Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorRivera Monroy, Zuly Jenny
dc.contributor.authorGómez Guerrero, Néstor Alejandro
dc.date.accessioned2024-01-16T15:35:12Z
dc.date.available2024-01-16T15:35:12Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85327
dc.descriptionilustraciones, fotografías, gráficas, tablas
dc.description.abstractLos péptidos cortos se consideran, en el ámbito del control al dopaje, como un grupo separado de sustancias dopantes de acuerdo con la clasificación de la Agencia Mundial Antidopaje (AMA). Se trata de un grupo diverso, que incluye, entre otros, la hormona de crecimiento, los factores de liberación de la hormona del crecimiento y los análogos de la hormona liberadora de gonadotropina. En la última década se han logrado importantes desarrollos en la detección de péptidos cortos de uso frecuente en dopaje, por tal motivo, se revisaron los principales avances en la extracción, limpieza y preparación de muestras biológicas para la detección de péptidos cortos mediante cromatografía líquida y espectrometría de masas (LC-MS) como insumo para el desarrollo y validación de metodologías analíticas que permitan la detección rutinaria de péptidos cortos en laboratorios de control al dopaje. De igual manera, se revisó la síntesis de péptidos cortos como alternativa para la fabricación de materiales de referencia necesarios para el análisis de péptidos cortos usados en dopaje. Por otra parte, se revisaron las modificaciones más frecuentes de los péptidos cortos, su uso en el mercado negro y su metabolismo, como fuente de información necesaria para descubrir nuevos marcadores que permitan ampliar la ventana de detección de los péptidos cortos usados en dopaje. (Texto tomado de la fuente)
dc.description.abstractShort peptides are considered, in the field of doping control, as a separate group of doping substances according to the classification of the World Anti-Doping Agency (WADA). This is a diverse group, including, but not limited to, growth hormone, growth hormone releasing factors, and gonadotropin-releasing hormone analogues. In the last decade, important developments have been achieved in the detection of short peptides frequently used in doping, for this reason, the main advances in the extraction, cleaning and preparation of biological samples for the detection of short peptides by liquid chromatography and mass spectrometry (LC-MS) were reviewed as an input for the development and validation of analytical methodologies that allow the routine detection of short peptides in doping control laboratories. Similarly, the synthesis of short peptides was reviewed as an alternative for the manufacture of reference materials necessary for the analysis of short peptides used in doping. On the other hand, the most frequent modifications of short peptides, their use in the black market and their metabolism were reviewed, as a source of information necessary to discover new markers that allow expanding the detection window of short peptides used in doping.
dc.format.extentxx, 70 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos reservados al autor, 2023
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc540 - Química y ciencias afines::543 - Química analítica
dc.titleCromatografía Líquida acoplada a Espectrometría de Masas (LC-MS) como herramienta de análisis de péptidos cortos de interés en el dopaje: Revisión
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Química
dc.contributor.researchgroupSíntesis y Aplicación de Moléculas Peptídicas
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Química
dc.description.researchareaQuímica analítica
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references1. Birzniece, V., 2015. Doping in sport: effects, harm and misconceptions. Internal medicine journal, 45(3), pp.239-248
dc.relation.references2. Morente-Sánchez, J. and Zabala, M., 2013. Doping in sport: a review of elite athletes’ attitudes, beliefs, and knowledge. Sports medicine, 43, pp.395-411
dc.relation.references3. Hackney, A.C., 2018. Athlete testing, analytical procedures, and adverse analytical findings. Doping, Performance Enhancing Drugs, and Hormones in Sport, pp.49-63
dc.relation.references4. Neuberger, E.W. and Simon, P., 2017. Gene and cell doping: The new frontier-beyond myth or reality. In Acute topics in anti-doping (Vol. 62, pp. 91-106). Karger Publishers
dc.relation.references5. Atkinson, T.S. and Kahn, M.J., 2020. Blood doping: Then and now. A narrative review of the history, science and efficacy of blood doping in elite sport. Blood reviews, 39, p.100632.
dc.relation.references6. Conti, A.A., 2010. Doping in sports in ancient and recent times. Medicina nei secoli: Journal of history of medicine and medical humanities, 22(1-3), pp.181-190
dc.relation.references7. Yesalis, C.E. and Bahrke, M.S., 2002. History of doping in sport. International sports studies, 24(1), pp.42-76
dc.relation.references8. Müller, R.K., 2010. History of doping and doping control. Doping in sports: Biochemical principles, effects and analysis, pp.1-23
dc.relation.references9. Ljungqvist, A., 2017. Brief history of anti-doping. In Acute Topics in Anti-Doping (Vol. 62, pp. 1-10). Karger Publishers
dc.relation.references10. Willick, S.E., Miller, G.D. and Eichner, D., 2016. The anti-doping movement. PM&R, 8(3), pp.S125-S132
dc.relation.references11. Robinson, N., Sottas, P.E. and Schumacher, Y.O., 2017. The athlete biological passport: How to personalize anti-doping testing across an athlete's career?. In Acute topics in anti-doping (Vol. 62, pp. 107-118). Karger Publishers
dc.relation.references12. Barroso, O., Handelsman, D.J., Strasburger, C. and Thevis, M., 2012. Analytical challenges in the detection of peptide hormones for anti-doping purposes. Bioanalysis, 4(13), pp.1577-1590
dc.relation.references13. Rode, B.M., 1999. Peptides and the origin of life1. Peptides, 20(6), pp.773-786.
dc.relation.references14. Nic, M., Jirát, J., Košata, B., Jenkins, A. and McNaught, A., IUPAC Compendium of Chemical Terminology, IUPAC, Research Triagle Park and NC, 2009
dc.relation.references15. Boyle, J., 2005. Lehninger principles of biochemistry: Nelson, D., and Cox, M. pp. 74–75
dc.relation.references16. Le Maux, S., Nongonierma, A.B. and FitzGerald, R.J., 2015. Improved short peptide identification using HILIC–MS/MS: Retention time prediction model based on the impact of amino acid position in the peptide sequence. Food chemistry, 173, pp.847-854
dc.relation.references17. Thomas, A., Görgens, C., Guddat, S., Thieme, D., Dellanna, F., Schänzer, W. and Thevis, M., 2016. Simplifying and expanding the screening for peptides< 2 kDa by direct urine injection, liquid chromatography, and ion mobility mass spectrometry. Journal of separation science, 39(2), pp.333-341
dc.relation.references18. Montesinos, E. and Bardaji, E., 2008. Synthetic antimicrobial peptides as agricultural pesticides for plant‐disease control. Chemistry & biodiversity, 5(7), pp.1225-1237
dc.relation.references19. Murphy, E., Smith, S. and De Smet, I., 2012. Small signaling peptides in Arabidopsis development: how cells communicate over a short distance. The Plant Cell, 24(8), pp.3198-3217
dc.relation.references20. Sánchez, A. and Vázquez, A., 2017. Bioactive peptides: A review. Food quality and safety, 1(1), pp.29-46
dc.relation.references21. Lau, J.L. and Dunn, M.K., 2018. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorganic & medicinal chemistry, 26(10), pp.2700-2707
dc.relation.references22. Pickart, L. and Margolina, A., 2018. Regenerative and protective actions of the GHK-Cu peptide in the light of the new gene data. International journal of molecular sciences, 19(7), p.1987
dc.relation.references23. Aith, F.M.A., 2013. Anti-doping control and public health: limits to the exposure of human health to risk in the name of sporting glory. Revista de Saúde Pública, 47, pp.1015-1018
dc.relation.references24. Guan, F., Fay, S., Li, X., You, Y. and Robinson, M.A., 2020. Identification of ex vivo catabolites of peptides with doping potential in equine plasma by HILIC‐HRMS. Drug Testing and Analysis, 12(6), pp.771-784
dc.relation.references25. D’Aloisio, V., Dognini, P., Hutcheon, G.A. and Coxon, C.R., 2021. PepTherDia: Database and structural composition analysis of approved peptide therapeutics and diagnostics. Drug Discovery Today, 26(6), pp.1409-1419
dc.relation.references26. World Anti-Doping Agency. World Anti-Doping Code: International Standard Prohibited List 2023 . 2023; pp 1– 24
dc.relation.references27. World Anti-Doping Agency. 2021 Anti-Doping Testing Figures . 2021; pp 1– 29
dc.relation.references28. Thevis, M. and Schanzer, W., 2005. Identification and characterization of peptides and proteins in doping control analysis. Current Proteomics, 2(3), pp.191-208
dc.relation.references29. Robinson, N., Giraud, S., Saudan, C., Baume, N., Avois, L., Mangin, P. and Saugy, M., 2006. Erythropoietin and blood doping. British journal of sports medicine, 40(suppl 1), pp.i30-i34
dc.relation.references30. Trinh, K.V., Diep, D., Chen, K.J.Q., Huang, L. and Gulenko, O., 2020. Effect of erythropoietin on athletic performance: a systematic review and meta-analysis. BMJ Open Sport & Exercise Medicine, 6(1), p.e000716
dc.relation.references31. Bell, P., Ten Have, C. and Lauchs, M., 2016. A case study analysis of a sophisticated sports doping network: Lance Armstrong and the USPS Team. International Journal of Law, Crime and Justice, 46, pp.57-68
dc.relation.references32. Citartan, M., Gopinath, S.C., Chen, Y., Lakshmipriya, T. and Tang, T.H., 2015. Monitoring recombinant human erythropoietin abuse among athletes. Biosensors and Bioelectronics, 63, pp.86-98
dc.relation.references33. Woolf, J.J.R. and Perkari, K., 2021. Fighting and doping: Professional mixed martial artists experience and exposure to performance-enhancing substances and supplements. Performance Enhancement & Health, 9(1), p.100190
dc.relation.references34. Sonksen, P.H., 2001. Hormones and Sport-Insulin, growth hormone and sport. Journal of Endocrinology, 170(1), pp.13-25
dc.relation.references35. Holt, R.I., Erotokritou-Mulligan, I. and Sönksen, P.H., 2009. The history of doping and growth hormone abuse in sport. Growth Hormone & IGF Research, 19(4), pp.320-326
dc.relation.references36. Anderson, L.J., Tamayose, J.M. and Garcia, J.M., 2018. Use of growth hormone, IGF-I, and insulin for anabolic purpose: Pharmacological basis, methods of detection, and adverse effects. Molecular and cellular endocrinology, 464, pp.65-74
dc.relation.references37. Parr, M.K. and Müller-Schöll, A., 2018. Pharmacology of doping agents—mechanisms promoting muscle hypertrophy. AIMS Molecular Science, 5, p.145
dc.relation.references38. Holt, R.I.G. and Sönksen, P.H., 2008. Growth hormone, IGF‐I and insulin and their abuse in sport. British journal of pharmacology, 154(3), pp.542-556
dc.relation.references39. Guha, N., Cowan, D.A., Sönksen, P.H. and Holt, R.I., 2013. Insulin-like growth factor-I (IGF-I) misuse in athletes and potential methods for detection. Analytical and bioanalytical chemistry, 405, pp.9669-9683
dc.relation.references40. Laudo, C., Puigdevall, V., Del Rio, M.J. and Velasco, A., 2006, August. Hormonas utilizadas como agentes ergogénicos: situación actual del problema. In Anales del sistema sanitario de Navarra (Vol. 29, No. 2, pp. 207-218). Gobierno de Navarra. Departamento de Salud
dc.relation.references41. Rogol, A.D., Miller, G.D. and Eichner, D., 2019. Growth hormone, growth hormone secretagogues, and insulin-like growth factor-1 in sports: prohibited status, therapeutic use exemptions, and analytical detectability. Current Opinion in Endocrine and Metabolic Research, 9, pp.8-13
dc.relation.references42. Guan, F. and Robinson, M.A., 2017. Comprehensive solid-phase extraction of multitudinous bioactive peptides from equine plasma and urine for doping detection. Analytica chimica acta, 985, pp.79-90
dc.relation.references43. Berlanga-Acosta, J., Abreu-Cruz, A., Barco Herrera, D.G.D., Mendoza-Marí, Y., Rodríguez-Ulloa, A., García-Ojalvo, A., Falcón-Cama, V., Hernández-Bernal, F., Beichen, Q. and Guillén-Nieto, G., 2017. Synthetic Growth Hormone-Releasing Peptides (GHRPs): a historical appraisal of the evidences supporting their cytoprotective effects. Clinical Medicine Insights: Cardiology, 11, p.1-9
dc.relation.references44. Ezcurra, D. and Humaidan, P., 2014. A review of luteinising hormone and human chorionic gonadotropin when used in assisted reproductive technology. Reproductive Biology and Endocrinology, 12(1), pp.1-12
dc.relation.references45. National Institute of Diabetes and Digestive and Kidney Diseases. Gonadotropins, 2012. In LiverTox: Clinical and Research Information on Drug-Induced Liver Injury; U.S. National Library of Medicine, pp 1– 12.
dc.relation.references46. Handelsman, D.J., Idan, A., Grainger, J., Goebel, C., Turner, L. and Conway, A.J., 2014. Detection and effects on serum and urine steroid and LH of repeated GnRH analog (leuprolide) stimulation. The Journal of Steroid Biochemistry and Molecular Biology, 141, pp.113-120
dc.relation.references47. Jameson, J.L. and De Groot, L.J., 2015. Endocrinology: adult and pediatric E-Book. Elsevier Health Sciences
dc.relation.references48. Thevis, M., Thomas, A. and Schänzer, W., 2010. Insulin. Doping in sports: Biochemical principles, effects and analysis, pp.209-226
dc.relation.references49. Graham, M.R., Baker, J.S. and Davies, B., 2016. Peptide hormones, metformin and new-wave practices and research therapies. Chemically modified bodies: The use of diverse substances for appearance enhancement, pp.201-229
dc.relation.references50. Benni, J.M. and Patil, P.A., 2016. Non-diabetic clinical applications of insulin. Journal of basic and clinical physiology and pharmacology, 27(5), pp.445-456
dc.relation.references51. Evans, P. and Lynch, R., 2003. Insulin as a drug of abuse in body building. British journal of sports medicine, 37(4), pp.356-357
dc.relation.references52. Heidet, M., Wahab, A.A., Ebadi, V., Cogne, Y., Chollet-Xemard, C. and Khellaf, M., 2019. Severe hypoglycemia due to cryptic insulin use in a bodybuilder. The Journal of Emergency Medicine, 56(3), pp.279-281
dc.relation.references53. Saugy, M., Robinson, N., Saudan, C., Baume, N., Avois, L. and Mangin, P., 2006. Human growth hormone doping in sport. British journal of sports medicine, 40(suppl 1), pp.i35-i39
dc.relation.references54. Cadwallader, A.B., De La Torre, X., Tieri, A. and Botrè, F., 2010. The abuse of diuretics as performance‐enhancing drugs and masking agents in sport doping: pharmacology, toxicology and analysis. British journal of pharmacology, 161(1), pp.1-16
dc.relation.references55. Sanchís Gomar, F., Martínez Bello, V.E., Derbré, F., García López, E., García Vallés, R., Brioche, T., Ferrando, B., Ibáñez Sania, S., Pareja Galeano, H., Gómez Cabrera, M.D.C. and Viña, J., 2011. Rapid hemodilution induced by desmopressin after erythropoietin administration in human. Journal of Human Sport and Exercise, 6 (2), pp. 315– 322
dc.relation.references56. Sanchis-Gomar, F., Martinez-Bello, V.E., Nascimento, A.L., Perez-Quilis, C., Garcia-Gimenez, J.L., Vina, J. and Gomez-Cabrera, M.C., 2010. Desmopresssin and hemodilution: implications in doping. International journal of sports medicine, 31(01), pp.5-9
dc.relation.references57. Demiselle, J., Fage, N., Radermacher, P. and Asfar, P., 2020. Vasopressin and its analogues in shock states: a review. Annals of intensive care, 10(1), p.9
dc.relation.references58. Alsaadi, A.S., Sushko, K., Bui, V., Van Den Anker, J., Razak, A. and Samiee-Zafarghandy, S., 2021. Efficacy and safety of vasopressin and terlipressin in preterm neonates: a protocol for a systematic review. BMJ Paediatrics Open, 5(1).
dc.relation.references59. Mazzarino, M., Calvaresi, V., de la Torre, X., Parrotta, G., Sebastianelli, C. and Botrè, F., 2015. Development and validation of a liquid chromatography–mass spectrometry procedure after solid-phase extraction for detection of 19 doping peptides in human urine. Forensic Toxicology, 33(2), pp.321-337
dc.relation.references60. Shen, L.; Zhang, L.; Yang, X.; He, C.; Zhou, X.; Xu, Y.; Yan, K., 2016. Simultaneous Detection of Sixteen WADA Prohibited GHRPs, GHS, GnRHs and Eight Metabolites in Human Urine by HPLC-MS/MS. Recent Advances in Doping Analysis, 24, pp. 12-19
dc.relation.references61. Schwenke, D., 2016. Application of Fluorescence Labeled Proteins as Internal Standards for Sarcosyl-PAGE and Western Blot to Improved Detection of ESAs. Recent Advances in Doping Analysis, 24, pp. 26– 31
dc.relation.references62. Mackay, L.G. and Kazlauskas, R., 2011. The importance of reference materials in doping-control analysis. Analytical and bioanalytical chemistry, 401, pp.483-492
dc.relation.references63. Hoofnagle, A.N., Whiteaker, J.R., Carr, S.A., Kuhn, E., Liu, T., Massoni, S.A., Thomas, S.N., Townsend, R.R., Zimmerman, L.J., Boja, E. and Chen, J., 2016. Recommendations for the generation, quantification, storage, and handling of peptides used for mass spectrometry–based assays. Clinical chemistry, 62(1), pp.48-69
dc.relation.references64. Thomas, A., Schänzer, W., Delahaut, P. and Thevis, M., 2012. Immunoaffinity purification of peptide hormones prior to liquid chromatography–mass spectrometry in doping controls. Methods, 56(2), pp.230-235
dc.relation.references65. Cuervo, D., Loli, C., Fernández-Álvarez, M., Muñoz, G. and Carreras, D., 2017. Determination of doping peptides via solid-phase microelution and accurate-mass quadrupole time-of-flight LC–MS. Journal of Chromatography B, 1065, pp.134-144
dc.relation.references66. Zvereva, I., Semenistaya, E., Krotov, G. and Rodchenkov, G., 2016. Comparison of various in vitro model systems of the metabolism of synthetic doping peptides: Proteolytic enzymes, human blood serum, liver and kidney microsomes and liver S9 fraction. Journal of proteomics, 149, pp.85-97
dc.relation.references67. Coppieters, G., Deventer, K., Van Eenoo, P. and Judak, P., 2021. Combining direct urinary injection with automated filtration and nanoflow LC-MS for the confirmatory analysis of doping-relevant small peptide hormones. Journal of Chromatography B, 1179, p.122842
dc.relation.references68. Thomas, A., Görgens, C., Guddat, S., Thieme, D., Dellanna, F., Schänzer, W. and Thevis, M., 2016. Simplifying and expanding the screening for peptides< 2 kDa by direct urine injection, liquid chromatography, and ion mobility mass spectrometry. Journal of separation science, 39(2), pp.333-341
dc.relation.references69. Thevis, M., Thomas, A. and Schänzer, W., 2011. Doping control analysis of selected peptide hormones using LC–MS (/MS). Forensic science international, 213(1-3), pp.35-41
dc.relation.references70. Jaradat, D.S.M., 2018. Thirteen decades of peptide synthesis: key developments in solid phase peptide synthesis and amide bond formation utilized in peptide ligation. Amino acids, 50(1), pp.39-68
dc.relation.references71. Insuasty Cepeda, D.S., Pineda Castañeda, H.M., Rodríguez Mayor, A.V., García Castañeda, J.E., Maldonado Villamil, M., Fierro Medina, R. and Rivera Monroy, Z.J., 2019. Synthetic peptide purification via solid-phase extraction with gradient elution: A simple, economical, fast, and efficient methodology. Molecules, 24(7), p.1215
dc.relation.references72. Zapata Velásquez, J. D.; Garcia Castañeda, J. E. , 2021.Síntesis, Purificación y Caracterización de Cuatro Péptidos Secretagogos de La Hormona de Crecimiento Utilizados En Dopaje; Universidad Nacional de Colombia, Bogota, Colombia
dc.relation.references73. Ramírez Celis, D. A.; García Castañeda, J. E. , 2022. Síntesis, Purificación y Caracterización de Leuprolide y Los Precursores de Desmopresina y Vasopresina; Universidad Nacional de Colombia, Bogota, Colombia
dc.relation.references74. Deutsch, E.W., Perez-Riverol, Y., Chalkley, R.J., Wilhelm, M., Tate, S., Sachsenberg, T., Walzer, M., Kall, L., Delanghe, B., Böcker, S. and Schymanski, E.L., 2018. Expanding the use of spectral libraries in proteomics. Journal of proteome research, 17(12), pp.4051-4060
dc.relation.references75. Plachká, K., Pezzatti, J., Musenga, A., Nicoli, R., Kuuranne, T., Rudaz, S., Nováková, L. and Guillarme, D., 2021. Ion mobility-high resolution mass spectrometry in anti-doping analysis. Part I: Implementation of a screening method with the assessment of a library of substances prohibited in sports. Analytica Chimica Acta, 1152, p.338257
dc.relation.references76. MacLaren, D. and Morton, J., 2011. Biochemistry for sport and exercise metabolism. John Wiley & Sons
dc.relation.references77. Foye, W.O., 2008. Foye's principles of medicinal chemistry. Lippincott williams & wilkins
dc.relation.references78. Rawlings, N.D., O’Brien, E. and Barrett, A.J., 2002. MEROPS: the protease database. Nucleic Acids Research, 30(1), pp.343-346
dc.relation.references79. Yao, J.F., Yang, H., Zhao, Y.Z. and Xue, M., 2018. Metabolism of peptide drugs and strategies to improve their metabolic stability. Current Drug Metabolism, 19(11), pp.892-901
dc.relation.references80. Mäde, V., Els-Heindl, S. and Beck-Sickinger, A.G., 2014. Automated solid-phase peptide synthesis to obtain therapeutic peptides. Beilstein journal of organic chemistry, 10(1), pp.1197-1212
dc.relation.references81. Popławska, M. and Błażewicz, A., 2019. Identification of a novel growth hormone releasing peptide (a glycine analogue of GHRP‐2) in a seized injection vial. Drug Testing and Analysis, 11(1), pp.162-167
dc.relation.references82. Krug, O., Thomas, A., Malerød-Fjeld, H., Dehnes, Y., Laussmann, T., Feldmann, I., Sickmann, A. and Thevis, M., 2018. Analysis of new growth promoting black market products. Growth Hormone & IGF Research, 41, pp.1-6
dc.relation.references83. Carstairs, C., 2009. Dope: A History of Performance Enhancement in Sports from the Nineteenth Century to Today
dc.relation.references84. Paoli, L. and Donati, A., 2014. The sports doping market. Springer
dc.relation.references85. Okano, M., Sato, M., Ikekita, A. and Kageyama, S., 2010. Determination of growth hormone secretagogue pralmorelin (GHRP‐2) and its metabolite in human urine by liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 24(14), pp.2046-2056
dc.relation.references86. Okano, M., Nishitani, Y., Sato, M., Ikekita, A. and Kageyama, S., 2010. Influence of intravenous administration of growth hormone releasing peptide‐2 (GHRP‐2) on detection of growth hormone doping: growth hormone isoform profiles in Japanese male subjects. Drug Testing and Analysis, 2(11‐12), pp.548-556
dc.relation.references87. Grunfeld, C., Dritselis, A. and Kirkpatrick, P., 2011. Tesamorelin. Nature Reviews Drug Discovery, 10(2), pp.95-97
dc.relation.references88. Jette, L., Léger, R., Thibaudeau, K., Benquet, C., Robitaille, M., Pellerin, I., Paradis, V., van Wyk, P., Pham, K. and Bridon, D.P., 2005. Human growth hormone-releasing factor (hGRF) 1–29-albumin bioconjugates activate the GRF receptor on the anterior pituitary in rats: Identification of CJC-1295 as a long-lasting GRF analog. Endocrinology, 146(7), pp.3052-3058
dc.relation.references89. Kohler, M., Thomas, A., Walpurgis, K., Terlouw, K., Schänzer, W. and Thevis, M., 2010. Detection of His-tagged Long-R3-IGF-I in a black market product. Growth Hormone & IGF Research, 20(5), pp.386-390
dc.relation.references90. Goldspink, G., Wessner, B., Tschan, H. and Bachl, N., 2010. Growth factors, muscle function, and doping. Endocrinology and Metabolism Clinics, 39(1), pp.169-181
dc.relation.references91. Matheny Jr, R.W., Nindl, B.C. and Adamo, M.L., 2010. Minireview: Mechano-growth factor: a putative product of IGF-I gene expression involved in tissue repair and regeneration. Endocrinology, 151(3), pp.865-875
dc.relation.references92. Hameed, M., Orrell, R.W., Cobbold, M., Goldspink, G. and Harridge, S.D.R., 2003. Expression of IGF‐I splice variants in young and old human skeletal muscle after high resistance exercise. The Journal of physiology, 547(1), pp.247-254
dc.relation.references93. Esposito, S., Deventer, K. and Eenoo, P.V., 2012. Characterization and identification of a C‐terminal amidated mechano growth factor (MGF) analogue in black market products. Rapid Communications in Mass Spectrometry, 26(6), pp.686-692
dc.relation.references94. Orlovius, A.K., Thomas, A., Schänzer, W. and Thevis, M., 2013. AOD‐9604 does not influence the WADA hGH isoform immunoassay. Drug Testing and Analysis, 5(11-12), pp.850-852
dc.relation.references95. Cox, H.D., Smeal, S.J., Hughes, C.M., Cox, J.E. and Eichner, D., 2015. Detection and in vitro metabolism of AOD9604. Drug testing and analysis, 7(1), pp.31-38
dc.relation.references96. Engel, J.B. and Schally, A.V., 2007. Drug Insight: clinical use of agonists and antagonists of luteinizing-hormone-releasing hormone. Nature Clinical Practice Endocrinology & Metabolism, 3(2), pp.157-167
dc.relation.references97. Sosne, G., Qiu, P., Goldstein, A.L. and Wheater, M., 2010. Biological activities of thymosin ß4 defined by active sites in short peptide sequences. The FASEB Journal, 24(7), pp.2144-2151
dc.relation.references98. Ho, E.N., Kwok, W.H., Lau, M.Y., Wong, A.S., Wan, T.S., Lam, K.K., Schiff, P.J. and Stewart, B.D., 2012. Doping control analysis of TB-500, a synthetic version of an active region of thymosin β4, in equine urine and plasma by liquid chromatography–mass spectrometry. Journal of chromatography A, 1265, pp.57-69
dc.relation.references99. Guan, F., Uboh, C.E., Soma, L.R. and Rudy, J., 2011. Sequence elucidation of an unknown cyclic peptide of high doping potential by ETD and CID tandem mass spectrometry. Journal of The American Society for Mass Spectrometry, 22(4), pp.718-730
dc.relation.references100. Van Eenoo, P. and Delbeke, F.T., 2006. Metabolism and excretion of anabolic steroids in doping control—new steroids and new insights. The Journal of steroid biochemistry and molecular biology, 101(4-5), pp.161-178
dc.relation.references101. Mazzarino, M., Biava, M., de la Torre, X., Fiacco, I. and Botrè, F., 2013. Characterization of the biotransformation pathways of clomiphene, tamoxifen and toremifene as assessed by LC-MS/(MS) following in vitro and excretion studies. Analytical and bioanalytical chemistry, 405, pp.5467-5487
dc.relation.references102. Papac, D.I. and Shahrokh, Z., 2001. Mass spectrometry innovations in drug discovery and development. Pharmaceutical research, 18, pp.131-145
dc.relation.references103. Thevis, M. and Schänzer, W., 2007. Current role of LC–MS (/MS) in doping control. Analytical and bioanalytical chemistry, 388, pp.1351-1358
dc.relation.references104. Maurer, H.H., 2006. Hyphenated mass spectrometric techniques—indispensable tools in clinical and forensic toxicology and in doping control. Journal of Mass Spectrometry, 41(11), pp.1399-1413
dc.relation.references105. Marquet, P., 2002. Progress of liquid chromatography–mass spectrometry in clinical and forensic toxicology. Therapeutic drug monitoring, 24(2), pp.255-276
dc.relation.references106. Kostiainen, R., Kotiaho, T., Kuuranne, T. and Auriola, S., 2003. Liquid chromatography/atmospheric pressure ionization–mass spectrometry in drug metabolism studies. Journal of Mass Spectrometry, 38(4), pp.357-372
dc.relation.references107. Meyer, M.R. and Maurer, H.H., 2012. Current applications of high-resolution mass spectrometry in drug metabolism studies. Analytical and bioanalytical chemistry, 403, pp.1221-1231
dc.relation.references108. Aebersold, R. and Mann, M., 2003. Mass spectrometry-based proteomics. Nature, 422(6928), pp.198-207
dc.relation.references109. Thomas, A., Thevis, M., Delahaut, P., Bosseloir, A. and Schänzer, W., 2007. Mass spectrometric identification of degradation products of insulin and its long-acting analogues in human urine for doping control purposes. Analytical Chemistry, 79(6), pp.2518-2524
dc.relation.references110. Tingle, M.D. and Helsby, N.A., 2006. Can in vitro drug metabolism studies with human tissue replace in vivo animal studies?. Environmental toxicology and pharmacology, 21(2), pp.184-190
dc.relation.references111. Lootens, L., Van Eenoo, P., Meuleman, P., Pozo, O.J., Van Renterghem, P., Leroux‐Roels, G. and Delbeke, F.T., 2009. Steroid metabolism in chimeric mice with humanized liver. Drug testing and analysis, 1(11‐12), pp.531-537
dc.relation.references112. Judák, P., Esposito, S., Coppieters, G., Van Eenoo, P. and Deventer, K., 2021. Doping control analysis of small peptides: a decade of progress. Journal of Chromatography B, 1173, p.122551
dc.relation.references113. World Anti-Doping Code International Standard Laboratories (ISL) 2021; World Anti-Doping Agency: Montreal, Quebec, Canada, 2021; pp 1– 160
dc.relation.references114. Schamasch, P. and Rabin, O., 2012. Challenges and perspectives in anti-doping testing. Bioanalysis, 4(13), pp.1691-1701
dc.relation.references115. Deventer, K., Pozo, O.J., Verstraete, A.G. and Van Eenoo, P., 2014. Dilute-and-shoot-liquid chromatography-mass spectrometry for urine analysis in doping control and analytical toxicology. TrAC Trends in Analytical Chemistry, 55, pp.1-13
dc.relation.references116. Greer, B., Chevallier, O., Quinn, B., Botana, L.M. and Elliott, C.T., 2021. Redefining dilute and shoot: The evolution of the technique and its application in the analysis of foods and biological matrices by liquid chromatography mass spectrometry. TrAC Trends in Analytical Chemistry, 141, p.116284
dc.relation.references117. de Oliveira Arias, J.L., Schneider, A., Batista-Andrade, J.A., Vieira, A.A., Gehrke, V.R., Camargo, E.R., Caldas, S.S. and Primel, E.G., 2017. Evaluation of dilute-and-shoot and solid-phase extraction methods for the determination of S-metolachlor and metolachlor-OA in runoff water samples by liquid chromatography tandem mass spectrometry. Analytical Methods, 9(39), pp.5777-5783
dc.relation.references118. Thevis, M., Geyer, H., Tretzel, L. and Schänzer, W., 2016. Sports drug testing using complementary matrices: Advantages and limitations. Journal of pharmaceutical and biomedical analysis, 130, pp.220-230
dc.relation.references119. Anizan, S. and Huestis, M.A., 2014. The potential role of oral fluid in antidoping testing. Clinical chemistry, 60(2), pp.307-322
dc.relation.references120. van den Broek, I., Blokland, M., Nessen, M.A. and Sterk, S., 2015. Current trends in mass spectrometry of peptides and proteins: application to veterinary and sports‐doping control. Mass spectrometry reviews, 34(6), pp.571-594
dc.relation.references121. Katsila, T., Siskos, A.P. and Tamvakopoulos, C., 2012. Peptide and protein drugs: the study of their metabolism and catabolism by mass spectrometry. Mass spectrometry reviews, 31(1), pp.110-133
dc.relation.references122. Finoulst, I.; Pinkse, M.; van Dongen, W.; Verhaert, P., 2011. Sample Preparation Techniques for the Untargeted LC-MS-Based Discovery of Peptides in Complex Biological Matrices. J. Biomed Biotechnol, 2011, pp. 1– 14
dc.relation.references123. Heissel, S., Frederiksen, S.J., Bunkenborg, J. and Højrup, P., 2019. Enhanced trypsin on a budget: Stabilization, purification and high-temperature application of inexpensive commercial trypsin for proteomics applications. PLoS One, 14(6), p.e0218374
dc.relation.references124. Cañas, B., López-Ferrer, D., Ramos-Fernández, A., Camafeita, E. and Calvo, E., 2006. Mass spectrometry technologies for proteomics. Briefings in Functional Genomics, 4(4), pp.295-320
dc.relation.references125. Colev, J.; Berghes, B.; Pop, V.; Zorio, M.; Tarcomnicu, I., 2016. Liquid-Liquid Extraction as a Simple Alternative for the Analysis of Some of the Growth Hormone Releasing Peptides in Urine. Recent Advances in Doping Analysis, 24, pp. 83– 87
dc.relation.references126. Hartvig, R.A., Holm, N.B., Dalsgaard, P.W., Reitzel, L.A., Müller, I.B. and Linnet, K., 2014. Identification of peptide and protein doping related drug compounds confiscated in Denmark between 2007-2013. Scandinavian Journal of Forensic Science, 20(2), pp.42-49
dc.relation.references127. Le Maux, S., Nongonierma, A.B. and FitzGerald, R.J., 2015. Improved short peptide identification using HILIC–MS/MS: Retention time prediction model based on the impact of amino acid position in the peptide sequence. Food chemistry, 173, pp.847-854
dc.relation.references128. Harscoat‐Schiavo, C., Raminosoa, F., Ronat‐Heit, E., Vanderesse, R. and Marc, I., 2010. Modeling the separation of small peptides by cation‐exchange chromatography. Journal of separation science, 33(16), pp.2447-2457
dc.relation.references129. Tognarelli, D., Tsukamoto, A., Caldwell, J. and Caldwell, W., 2010. Rapid peptide separation by supercritical fluid chromatography. Bioanalysis, 2(1), pp.5-7
dc.relation.references130. Nshanian, M., Lakshmanan, R., Chen, H., Loo, R.R.O. and Loo, J.A., 2018. Enhancing sensitivity of liquid chromatography–mass spectrometry of peptides and proteins using supercharging agents. International journal of mass spectrometry, 427, pp.157-164
dc.relation.references131. Timms, M., Hall, N., Levina, V., Vine, J. and Steel, R., 2014. A high‐throughput LC‐MS/MS screen for GHRP in equine and human urine, featuring peptide derivatization for improved chromatography. Drug testing and analysis, 6(10), pp.985-995
dc.relation.references132. Hahne, H., Pachl, F., Ruprecht, B., Maier, S.K., Klaeger, S., Helm, D., Médard, G., Wilm, M., Lemeer, S. and Kuster, B., 2013. DMSO enhances electrospray response, boosting sensitivity of proteomic experiments. Nature methods, 10(10), pp.989-991
dc.relation.references133. Judák, P., Grainger, J., Goebel, C., Van Eenoo, P. and Deventer, K., 2017. DMSO assisted electrospray ionization for the detection of small peptide hormones in urine by dilute-and-shoot-liquid-chromatography-high resolution mass spectrometry. Journal of The American Society for Mass Spectrometry, 28(8), pp.1657-1665
dc.relation.references134. Görgens, C., Guddat, S., Thomas, A. and Thevis, M., 2018. Recent improvements in sports drug testing concerning the initial testing for peptidic drugs (< 2 kDa)–sample preparation, mass spectrometric detection, and data review. Drug testing and analysis, 10(11-12), pp.1755-1760
dc.relation.references135. Desai, M.J. and Armstrong, D.W., 2004. Analysis of native amino acid and peptide enantiomers by high‐performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Journal of mass spectrometry, 39(2), pp.177-187
dc.relation.references136. Lange, T., Thomas, A., Walpurgis, K. and Thevis, M., 2020. Fully automated dried blood spot sample preparation enables the detection of lower molecular mass peptide and non-peptide doping agents by means of LC-HRMS. Analytical and bioanalytical chemistry, 412, pp.3765-3777
dc.relation.references137. Judák, P., Van Eenoo, P. and Deventer, K., 2018. Urinary matrix effects in electrospray ionization mass spectrometry in the presence of DMSO. Journal of Mass Spectrometry, 53(10), pp.1018-1021
dc.relation.references138. Thomas, A., Höppner, S., Geyer, H., Schänzer, W., Petrou, M., Kwiatkowska, D., Pokrywka, A. and Thevis, M., 2011. Determination of growth hormone releasing peptides (GHRP) and their major metabolites in human urine for doping controls by means of liquid chromatography mass spectrometry. Analytical and Bioanalytical chemistry, 401, pp.507-516
dc.relation.references139. Thomas, A., Walpurgis, K., Krug, O., Schänzer, W. and Thevis, M., 2012. Determination of prohibited, small peptides in urine for sports drug testing by means of nano-liquid chromatography/benchtop quadrupole orbitrap tandem-mass spectrometry. Journal of Chromatography A, 1259, pp.251-257
dc.relation.references140. Sleno, L., 2012. The use of mass defect in modern mass spectrometry. Journal of mass spectrometry, 47(2), pp.226-236
dc.relation.references141. Görgens, C., Guddat, S., Thomas, A., Wachsmuth, P., Orlovius, A.K., Sigmund, G., Thevis, M. and Schänzer, W., 2016. Simplifying and expanding analytical capabilities for various classes of doping agents by means of direct urine injection high performance liquid chromatography high resolution/high accuracy mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 131, pp.482-496
dc.relation.references142. Sardela, V.F., Martucci, M.E.P., de Araújo, A.L.D., Leal, E.C., Oliveira, D.S., Carneiro, G.R.A., Deventer, K., Van Eenoo, P., Pereira, H.M.G. and Aquino Neto, F.R.D., 2018. Comprehensive analysis by liquid chromatography Q‐Orbitrap mass spectrometry: Fast screening of peptides and organic molecules. Journal of Mass Spectrometry, 53(6), pp.476-503
dc.relation.references143. Min, H., Han, B., Sung, C., Park, J.H., Lee, K.M., Kim, H.J., Kim, K.H., Son, J., Kwon, O.S. and Lee, J., 2016. LC-MS/MS Method for simultaneous analysis of growth hormone-releasing peptides and secretagogues in human urine. Mass Spectrometry Letters, 7(3), pp.55-63
dc.relation.references144. Seo, Y., Park, J., Kim, M., Sung, C., Kwon, O.S., Lee, H.J. and Min, H., 2021. Optimization, validation, and comparison of a rapid method for the quantification of insulin‐like growth factor 1 in serum using liquid chromatography–high‐resolution mass spectrometry. Drug Testing and Analysis, 13(2), pp.451-459
dc.relation.references145. Esposito, S., Deventer, K., T'Sjoen, G., Vantilborgh, A. and Van Eenoo, P., 2013. Doping control analysis of desmopressin in human urine by LC‐ESI‐MS/MS after urine delipidation. Biomedical Chromatography, 27(2), pp.240-245
dc.relation.references146. Skiba, M., Fatmi, S., Elkasri, N., Karrout, Y. and Lahiani-Skiba, M., 2020. Development, validation and method stability study of a LC-MS method to quantify leuprolide (Hormone analog) in human plasma. Journal of Chromatography B, 1160, p.122345
dc.relation.references147. Vanhee, C., Janvier, S., Desmedt, B., Moens, G., Deconinck, E., De Beer, J.O. and Courselle, P., 2015. Analysis of illegal peptide biopharmaceuticals frequently encountered by controlling agencies. Talanta, 142, pp.1-10
dc.relation.references148. Knoop, A., Thomas, A., Fichant, E., Delahaut, P., Schänzer, W. and Thevis, M., 2016. Qualitative identification of growth hormone-releasing hormones in human plasma by means of immunoaffinity purification and LC-HRMS/MS. Analytical and Bioanalytical Chemistry, 408, pp.3145-3153
dc.relation.references149. Gil, J., Cabrales, A., Reyes, O., Morera, V., Betancourt, L., Sánchez, A., García, G., Moya, G., Padrón, G., Besada, V. and González, L.J., 2012. Development and validation of a bioanalytical LC–MS method for the quantification of GHRP-6 in human plasma. Journal of pharmaceutical and biomedical analysis, 60, pp.19-25
dc.relation.references150. Thomas, A., Solymos, E., Schänzer, W., Baume, N., Saugy, M., Dellanna, F. and Thevis, M., 2011. Determination of Vasopressin and Desmopressin in urine by means of liquid chromatography coupled to quadrupole time-of-flight mass spectrometry for doping control purposes. Analytica chimica acta, 707(1-2), pp.107-113
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsDoping en los Deportes
dc.subject.decsDoping in Sports
dc.subject.decsPéptidos
dc.subject.decsPeptides
dc.subject.proposalPéptidos cortos
dc.subject.proposalCromatografía líquida
dc.subject.proposalEspectrometría de masas
dc.subject.proposalControl al dopaje
dc.subject.proposalmatriz biológica
dc.subject.proposalShort peptides
dc.subject.proposalLiquid chromatography
dc.subject.proposalMass spectrometry
dc.subject.proposalDoping control
dc.subject.proposalBiological matrix
dc.title.translatedLiquid Chromatography Mass Spectrometry (LC-MS) as a tool for the analysis of small peptides of interest in doping: A review
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito