Wang, Y., & Varbanov, P. S. (2019). Air pollution terrain nexus: A review considering energy generation and consumption. Renewable and Sustainable Energy Reviews, 105(January), 71–85. https://doi.org/10.1016/j.rser.2019.01.049
dc.relation.referencesWang, X., Chen, F., Wu, Z., Zhang, M., Tewari, M., Guenther, A., & Wiedinmyer, C. (2009). Impacts of weather conditions modified by urban expansion on surface ozone: Comparison between the Pearl River Delta and Yangtze River Delta regions. Advances in Atmospheric Sciences, 26(5), 962–972. https://doi.org/10.1007/s00376-009-8001-2
dc.relation.referencesWarner, T. T., Mapes, B. E., & Xu, M. (2003). Diurnal patterns of rainfall in northwestern South America. Part II: Model simulations. Monthly Weather Review, 131(5), 813–829. https://doi.org/10.1175/1520-0493(2003)131<0813:DPORIN>2.0.CO;2
dc.relation.referencesWhiteman, D. (2001). Mountain Meteorology: Fundamentals and Applications. In Mountain Research and Development (Vol. 21, Issue 2). https://doi.org/10.1659/0276-4741(2001)021[0200:mmfaa]2.0.co;2
dc.relation.referencesWHO. (2021). WHO’s global air-quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. In Lancet (Vol. 368, Issue 9544).
dc.relation.referencesWindrow, B., Kollár, I., & Liu, M.-C. (1996). Statistical theory of quantization. IEEE Transactions on Instrumentation and Measurment, 45(2), 353–361. https://people.isy.liu.se/rt/fredrik/spcourse/quant.pdf
dc.relation.referencesYáñez, G., Gironás, J., Caneo, M., Delgado, R., & Garreaud, R. (2018). Using the Weather Research and Forecasting (WRF) model for precipitation forecasting in an Andean region with complex topography. Atmosphere, 9(8). https://doi.org/10.3390/atmos9080304
dc.relation.referencesYepes, J., Poveda, G., Mejía, J. F., Moreno, L., & Rueda, C. (2019). Choco-jex: A research experiment focused on the Chocó low-level jet over the far eastern Pacific and western Colombia. Bulletin of the American Meteorological Society, 100(5), 779–796. https://doi.org/10.1175/BAMS-D-18-0045.1
dc.relation.referencesŽabkar, R., Koračin, D., & Rakovec, J. (2013). A WRF/Chem sensitivity study using ensemble modelling for a high ozone episode in Slovenia and the Northern Adriatic area. Atmospheric Environment, 77, 990–1004. https://doi.org/10.1016/j.atmosenv.2013.05.065
dc.relation.referencesZhan, C., Xie, M., Lu, H., Liu, B., Wu, Z., Wang, T., Zhuang, B., Li, M., & Li, S. (2023). Impacts of urbanization on air quality and the related health risks in a city with complex terrain. Atmospheric Chemistry and Physics, 23(1), 771–788. https://doi.org/10.5194/acp-23-771-2023
dc.relation.referencesZhang, S., Wang, M., Wang, L., Liang, X. Z., Sun, C., & Li, Q. (2023). Sensitivity of the simulation of extreme precipitation events in China to different cumulus parameterization schemes and the underlying mechanisms. Atmospheric Research, 285(September 2022), 106636. https://doi.org/10.1016/j.atmosres.2023.106636
dc.relation.referencesZhao, W., & Li, A. (2015). A Review on Land Surface Processes Modelling over Complex Terrain. Advances in Meteorology, 2015. https://doi.org/10.1155/2015/607181
dc.relation.referencesZhou, W., Gao, M., He, Y., Wang, Q., Xie, C., Xu, W., Zhao, J., Du, W., Qiu, Y., Lei, L., Fu, P., Wang, Z., Worsnop, D. R., Zhang, Q., & Sun, Y. (2019). Response of aerosol chemistry to clean air action in Beijing, China: Insights from two-year ACSM measurements and model simulations. Environmental Pollution (Barking, Essex : 1987), 255(Pt 2). https://doi.org/10.1016/J.ENVPOL.2019.113345
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembCalidad del aire
dc.subject.lembAir quality
dc.subject.proposalModelación meteorológica
dc.subject.proposalValle Interandino Tropical
dc.subject.proposalTransporte regional de contaminantes
dc.subject.proposalTopografía compleja
dc.subject.proposalVientos catabáticos
dc.subject.proposalMeteorological modeling
dc.subject.proposalTropical Inter-Andean Valley
dc.subject.proposalRegional transport of pollutants
dc.subject.proposalComplex topography
dc.subject.proposalkatabatic winds
dc.title.translatedAtmospheric circulation patterns in the geographic valley of the Cauca River and its impact on regional air quality
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.orcidAndres V. Ardila [0000-0002-4865-675X]
dc.contributor.researchgateAndres Ardila [https://www.researchgate.net/profile/Andres-Ardila-8]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito