Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorCardona Gallo, Santiago Alonso (Thesis advisor)
dc.contributor.advisorTorres Palma, Ricardo Antonio
dc.contributor.authorPrada Vásquez, María Angélica
dc.date.accessioned2024-01-22T15:41:31Z
dc.date.available2024-01-22T15:41:31Z
dc.date.issued2023-11-24
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85389
dc.descriptionIlustraciones
dc.description.abstractDebido a la creciente preocupación sobre la liberación de contaminantes de preocupación emergente (CECs) en diferentes compartimentos de agua, la necesidad de métodos efectivos y sostenibles de tratamiento de agua se ha convertido en un tema significativo. Estos CECs, que incluyen varios compuestos activos farmacéuticos (PhACs), productos de cuidado personal y otros contaminantes, plantean desafíos a los procesos convencionales de tratamiento de agua. Como resultado, existe una creciente necesidad de implementar soluciones alternativas para abordar este problema apremiante y garantizar la protección de nuestros recursos hídricos. En este contexto, la aplicación de tecnologías avanzadas como los procesos de tratamiento de agua mediante ozonación ha surgido como un enfoque prometedor para abordar la eliminación de compuestos orgánicos recalcitrantes, especialmente PhACs y salvaguardar la calidad de nuestro fuentes de agua. La ozonación se destaca como una tecnología versátil y poderosa capaz de atacar directa y selectivamente compuestos orgánicos, especialmente bajo condiciones de pH ácido. Simultáneamente, bajo condiciones de pH alcalino, el ozono puede sufrir descomposición a través de un mecanismo de reacción en cadena y generar radicales hidroxilo (HO•) altamente reactivos y menos selectivos. A pesar de su alta efectividad como técnica de tratamiento de agua, la ozonación convencional enfrenta dos desventajas principales: la mineralización incompleta y, en consecuencia, acumulación de subproductos de reacción desconocidos, así como limitaciones en la transferencia de masa gas-líquido. Este trabajo de tesis de doctorado se enfoca en contribuir al conocimiento existente sobre los diferentes procesos avanzados de oxidación (AOPs) basados en ozono como estrategias para mejorar o intensificar el rendimiento químico del proceso de ozonación para la eliminación de PhACs. Además, tiene como objetivo ampliar el conocimiento sobre la evaluación del rendimiento de un contactor de membrana para la inyección de ozono como una estrategia potencial para intensificar la transferencia de masa ozono-líquido y su aplicación en la eliminación de PhACs en muestras de aguas residuales reales.
dc.format.extent175 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc540 - Química y ciencias afines
dc.subject.ddc660 - Ingeniería química
dc.subject.ddc600 - Tecnología (Ciencias aplicadas)
dc.titleDegradation of pharmaceuticals from municipal wastewater effluents by ozone-based advanced oxidation processes
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/draft
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Recursos Hidráulicos
dc.description.degreelevelDoctorado
dc.description.degreenameDoctorado en Ingeniería - Recursos Hidráulicos
dc.description.researchareaTratamiento de aguas
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.repoRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesAa van der, N.G.F.M., Van Vlaardingen, P.L.A., Van Leeuwen, L.C., Post, M., 2001. Assessment of potential risks of 11 pharmaceuticals for the environment: Using environmental information from public databases.
dc.relation.referencesAdityosulindro, S., Julcour, C., Riboul, D., Barthe, L., 2022. Degradation of ibuprofen by photo-based advanced oxidation processes: exploring methods of activation and related reaction routes. International Journal of Environmental Science and Technology 19, 3247–3260. https://doi.org/10.1007/s13762-021-03372-5
dc.relation.referencesAl-Abduly, A., Christensen, P., Harvey, A., Zahng, K., 2014. Characterization and optimization of an oscillatory baffled reactor (OBR) for ozone-water mass transfer. Chemical Engineering and Processing - Process Intensification 84, 82–89. https://doi.org/10.1016/j.cep.2014.03.015
dc.relation.referencesAlejandro, S., Valdés, H., Zaror, Claudio.A., 2011. Natural Zeolite Reactivity Towards Ozone: The Role of Acid Surface Sites. Journal of Advanced Oxidation Technologies 14. https://doi.org/10.1515/jaots-2011-0201
dc.relation.referencesAlejandro-Martín, S., Valdés, H., Manero, M.H., Zaror, C.A., 2018. Catalytic ozonation of toluene using chilean natural zeolite: The key role of brønsted and lewis acid sites. Catalysts 8, 211. https://doi.org/10.3390/catal8050211
dc.relation.referencesAlmeida, V.M., Orge, C.A., Pereira, M.F.R., Soares, O.S.G.P., 2022. O3 based advanced oxidation for ibuprofen degradation. Chin J Chem Eng 42, 277–284. https://doi.org/10.1016/j.cjche.2021.04.032
dc.relation.referencesAPHA, A.-W., 1998. Standard methods for the examination of water, 21st ed, Sewage and Industrial Waste. American Public Health Association. Amer Public Health Assn.
dc.relation.referencesASCE, 2007. Measurement of oxygen transfer in clean water. American Society of Civil Engineers, Reston, USA.
dc.relation.referencesAsghar, A., Lutze, H. V., Tuerk, J., Schmidt, T.C., 2022. Influence of water matrix on the degradation of organic micropollutants by ozone based processes: A review on oxidant scavenging mechanism. J Hazard Mater 429, 128189. https://doi.org/10.1016/J.JHAZMAT.2021.128189
dc.relation.referencesaus der Beek, T., Weber, F.-A., Bergmann, A., Hickmann, S., Ebert, I., Hein, A., Küster, A., 2016. Pharmaceuticals in the environment-Global occurrences and perspectives. Environ Toxicol Chem 35, 823–835. https://doi.org/10.1002/etc.3339
dc.relation.referencesBader, H., Hoigné, J., 1981. Determination of ozone in water by the indigo method. Water Res 15, 449–456. https://doi.org/10.1016/0043-1354(81)90054-3
dc.relation.referencesBakeri, G., Matsuura, T., Ismail, A.F., Rana, D., 2012. A novel surface modified polyetherimide hollow fiber membrane for gas–liquid contacting processes. Sep Purif Technol 89, 160–170. https://doi.org/10.1016/J.SEPPUR.2012.01.022
dc.relation.referencesBamperng, S., Suwannachart, T., Atchariyawut, S., Jiraratananon, R., 2010. Ozonation of dye wastewater by membrane contactor using PVDF and PTFE membranes. Sep Purif Technol 72, 186–193. https://doi.org/10.1016/j.seppur.2010.02.006
dc.relation.referencesBeltran, F., 2003. Ozone Reaction Kinetics for Water and Wastewater Systems, Ozone Reaction Kinetics for Water and Wastewater Systems. Lewis Publishers. https://doi.org/10.1201/9780203509173
dc.relation.referencesBeltrán, F.J., Fernández, L.A., Álvarez, P., Rodriguez, E., 1998. Comparison Of Ozonation Kinetic Data From Film and Danckwerts Theories. Ozone Sci Eng 20, 403–420. https://doi.org/10.1080/10874506.01919512.1998
dc.relation.referencesBeltrán, F.J. (Fernando J., 2004. Ozone reaction kinetics for water and wastewater systems. Lewis Publishers.
dc.relation.referencesBeltrán, F.J., Rey, A., 2018. Free Radical and Direct Ozone Reaction Competition to Remove Priority and Pharmaceutical Water Contaminants with Single and Hydrogen Peroxide Ozonation Systems. Ozone Sci Eng 40, 251–265. https://doi.org/10.1080/01919512.2018.1431521
dc.relation.referencesBenner, J., Salhi, E., Ternes, T., von Gunten, U., 2008. Ozonation of reverse osmosis concentrate: Kinetics and efficiency of beta blocker oxidation. Water Res 42, 3003–3012. https://doi.org/10.1016/j.watres.2008.04.002
dc.relation.referencesBerry, M.J., Taylor, C.M., King, W., Chew, Y.M.J., Wenk, J., 2017. Modelling of ozone mass-transfer through non-porous membranes for water treatment. Water (Switzerland) 9. https://doi.org/10.3390/w9070452
dc.relation.referencesBieber, S., Rauch-Williams, T., Drewes, J.E., 2016. An Assessment of International Management Strategies for CECs in Water. ACS Symposium Series 1241, 11–22. https://doi.org/10.1021/BK-2016-1241.CH002
dc.relation.referencesBijlsma, L., Pitarch, E., Fonseca, E., Ibáñez, M., Botero, A.M., Claros, J., Pastor, L., Hernández, F., 2021. Investigation of pharmaceuticals in a conventional wastewater treatment plant: Removal efficiency, seasonal variation and impact of a nearby hospital. J Environ Chem Eng 9, 105548. https://doi.org/10.1016/j.jece.2021.105548
dc.relation.referencesBoix, C., Ibáñez, M., Sancho, J. V., Parsons, J.R., Voogt, P. de, Hernández, F., 2016. Biotransformation of pharmaceuticals in surface water and during waste water treatment: Identification and occurrence of transformation products. J Hazard Mater 302, 175–187. https://doi.org/10.1016/j.jhazmat.2015.09.053
dc.relation.referencesBolton, J.R., Bircher, K.G., Tumas, W., Tolman, C.A., 2001. Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems (IUPAC Technical Report). Pure and Applied Chemistry 73, 627–637. https://doi.org/10.1351/pac200173040627
dc.relation.referencesBotero-Coy, A.M., Martínez-Pachón, D., Boix, C., Rincón, R.J., Castillo, N., Arias-Marín, L.P., Manrique-Losada, L., Torres-Palma, R., Moncayo-Lasso, A., Hernández, F., 2018. ‘An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater.’ Science of The Total Environment 642, 842–853. https://doi.org/10.1016/j.scitotenv.2018.06.088
dc.relation.referencesBourgin, M., Beck, B., Boehler, M., Borowska, E., Fleiner, J., Salhi, E., Teichler, R., von Gunten, U., Siegrist, H., McArdell, C.S., 2018. Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: Abatement of micropollutants, formation of transformation products and oxidation by-products. Water Res 129, 486–498. https://doi.org/10.1016/j.watres.2017.10.036
dc.relation.referencesBoyd, G.R., Reemtsma, H., Grimm, D.A., Mitra, S., 2003. Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada. Science of The Total Environment 311, 135–149. https://doi.org/10.1016/S0048-9697(03)00138-4
dc.relation.referencesBrillas, E., 2022. A critical review on ibuprofen removal from synthetic waters, natural waters, and real wastewaters by advanced oxidation processes. Chemosphere 286, 131849. https://doi.org/10.1016/j.chemosphere.2021.131849
dc.relation.referencesCarvalho, R.N., Ceriani, L., Ippolito, A., 2015. Development of the first Watch List under the Environmental Quality Standards Directive water policy. Ispra, Italy. https://doi.org/10.2788/101376
dc.relation.referencesCastro, J., Paz, S., Mena, N., Urresta, J., Machuca-Martinez, F., 2019. Evaluation of heterogeneous catalytic ozonation process for diclofenac degradation in solutions synthetically prepared. Environmental Science and Pollution Research 26, 4488–4497. https://doi.org/10.1007/s11356-018-2582-1
dc.relation.referencesCharpentier, J.C., 1981. Mass-Transfer Rates in Gas-Liquid Absorbers and Reactors. Advances in Chemical Engineering 11, 1–133. https://doi.org/10.1016/S0065-2377(08)60025-3
dc.relation.referencesChen, N.Y., 1976. Hydrophobic properties of zeolites. Journal of Physical Chemistry 80, 60–64. https://doi.org/10.1021/j100542a013
dc.relation.referencesChen, Y., Xi, X., Yu, G., Cao, Q., Wang, B., Vince, F., Hong, Y., 2015. Pharmaceutical compounds in aquatic environment in China: locally screening and environmental risk assessment. Front Environ Sci Eng 9, 394–401. https://doi.org/10.1007/s11783-014-0653-1
dc.relation.referencesChopra, S., Kumar, D., 2020. Ibuprofen as an emerging organic contaminant in environment, distribution and remediation. Heliyon 6, e04087. https://doi.org/10.1016/j.heliyon.2020.e04087
dc.relation.referencesChys, M., Audenaert, W.T.M., Deniere, E., Mortier, S.T.F.C., Van Langenhove, H., Nopens, I., Demeestere, K., Van Hulle, S.W.H., 2017. Surrogate-Based Correlation Models in View of Real-Time Control of Ozonation of Secondary Treated Municipal Wastewater - Model Development and Dynamic Validation. Environ Sci Technol 51, 14233–14243. https://doi.org/10.1021/acs.est.7b04905
dc.relation.referencesChys, M., Audenaert, W.T.M., Vangrinsven, J., Bauwens, M., Mortier, S.T.F.C., Van Langenhove, H., Nopens, I., Demeestere, K., Van Hulle, S.W.H., 2018. Dynamic validation of online applied and surrogate-based models for tertiary ozonation on pilot-scale. Chemosphere 196, 494–501. https://doi.org/10.1016/j.chemosphere.2017.12.168
dc.relation.referencesCommission, E., 2003. Technical guidance document on risk assessment in support of Commission Directive 93/67/ EEC on risk assessment for new notified substances and Commission Regulation (EC) No. 1488/94 on risk assessment for existing substances. Part II. Technical Guidance Document on Ris Assessment Part II 337.
dc.relation.referencesCosta, E.P., Roccamante, M., Plaza-Bolaños, P., Oller, I., Agüera, A., Amorim, C.C., Malato, S., 2021. Aluminized surface to improve solar light absorption in open reactors: Application for micropollutants removal in effluents from municipal wastewater treatment plants. Science of the Total Environment 755, 142624. https://doi.org/10.1016/j.scitotenv.2020.142624
dc.relation.referencesCruz-Alcalde, A., Esplugas, S., Sans, C., 2020. Continuous versus single H2O2 addition in peroxone process: Performance improvement and modelling in wastewater effluents. J Hazard Mater 387, 121993. https://doi.org/10.1016/j.jhazmat.2019.121993
dc.relation.referencesCuerda-Correa, E.M., Alexandre-Franco, M.F., Fernández-González, C., 2020. Advanced oxidation processes for the removal of antibiotics from water. An overview. Water (Switzerland). https://doi.org/10.3390/w12010102
dc.relation.referencesCuerda-Correa, E.M., Domínguez, J.R., Muñoz-Peña, M.J., González, T., 2016. Degradation of Parabens in Different Aqueous Matrices by Several O3-Derived Advanced Oxidation Processes. Ind Eng Chem Res 55, 5161–5172. https://doi.org/10.1021/acs.iecr.6b00740
dc.relation.referencesda Silva, J.C.C., Teodoro, J.A.R., Afonso, R.J. de C.F., Aquino, S.F., Augusti, R., 2014. Photolysis and photocatalysis of ibuprofen in aqueous medium: characterization of by-products via liquid chromatography coupled to high-resolution mass spectrometry and assessment of their toxicities against Artemia Salina. Journal of Mass Spectrometry 49, 145–153. https://doi.org/10.1002/jms.3320
dc.relation.referencesDayıoğlu, M.A., 2022. Experimental study on design and operational performance of solar-powered venturi aeration system developed for aquaculture – A semi-floating prototype. Aquac Eng 98, 102255. https://doi.org/10.1016/J.AQUAENG.2022.102255
dc.relation.referencesde Jesus Gaffney, V., Almeida, C.M.M., Rodrigues, A., Ferreira, E., Benoliel, M.J., Cardoso, V.V., 2015. Occurrence of pharmaceuticals in a water supply system and related human health risk assessment. Water Res 72, 199–208. https://doi.org/10.1016/j.watres.2014.10.027
dc.relation.referencesde Jesus Gaffney, V., Cardoso, V.V., Cardoso, E., Teixeira, A.P., Martins, J., Benoliel, M.J., Almeida, C.M.M., 2017. Occurrence and behaviour of pharmaceutical compounds in a Portuguese wastewater treatment plant: Removal efficiency through conventional treatment processes. Environmental Science and Pollution Research 24, 14717–14734. https://doi.org/10.1007/s11356-017-9012-7
dc.relation.referencesde Sousa, D.N.R., Insa, S., Mozeto, A.A., Petrovic, M., Chaves, T.F., Fadini, P.S., 2018. Equilibrium and kinetic studies of the adsorption of antibiotics from aqueous solutions onto powdered zeolites. Chemosphere 205, 137–146. https://doi.org/10.1016/j.chemosphere.2018.04.085
dc.relation.referencesDeMoyer, C.D., Gulliver, J.S., Wilhelms, S.C., 2001. Comparison of Submerged Aerator Effectiveness. Lake Reserv Manag 17, 139–152. https://doi.org/10.1080/07438140109353982
dc.relation.referencesDeniere, E., Van Hulle, S., Van Langenhove, H., Demeestere, K., 2018. Advanced oxidation of pharmaceuticals by the ozone-activated peroxymonosulfate process: the role of different oxidative species. J Hazard Mater 360, 204–213. https://doi.org/10.1016/J.JHAZMAT.2018.07.071
dc.relation.referencesDodd, M.C., Buffle, M.O., Von Gunten, U., 2006. Oxidation of antibacterial molecules by aqueous ozone: Moiety-specific reaction kinetics and application to ozone-based wastewater treatment. Environ Sci Technol 40, 1969–1977. https://doi.org/10.1021/es051369x
dc.relation.referencesDong, Y., Yang, H., He, K., Wu, X., Zhang, A., 2008. Catalytic activity and stability of Y zeolite for phenol degradation in the presence of ozone. Appl Catal B 82, 163–168. https://doi.org/10.1016/j.apcatb.2008.01.023
dc.relation.referencesdu Plessis, A., 2019. Current and Future Water Scarcity and Stress. Springer Water 13–25. https://doi.org/10.1007/978-3-030-03186-2_2/COVER
dc.relation.referencesEberle, S., Börnick, H., Stolte, S., 2022. Granular Natural Zeolites: Cost-Effective Adsorbents for the Removal of Ammonium from Drinking Water. Water (Basel) 14, 939. https://doi.org/10.3390/w14060939
dc.relation.referencesElovitz, M.S., Von Gunten, U., 1999. Hydroxyl radical/ozone ratios during ozonation processes. I. The R(ct) concept. Ozone Sci Eng 21, 239–260. https://doi.org/10.1080/01919519908547239
dc.relation.referencesEmeis, C.A., 1993. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J Catal 141, 347–354. https://doi.org/10.1006/jcat.1993.1145
dc.relation.referencesEU, 2002. Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for Community action in the field of water policy — European Environment Agency [WWW Document]. URL https://www.eea.europa.eu/policy-documents/directive-2000-60-ec-of (accessed 7.26.23).
dc.relation.referencesAEMPS, 2018. Consumption of antihypertensive drugs in Spain [WWW Document]. URL https://www.aemps.gob.es/medicamentos-de-uso-humano/observatorio-de-uso-de-medicamentos/informes/
dc.relation.referencesEuropean Commission, 2021. Analytical quality control and method validation procedures for pesticide residues analysis in food and feed SANTE 11312/2021, in: Document N° SANTE 11945/2015. pp. 1–57.
dc.relation.referencesEuropean Parliament, 2018. Commision Implementing Decision (EU) 2018/840 of 5 June 2018 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council and repealing Comm. Off. J. Eur. Union L 141, 9–12.
dc.relation.referencesFent, K., Weston, A., Caminada, D., 2006. Ecotoxicology of human pharmaceuticals. Aquatic Toxicology 76, 122–159. https://doi.org/10.1016/j.aquatox.2005.09.009
dc.relation.referencesFernandes, E., Contreras, S., Medina, F., Martins, R.C., Gomes, J., 2020. N-doped titanium dioxide for mixture of parabens degradation based on ozone action and toxicity evaluation: Precursor of nitrogen and titanium effect. Process Safety and Environmental Protection 138, 80–89. https://doi.org/10.1016/j.psep.2020.03.006
dc.relation.referencesFiguière, R., Waara, S., Ahrens, L., Golovko, O., 2022. Risk-based screening for prioritisation of organic micropollutants in Swedish freshwater. J Hazard Mater 429, 128302. https://doi.org/10.1016/j.jhazmat.2022.128302
dc.relation.referencesFu, M., He, M., Heijman, B., van der Hoek, J.P., 2021. Ozone-based regeneration of granular zeolites loaded with acetaminophen. Sep Purif Technol 256, 117616. https://doi.org/10.1016/j.seppur.2020.117616
dc.relation.referencesGao, M.T., Hirata, M., Takanashi, H., Hano, T., 2005. Ozone mass transfer in a new gas-liquid contactor-Karman contactor. Sep Purif Technol 42, 145–149. https://doi.org/10.1016/j.seppur.2004.07.004
dc.relation.referencesGaroma, T., Gurol, M.D., 2004. Degradation of tert-butyl alcohol in dilute aqueous solution by an O 3/UV process. Environ Sci Technol 38, 5246–5252. https://doi.org/10.1021/es0353210
dc.relation.referencesGillot, S., Capela-Marsal, S., Roustan, M., Héduit, A., 2005. Predicting oxygen transfer of fine bubble diffused aeration systems—model issued from dimensional analysis. Water Res 39, 1379–1387. https://doi.org/10.1016/J.WATRES.2005.01.008
dc.relation.referencesGodoy, A.A., Kummrow, F., Pamplin, P.A.Z., 2015. Ecotoxicological evaluation of propranolol hydrochloride and losartan potassium to Lemna minor L. (1753) individually and in binary mixtures. Ecotoxicology 24, 1112–1123. https://doi.org/10.1007/S10646-015-1455-3
dc.relation.referencesGomes, J.F., Costa, R., Quinta-Ferreira, R.M., Martins, R.C., 2017. Application of ozonation for pharmaceuticals and personal care products removal from water. Science of the Total Environment 586, 265–283. https://doi.org/10.1016/j.scitotenv.2017.01.216
dc.relation.referencesGosling, S.N., Arnell, N.W., 2016. A global assessment of the impact of climate change on water scarcity. Clim Change 134, 371–385. https://doi.org/10.1007/S10584-013-0853-X/FIGURES/4
dc.relation.referencesGottschalk, C., Libra, J.A., Saupe, A., 2010. Ozonation of Water and Waste Water: A Practical Guide to Understanding Ozone and its Applications: Second Edition Ozonation of Water and Waste Water: A Practical Guide to Understanding Ozone and its Applications: Second Edition. Wiley-VCH. https://doi.org/10.1002/9783527628926
dc.relation.referencesGuillossou, R., Le Roux, J., Brosillon, S., Mailler, R., Vulliet, E., Morlay, C., Nauleau, F., Rocher, V., Gaspéri, J., 2020. Benefits of ozonation before activated carbon adsorption for the removal of organic micropollutants from wastewater effluents. Chemosphere 245. https://doi.org/10.1016/j.chemosphere.2019.125530
dc.relation.referencesGulde, R., Clerc, B., Rutsch, M., Helbing, J., Salhi, E., McArdell, C.S., von Gunten, U., 2021a. Oxidation of 51 micropollutants during drinking water ozonation: Formation of transformation products and their fate during biological post-filtration. Water Res 207, 117812. https://doi.org/10.1016/j.watres.2021.117812
dc.relation.referencesGulde, R., Rutsch, M., Clerc, B., Schollée, J.E., von Gunten, U., McArdell, C.S., 2021b. Formation of transformation products during ozonation of secondary wastewater effluent and their fate in post-treatment: From laboratory- to full-scale. Water Res 200, 117200. https://doi.org/10.1016/j.watres.2021.117200
dc.relation.referencesH. Jones, O.A., Voulvoulis, N., Lester, J.N., 2005. Human Pharmaceuticals in Wastewater Treatment Processes. Crit Rev Environ Sci Technol 35, 401–427. https://doi.org/10.1080/10643380590956966
dc.relation.referencesHart, E.J., Sehested, K., Holcman, J., 1983. Molar Absorptivities of Ultraviolet and Visible Bands of Ozone in Aqueous Solutions. Anal Chem 55, 46–49. https://doi.org/10.1021/ac00252a015
dc.relation.referencesHernández, F., Ibáñez, M., Botero-Coy, A.-M., Bade, R., Bustos-López, M.C., Rincón, J., Moncayo, A., Bijlsma, L., 2015. LC-QTOF MS screening of more than 1,000 licit and illicit drugs and their metabolites in wastewater and surface waters from the area of Bogotá, Colombia. Anal Bioanal Chem 407, 6405–6416. https://doi.org/10.1007/s00216-015-8796-x
dc.relation.referencesHOIGNÉ, J., Bader, H., 1994. Characterization of Water Quality Criteria for Ozonation Processes. Part II: Lifetime of Added Ozone. Ozone Sci Eng 16, 121–134. https://doi.org/10.1080/01919519408552417
dc.relation.referencesHollender, J., Zimmermann, S.G., Koepke, S., Krauss, M., Mcardell, C.S., Ort, C., Singer, H., Von Gunten, U., Siegrist, H., 2009. Elimination of organic micropollutants in a municipal wastewater treatment plant upgraded with a full-scale post-ozonation followed by sand filtration. Environ Sci Technol 43, 7862–7869. https://doi.org/10.1021/es9014629
dc.relation.referencesHow, Z.T., Fang, Z., Chelme-Ayala, P., Ganiyu, S.O., Zhang, X., Xu, B., Chen, C., Gamal El-Din, M., 2023. Ozone-activated peroxymonosulfate (O3/PMS) process for the removal of model naphthenic acids compounds: Kinetics, reactivity, and contribution of oxidative species. J Environ Chem Eng 11, 109935. https://doi.org/10.1016/j.jece.2023.109935
dc.relation.referencesHuber, M.M., Canonica, S., Park, G.Y., Von Gunten, U., 2003. Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ Sci Technol 37, 1016–1024. https://doi.org/10.1021/es025896h
dc.relation.referencesHübner, U., von Gunten, U., Jekel, M., 2015. Evaluation of the persistence of transformation products from ozonation of trace organic compounds - A critical review. Water Res. https://doi.org/10.1016/j.watres.2014.09.051
dc.relation.referencesIakovides, I.C., Michael-Kordatou, I., Moreira, N.F.F., Ribeiro, A.R., Fernandes, T., Pereira, M.F.R., Nunes, O.C., Manaia, C.M., Silva, A.M.T., Fatta-Kassinos, D., 2019. Continuous ozonation of urban wastewater: Removal of antibiotics, antibiotic-resistant Escherichia coli and antibiotic resistance genes and phytotoxicity. Water Res 159, 333–347. https://doi.org/10.1016/j.watres.2019.05.025
dc.relation.referencesIkhlaq, A., Brown, D.R., Kasprzyk-Hordern, B., 2012. Mechanisms of catalytic ozonation on alumina and zeolites in water: Formation of hydroxyl radicals. Appl Catal B 123–124, 94–106. https://doi.org/10.1016/j.apcatb.2012.04.015
dc.relation.referencesIkhlaq, A., Waheed, S., Joya, K.S., Kazmi, M., 2018. Catalytic ozonation of paracetamol on zeolite A: Non-radical mechanism. Catal Commun 112, 15–20. https://doi.org/10.1016/j.catcom.2018.01.010
dc.relation.referencesInfarmed, 2018. Estatística Do Medicamento e Produtos de Saude [WWW Document]. URL https://www.infarmed.pt/web/infarmed/entidades/medicamentos-uso-humano/monitorizacao-mercado/estatistica-anual/relatorios-anuais
dc.relation.referencesIversen, S.B., Bhatia, V.K., Dam-Johansen, K., Jonsson, G., 1997. Characterization of microporous membranes for use in membrane contactors. J Memb Sci 130, 205–217. https://doi.org/10.1016/S0376-7388(97)00026-4
dc.relation.referencesJavier Rivas, F., Sagasti, J., Encinas, A., Gimeno, O., 2011. Contaminants abatement by ozone in secondary effluents. Evaluation of second-order rate constants. Journal of Chemical Technology and Biotechnology 86, 1058–1066. https://doi.org/10.1002/jctb.2609
dc.relation.referencesJelic, A., Gros, M., Ginebreda, A., Cespedes-Sánchez, R., Ventura, F., Petrovic, M., Barcelo, D., 2011. Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res 45, 1165–1176. https://doi.org/10.1016/j.watres.2010.11.010
dc.relation.referencesJiang, N., Shang, R., Heijman, S.G.J., Rietveld, L.C., 2018. High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review. Water Res. https://doi.org/10.1016/j.watres.2018.07.017
dc.relation.referencesJing, C., Yibo, W., Yaxue, Z., Wenjuan, Z., Rui, Z., Zhe, W., Shaopo, W., 2023. Oxidation of ibuprofen in water by UV/O3 process: Removal, byproducts, and degradation pathways. Journal of Water Process Engineering 53, 103721. https://doi.org/10.1016/j.jwpe.2023.103721
dc.relation.referencesJjemba, P.K., 2006. Excretion and ecotoxicity of pharmaceutical and personal care products in the environment. Ecotoxicol Environ Saf 63, 113–130. https://doi.org/10.1016/J.ECOENV.2004.11.011
dc.relation.referencesJohn, A., Brookes, A., Carra, I., Jefferson, B., Jarvis, P., 2022. Microbubbles and their application to ozonation in water treatment: A critical review exploring their benefit and future application. Crit Rev Environ Sci Technol. https://doi.org/10.1080/10643389.2020.1860406
dc.relation.referencesJohnson, P.N., Davis, R.A., 1996. Diffusivity of ozone in water. J Chem Eng Data 41, 1485–1487. https://doi.org/10.1021/je9602125
dc.relation.referencesJunaid, M., Zainab, S.M., Xu, N., Sadaf, M., Malik, R.N., Wang, J., 2022. Antibiotics and antibiotic resistant genes in urban aquifers. Curr Opin Environ Sci Health 26, 100324. https://doi.org/10.1016/j.coesh.2021.100324
dc.relation.referencesJurowski, K., Krzeczkowska, M.K., Jurowska, A., 2015. Approaches To Determining the Oxidation State of Nitrogen and Carbon Atoms in Organic Compounds for High School Students. J Chem Educ 92, 1645–1652. https://doi.org/10.1021/ed500645v
dc.relation.referencesKasprzyk-Hordern, B., Ziółek, M., Nawrocki, J., 2003. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Appl Catal B. https://doi.org/10.1016/S0926-3373(03)00326-6
dc.relation.referencesKeller, V.D.J., Williams, R.J., Lofthouse, C., Johnson, A.C., 2014. Worldwide estimation of river concentrations of any chemical originating from sewage-treatment plants using dilution factors. Environ Toxicol Chem 33, 447–452. https://doi.org/10.1002/ETC.2441
dc.relation.referencesKern, D.I., Schwaickhardt, R. de O., Mohr, G., Lobo, E.A., Kist, L.T., Machado, Ê.L., 2013. Toxicity and genotoxicity of hospital laundry wastewaters treated with photocatalytic ozonation. Science of the Total Environment 443, 566–572. https://doi.org/10.1016/j.scitotenv.2012.11.023
dc.relation.referencesKhaisri, S., DeMontigny, D., Tontiwachwuthikul, P., Jiraratananon, R., 2010. A mathematical model for gas absorption membrane contactors that studies the effect of partially wetted membranes. J Memb Sci 347, 228–239. https://doi.org/10.1016/j.memsci.2009.10.028
dc.relation.referencesKhaisri, S., DeMontigny, D., Tontiwachwuthikul, P., Jiraratananon, R., 2009. Comparing membrane resistance and absorption performance of three different membranes in a gas absorption membrane contactor. Sep Purif Technol 65, 290–297. https://doi.org/10.1016/j.seppur.2008.10.035
dc.relation.referencesKhan, A.H., Khan, N.A., Ahmed, S., Dhingra, A., Singh, C.P., Khan, S.U., Mohammadi, A.A., Changani, F., Yousefi, M., Alam, S., Vambol, S., Vambol, V., Khursheed, A., Ali, I., 2020. Application of advanced oxidation processes followed by different treatment technologies for hospital wastewater treatment. J Clean Prod 269, 122411. https://doi.org/10.1016/j.jclepro.2020.122411
dc.relation.referencesKharel, S., Stapf, M., Miehe, U., Ekblad, M., Cimbritz, M., Falås, P., Nilsson, J., Sehlén, R., Bester, K., 2020. Ozone dose dependent formation and removal of ozonation products of pharmaceuticals in pilot and full-scale municipal wastewater treatment plants. Science of the Total Environment 731. https://doi.org/10.1016/j.scitotenv.2020.139064
dc.relation.referencesKock, A., Glanville, H.C., Law, A.C., Stanton, T., Carter, L.J., Taylor, J.C., 2023. Emerging challenges of the impacts of pharmaceuticals on aquatic ecosystems: A diatom perspective. Science of The Total Environment 878, 162939. https://doi.org/10.1016/j.scitotenv.2023.162939
dc.relation.referencesKoubaissy, B., Joly, G., Batonneau-Gener, I., Magnoux, P., 2011. Adsorptive Removal of Aromatic Compounds Present in Wastewater by Using Dealuminated Faujasite Zeolite. Ind Eng Chem Res 50, 5705–5713. https://doi.org/10.1021/ie100420q
dc.relation.referencesKreulen, H., Smolders, C.A., Versteeg, G.F., Van Swaaij, W.P.M., 1993. Determination of mass transfer rates in wetted and non-wetted microporous membranes. Chem Eng Sci 48, 2093–2102. https://doi.org/10.1016/0009-2509(93)80084-4
dc.relation.referencesKukuzaki, M., Fujimoto, K., Kai, S., Ohe, K., Oshima, T., Baba, Y., 2010. Ozone mass transfer in an ozone-water contacting process with Shirasu porous glass (SPG) membranes-A comparative study of hydrophilic and hydrophobic membranes. Sep Purif Technol 72, 347–356. https://doi.org/10.1016/j.seppur.2010.03.004
dc.relation.referencesLado Ribeiro, A.R., Moreira, N.F.F., Li Puma, G., Silva, A.M.T., 2019. Impact of water matrix on the removal of micropollutants by advanced oxidation technologies. Chemical Engineering Journal 363, 155–173. https://doi.org/10.1016/j.cej.2019.01.080
dc.relation.referencesLange, F., Cornelissen, S., Kubac, D., Sein, M.M., von Sonntag, J., Hannich, C.B., Golloch, A., Heipieper, H.J., Möder, M., von Sonntag, C., 2006. Degradation of macrolide antibiotics by ozone: A mechanistic case study with clarithromycin. Chemosphere 65, 17–23. https://doi.org/10.1016/j.chemosphere.2006.03.014
dc.relation.referencesLee, Woongbae, Choi, S., Kim, H., Lee, Woorim, Lee, M., Son, H., Lee, C., Cho, M., Lee, Y., 2023. Efficiency of ozonation and O3/H2O2 as enhanced wastewater treatment processes for micropollutant abatement and disinfection with minimized byproduct formation. J Hazard Mater 454, 131436. https://doi.org/10.1016/J.JHAZMAT.2023.131436
dc.relation.referencesLee, Y., Gerrity, D., Lee, M., Bogeat, A.E., Salhi, E., Gamage, S., Trenholm, R.A., Wert, E.C., Snyder, S.A., Von Gunten, U., 2013. Prediction of micropollutant elimination during ozonation of municipal wastewater effluents: Use of kinetic and water specific information. Environ Sci Technol 47, 5872–5881. https://doi.org/10.1021/es400781r
dc.relation.referencesLee, Y., Kovalova, L., McArdell, C.S., von Gunten, U., 2014. Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent. Water Res 64, 134–148. https://doi.org/10.1016/j.watres.2014.06.027
dc.relation.referencesLee, Y., Von Gunten, U., 2016. Advances in predicting organic contaminant abatement during ozonation of municipal wastewater effluent: Reaction kinetics, transformation products, and changes of biological effects. Environ Sci (Camb). https://doi.org/10.1039/c6ew00025h
dc.relation.referencesLee, Y., von Gunten, U., 2012. Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment. Water Res. https://doi.org/10.1016/j.watres.2012.06.006
dc.relation.referencesLester, Y., Mamane, H., Zucker, I., Avisar, D., 2013. Treating wastewater from a pharmaceutical formulation facility by biological process and ozone. Water Res 47, 4349–4356. https://doi.org/10.1016/J.WATRES.2013.04.059
dc.relation.referencesLi, C., Lu, J., Liu, J., Zhang, G., Tong, Y., Ma, N., 2016. Exploring the correlations between antibiotics and antibiotic resistance genes in the wastewater treatment plants of hospitals in Xinjiang, China. Environmental Science and Pollution Research 23, 15111–15121. https://doi.org/10.1007/s11356-016-6688-z
dc.relation.referencesLi, K., Zhang, Y., Xu, L., Liu, L., Wang, Z., Hou, D., Wang, Y., Wang, J., 2020. Mass transfer and interfacial reaction mechanisms in a novel electro-catalytic membrane contactor for wastewater treatment by O3. Appl Catal B 264. https://doi.org/10.1016/j.apcatb.2019.118512
dc.relation.referencesLiu, X., Fang, L., Zhou, Y., Zhang, T., Shao, Y., 2013. Comparison of UV/PDS and UV/H2O2 processes for the degradation of atenolol in water. Journal of Environmental Sciences 25, 1519–1528. https://doi.org/10.1016/S1001-0742(12)60289-7
dc.relation.referencesLiu, X., Li, H., Fang, Y., Yang, Z., 2021. Heterogeneous catalytic ozonation of sulfamethazine in aqueous solution using maghemite-supported manganese oxides. Sep Purif Technol 274, 118945. https://doi.org/10.1016/j.seppur.2021.118945
dc.relation.referencesLoos, R., Marinov Dimitar, Sanseverino, Isabella., Napierska, D., Lettieri, T., 2018. Review of the 1st Watch List under the Water Framework Directive and recommendations for the 2nd Watch List. Publication Office of the European Union 265.
dc.relation.referencesLopez, F.J., Pitarch, E., Botero-Coy, A.M., Fabregat-Safont, D., Ibáñez, M., Marin, J.M., Peruga, A., Ontañón, N., Martínez-Morcillo, S., Olalla, A., Valcárcel, Y., Varó, I., Hernández, F., 2022. Removal efficiency for emerging contaminants in a WWTP from Madrid (Spain) after secondary and tertiary treatment and environmental impact on the Manzanares River. Science of the Total Environment 812, 152567. https://doi.org/10.1016/j.scitotenv.2021.152567
dc.relation.referencesLu, J.G., Zheng, Y.F., Cheng, M.D., 2008. Wetting mechanism in mass transfer process of hydrophobic membrane gas absorption. J Memb Sci 308, 180–190. https://doi.org/10.1016/J.MEMSCI.2007.09.051
dc.relation.referencesLutze, H. V., Bircher, S., Rapp, I., Kerlin, N., Bakkour, R., Geisler, M., Von Sonntag, C., Schmidt, T.C., 2015. Degradation of chlorotriazine pesticides by sulfate radicals and the influence of organic matter. Environ Sci Technol 49, 1673–1680. https://doi.org/10.1021/es503496u
dc.relation.referencesMa, S., Zuo, X., Xiong, J., Ma, C., Chen, Z., 2020. Sulfamethoxazole removal enhancement from water in high-silica ZSM-5/ozonation synchronous system with low ozone consumption. Journal of Water Process Engineering 33. https://doi.org/10.1016/J.JWPE.2019.101083
dc.relation.referencesMADS, 2015. Resolución 631 de 2015 - Ministerio de Ambiente y Desarrollo Sostenible [WWW Document]. URL https://www.minambiente.gov.co/documento-normativa/resolucion-631-de-2015/ (accessed 7.26.23).
dc.relation.referencesMarce, M., Domenjoud, B., Esplugas, S., Baig, S., 2016. Ozonation treatment of urban primary and biotreated wastewaters: Impacts and modeling. Chemical Engineering Journal 283, 768–777. https://doi.org/10.1016/J.CEJ.2015.07.073
dc.relation.referencesMargot, J., Kienle, C., Magnet, A., Weil, M., Rossi, L., de Alencastro, L.F., Abegglen, C., Thonney, D., Chèvre, N., Schärer, M., Barry, D.A., 2013. Treatment of micropollutants in municipal wastewater: Ozone or powdered activated carbon? Science of the Total Environment 461–462, 480–498. https://doi.org/10.1016/j.scitotenv.2013.05.034
dc.relation.referencesMartins, R.C., Cardoso, M., Dantas, R.F., Sans, C., Esplugas, S., Quinta-Ferreira, R.M., 2015. Catalytic studies for the abatement of emerging contaminants by ozonation. Journal of Chemical Technology and Biotechnology 90, 1611–1618. https://doi.org/10.1002/jctb.4711
dc.relation.referencesMathon, B., Coquery, M., Liu, Z., Penru, Y., Guillon, A., Esperanza, M., Miège, C., Choubert, J.M., 2021. Ozonation of 47 organic micropollutants in secondary treated municipal effluents: Direct and indirect kinetic reaction rates and modelling. Chemosphere 262. https://doi.org/10.1016/j.chemosphere.2020.127969
dc.relation.referencesMatzek, L.W., Carter, K.E., 2016. Activated persulfate for organic chemical degradation: A review. Chemosphere 151, 178–188. https://doi.org/10.1016/j.chemosphere.2016.02.055
dc.relation.referencesMavroudi, M., Kaldis, S.P., Sakellaropoulos, G.P., 2006. A study of mass transfer resistance in membrane gas-liquid contacting processes. J Memb Sci 272, 103–115. https://doi.org/10.1016/j.memsci.2005.07.025
dc.relation.referencesMcCusker, L.B., Olson, D.H., Baerlocher, C., 2007. Atlas of Zeolite Framework Types, Atlas of Zeolite Framework Types. Elsevier. https://doi.org/10.1016/B978-0-444-53064-6.X5186-X
dc.relation.referencesMecha, A.C., Onyango, M.S., Ochieng, A., Momba, M.N.B., 2016. Impact of ozonation in removing organic micro-pollutants in primary and secondary municipal wastewater: Effect of process parameters. Water Science and Technology 74, 756–765. https://doi.org/10.2166/wst.2016.276
dc.relation.referencesMelnikov, F., Kostal, J., Voutchkova-Kostal, A., Zimmerman, J.B., T. Anastas, P., 2016. Assessment of predictive models for estimating the acute aquatic toxicity of organic chemicals. Green Chemistry 18, 4432–4445. https://doi.org/10.1039/C6GC00720
dc.relation.referencesMéndez-Arriaga, F., Esplugas, S., Giménez, J., 2010. Degradation of the emerging contaminant ibuprofen in water by photo-Fenton. Water Res 44, 589–595. https://doi.org/10.1016/j.watres.2009.07.009
dc.relation.referencesMendoza, A., Aceña, J., Pérez, S., López de Alda, M., Barceló, D., Gil, A., Valcárcel, Y., 2015. Pharmaceuticals and iodinated contrast media in a hospital wastewater: A case study to analyse their presence and characterise their environmental risk and hazard. Environ Res 140, 225–241. https://doi.org/10.1016/j.envres.2015.04.003
dc.relation.referencesMerle, T., Pronk, W., Von Gunten, U., 2017. MEMBRO3X, a novel combination of a membrane contactor with advanced oxidation (O3/H2O2) for simultaneous micropollutant abatement and bromate minimization. Environ Sci Technol Lett 4, 180–185. https://doi.org/10.1021/acs.estlett.7b00061
dc.relation.referencesMezyk, S.P., Neubauer, T.J., Cooper, W.J., Peller, J.R., 2007. Free-radical-induced oxidative and reductive degradation of sulfa drugs in water: Absolute kinetics and efficiencies of hydroxyl radical and hydrated electron reactions. Journal of Physical Chemistry A 111, 9019–9024. https://doi.org/10.1021/jp073990k
dc.relation.referencesMichael, I., Achilleos, A., Lambropoulou, D., Torrens, V.O., Pérez, S., Petrović, M., Barceló, D., Fatta-Kassinos, D., 2014. Proposed transformation pathway and evolution profile of diclofenac and ibuprofen transformation products during (sono)photocatalysis. Appl Catal B 147, 1015–1027. https://doi.org/10.1016/j.apcatb.2013.10.035
dc.relation.referencesMiklos, D.B., Remy, C., Jekel, M., Linden, K.G., Drewes, J.E., Hübner, U., 2018. Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review. Water Res. https://doi.org/10.1016/j.watres.2018.03.042
dc.relation.referencesMiller, T.H., Bury, N.R., Owen, S.F., MacRae, J.I., Barron, L.P., 2018. A review of the pharmaceutical exposome in aquatic fauna. Environmental Pollution 239, 129–146. https://doi.org/10.1016/j.envpol.2018.04.012
dc.relation.referencesMoreira, F.C., Bocos, E., Faria, A.G.F., Pereira, J.B.L., Fonte, C.P., Santos, R.J., Lopes, J.C.B., Dias, M.M., Sanromán, M.A., Pazos, M., Boaventura, R.A.R., Vilar, V.J.P., 2019. Selecting the best piping arrangement for scaling-up an annular channel reactor: An experimental and computational fluid dynamics study. Science of The Total Environment 667, 821–832. https://doi.org/10.1016/J.SCITOTENV.2019.02.260
dc.relation.referencesMustafa, M., Wang, H., Lindberg, R.H., Fick, J., Wang, Y., Tysklind, M., 2021. Identification of resistant pharmaceuticals in ozonation using QSAR modeling and their fate in electro-peroxone process. Front Environ Sci Eng 15, 1–14. https://doi.org/10.1007/S11783-021-1394-6/METRICS
dc.relation.referencesMy Hanh Le, T., Nuisin, R., Mongkolnavin, R., Painmanakul, P., Sairiam, S., 2022. Enhancing dye wastewater treatment efficiency in ozonation membrane contactors by chloro– and fluoro–organosilanes’ functionality on hydrophobic PVDF membrane modification. Sep Purif Technol 288, 120711. https://doi.org/10.1016/j.seppur.2022.120711
dc.relation.referencesNaima, A., Ammar, F., Abdelkader, O., Rachid, C., Lynda, H., Syafiuddin, A., Boopathy, R., 2022. Development of a novel and efficient biochar produced from pepper stem for effective ibuprofen removal. Bioresour Technol 347, 126685. https://doi.org/10.1016/j.biortech.2022.126685
dc.relation.referencesNakada, N., Shinohara, H., Murata, A., Kiri, K., Managaki, S., Sato, N., Takada, H., 2007. Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant. Water Res 41, 4373–4382. https://doi.org/10.1016/j.watres.2007.06.038
dc.relation.referencesNannou, C.I., Kosma, C.I., Albanis, T.A., 2015. Occurrence of pharmaceuticals in surface waters: analytical method development and environmental risk assessment. https://doi.org/10.1080/03067319.2015.1085520 95, 1242–1262.
dc.relation.referencesNawrocki, J., Kasprzyk-Hordern, B., 2010. The efficiency and mechanisms of catalytic ozonation. Appl Catal B 99, 27–42. https://doi.org/10.1016/j.apcatb.2010.06.033
dc.relation.referencesNeta, P., Dorfman, L.M., 1968. Pulse Radiolysis Studies. XIII. Rate Constants for the Reaction of Hydroxyl Radicals with Aromatic Compounds in Aqueous Solutions. pp. 222–230. https://doi.org/10.1021/ba-1968-0081.ch015
dc.relation.referencesNORMAN, 2022. List of NORMAN Suspect List Exchange [WWW Document]. URL https://www.norman-network.com/nds/SLE/
dc.relation.referencesOCDE, 2020. Environment at a Glance 2020. OECD. https://doi.org/10.1787/4ea7d35f-en
dc.relation.referencesOrias, F., Perrodin, Y., 2013. Characterisation of the ecotoxicity of hospital effluents: A review. Science of The Total Environment 454–455, 250–276. https://doi.org/10.1016/j.scitotenv.2013.02.064
dc.relation.referencesPabby, A.K., Sastre, A.M., 2013. State-of-the-art review on hollow fibre contactor technology and membrane-based extraction processes. J Memb Sci. https://doi.org/10.1016/j.memsci.2012.11.060
dc.relation.referencesParsons, S., 2015. Advanced Oxidation Processes for Water and Wastewater Treatment. Water Intelligence Online 4, 9781780403076–9781780403076. https://doi.org/10.2166/9781780403076
dc.relation.referencesPines, D.S., Min, K.N., Ergas, S.J., Reckhow, D.A., 2005. Investigation of an ozone membrane contactor system. Ozone Sci Eng 27, 209–217. https://doi.org/10.1080/01919510590945750
dc.relation.referencesPipolo, M., Gmurek, M., Corceiro, V., Costa, R., Emília Quinta-Ferreira, M., Ledakowicz, S., Quinta-Ferreira, R.M., Martins, R.C., 2017. Ozone-Based Technologies for Parabens Removal from Water: Toxicity Assessment. Ozone Sci Eng 39, 233–243. https://doi.org/10.1080/01919512.2017.1301246
dc.relation.referencesPrada-Vásquez, M.A., Estrada-Flórez, S.E., Serna-Galvis, E.A., Torres-Palma, R.A., 2021. Developments in the intensification of photo-Fenton and ozonation-based processes for the removal of contaminants of emerging concern in Ibero-American countries. Science of The Total Environment 765, 142699. https://doi.org/10.1016/j.scitotenv.2020.142699
dc.relation.referencesPresumido, P.H., Montes, R., Quintana, J.B., Rodil, R., Feliciano, M., Puma, G.L., Gomes, A.I., Vilar, V.J.P., 2022. Ozone membrane contactor to intensify gas/liquid mass transfer and contaminants of emerging concern oxidation. J Environ Chem Eng 10, 108671. https://doi.org/10.1016/j.jece.2022.108671
dc.relation.referencesPresumido, P.H., Ribeirinho-Soares, S., Montes, R., Quintana, J.B., Rodil, R., Ribeiro, M., Neuparth, T., Santos, M.M., Feliciano, M., Nunes, O.C., Gomes, A.I., Vilar, V.J.P., 2023. Ozone membrane contactor for tertiary treatment of urban wastewater: Chemical, microbial and toxicological assessment. Science of The Total Environment 164492. https://doi.org/10.1016/J.SCITOTENV.2023.164492
dc.relation.referencesQuintilesIMS and its affiliates, 2015. Global Medicines Use in 2020. Outlook and Implications,.
dc.relation.referencesReal, F.J., Javier Benitez, F., Acero, J.L., Sagasti, J.J.P., Casas, F., 2009. Kinetics of the chemical oxidation of the pharmaceuticals primidone, ketoprofen, and diatrizoate in ultrapure and natural waters. Ind Eng Chem Res 48, 3380–3388. https://doi.org/10.1021/ie801762p
dc.relation.referencesReiprich, B., Weissenberger, T., Schwieger, W., Inayat, A., 2020. Layer-like FAU-type zeolites: A comparative view on different preparation routes. Front Chem Sci Eng. https://doi.org/10.1007/s11705-019-1883-3
dc.relation.referencesRen, Y., Lin, L., Ma, J., Yang, J., Feng, J., Fan, Z., 2015. Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M=Co, Cu, Mn, and Zn) as heterogeneous catalysts in the water. Appl Catal B 165, 572–578. https://doi.org/10.1016/j.apcatb.2014.10.051
dc.relation.referencesRivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M.Á., Prados-Joya, G., Ocampo-Pérez, R., 2013. Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 93, 1268–1287. https://doi.org/10.1016/J.CHEMOSPHERE.2013.07.059
dc.relation.referencesRizzo, L., Malato, S., Antakyali, D., Beretsou, V.G., Đolić, M.B., Gernjak, W., Heath, E., Ivancev-Tumbas, I., Karaolia, P., Lado Ribeiro, A.R., Mascolo, G., McArdell, C.S., Schaar, H., Silva, A.M.T., Fatta-Kassinos, D., 2019. Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2018.11.265
dc.relation.referencesRosal, R., Rodríguez, A., Perdigón-Melón, J.A., Mezcua, M., Hernando, M.D., Letón, P., García-Calvo, E., Agüera, A., Fernández-Alba, A.R., 2008. Removal of pharmaceuticals and kinetics of mineralization by O3/H2O2 in a biotreated municipal wastewater. Water Res 42, 3719–3728. https://doi.org/10.1016/j.watres.2008.06.008
dc.relation.referencesRosenfeldt, E.J., Linden, K.G., Canonica, S., von Gunten, U., 2006. Comparison of the efficiency of OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2. Water Res 40, 3695–3704. https://doi.org/10.1016/j.watres.2006.09.008
dc.relation.referencesRoustan, M., 2003. Transferts gaz-liquide dans les procédés de traitement des eaux et des effluents gazeux. Génie des Procédés de l’Environnement
dc.relation.referencesRoustan, M., Wang, R.Y., Wolbert, D., 1996. Modeling hydrodynamics and mass transfer parameters in a continuous ozone bubble column. Ozone Sci Eng 18, 99–115. https://doi.org/10.1080/01919519608547331
dc.relation.referencesSá, M.F.T., Castro, V., Gomes, A.I., Morais, D.F.S., Silva Braga, R.V.P.S., Saraiva, I., Souza-Chaves, B.M., Park, M., Fernández-Fernández, V., Rodil, R., Montes, R., Quintana, J.B., Vilar, V.J.P., 2022. Tracking pollutants in a municipal sewage network impairing the operation of a wastewater treatment plant. Science of the Total Environment 817, 152518. https://doi.org/10.1016/j.scitotenv.2021.152518
dc.relation.referencesSabale, R., Venkatesh, B., Jose, M., 2022. Sustainable water resource management through conjunctive use of groundwater and surface water: a review. Innovative Infrastructure Solutions 2022 8:1 8, 1–12. https://doi.org/10.1007/S41062-022-00992-9
dc.relation.referencesSabelfeld, M., Geißen, S.U., 2019. Effect of helical structure on ozone mass transfer in a hollow fiber membrane contactor. J Memb Sci 574, 222–234. https://doi.org/10.1016/j.memsci.2018.10.056
dc.relation.referencesSaeid, S., Tolvanen, P., Kumar, N., Eränen, K., Peltonen, J., Peurla, M., Mikkola, J.P., Franz, A., Salmi, T., 2018. Advanced oxidation process for the removal of ibuprofen from aqueous solution: A non-catalytic and catalytic ozonation study in a semi-batch reactor. Appl Catal B 230, 77–90. https://doi.org/10.1016/j.apcatb.2018.02.021
dc.relation.referencesSandermann, H., 2003. Differential lipid affinity of xenobiotics and natural compounds. FEBS Lett 554, 165–168. https://doi.org/10.1016/S0014-5793(03)01143-8
dc.relation.referencesSchmitt, A., Mendret, J., Brosillon, S., 2022. Evaluation of an ozone diffusion process using a hollow fiber membrane contactor. Chemical Engineering Research and Design 177, 291–303. https://doi.org/10.1016/J.CHERD.2021.11.002
dc.relation.referencesSchmitt, A., Mendret, J., Cheikho, H., Brosillon, S., 2023. Ozone Diffusion through a Hollow Fiber Membrane Contactor for Pharmaceuticals Removal and Bromate Minimization. Membranes (Basel) 13. https://doi.org/10.3390/membranes13020171
dc.relation.referencesSerna-Galvis, E.A., Isaza-Pineda, L., Moncayo-Lasso, A., Hernández, F., Ibáñez, M., Torres-Palma, R.A., 2019. Comparative degradation of two highly consumed antihypertensives in water by sonochemical process. Determination of the reaction zone, primary degradation products and theoretical calculations on the oxidative process. Ultrason Sonochem 58, 104635. https://doi.org/10.1016/j.ultsonch.2019.104635
dc.relation.referencesShiklomanov, I.A., 2009. Appraisal and Assessment of World Water Resources. http://dx.doi.org/10.1080/02508060008686794 25
dc.relation.referencesSleeper, W., Henry, D., 2002. Durability Test Results of Construction and Process Materials Exposed to Liquid and Gas Phase Ozone. Ozone Sci Eng 24, 249–260. https://doi.org/10.1080/01919510208901616
dc.relation.referencesSoares, O.S.G.P., Freitas, C.M.A.S., Fonseca, A.M., Órfão, J.J.M., Pereira, M.F.R., Neves, I.C., 2016. Bromate reduction in water promoted by metal catalysts prepared over faujasite zeolite. Chemical Engineering Journal 291, 199–205. https://doi.org/10.1016/j.cej.2016.01.093
dc.relation.referencesSolís, R.R., Medina, S., Gimeno, O., Beltrán, F.J., 2019. Solar photolytic ozonation for the removal of recalcitrant herbicides in river water. Sep Purif Technol 212, 280–288. https://doi.org/10.1016/j.seppur.2018.11.035
dc.relation.referencesSong, R.B., Xiang, J.Y., Hou, D.P., 2011. Characteristics of Mechanical Properties and Microstructure for 316L Austenitic Stainless Steel. Journal of Iron and Steel Research, International 18, 53–59. https://doi.org/10.1016/S1006-706X(11)60117-9
dc.relation.referencesSotelo, J.L., Beltrán, F.J., Benitez, F.J., Beltrán-Heredia, J., 1989. Henry’s law constant for the ozone-water system. Water Res 23, 1239–1246. https://doi.org/10.1016/0043-1354(89)90186-3
dc.relation.referencesSouza, F.S., Da Silva, V. V., Rosin, C.K., Hainzenreder, L., Arenzon, A., Pizzolato, T., Jank, L., Féris, L.A., 2018. Determination of pharmaceutical compounds in hospital wastewater and their elimination by advanced oxidation processes. J Environ Sci Health A Tox Hazard Subst Environ Eng 53, 213–221. https://doi.org/10.1080/10934529.2017.1387013
dc.relation.referencesSposito, G., 1998. On Points of Zero Charge. Environ Sci Technol 32, 2815–2819. https://doi.org/10.1021/es9802347
dc.relation.referencesStaehelin, Johannes., Hoigne, Juerg., 1985. Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environ Sci Technol 19, 1206–1213. https://doi.org/10.1021/es00142a012
dc.relation.referencesStaehelin, Johannes., Hoigne, Juerg., 1982. Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide. Environ Sci Technol 16, 676–681. https://doi.org/10.1021/es00104a009
dc.relation.referencesStylianou, S.K., Katsoyiannis, I.A., Mitrakas, M., Zouboulis, A.I., 2018. Application of a ceramic membrane contacting process for ozone and peroxone treatment of micropollutant contaminated surface water. J Hazard Mater 358, 129–135. https://doi.org/10.1016/j.jhazmat.2018.06.060
dc.relation.referencesStylianou, S.K., Sklari, S.D., Zamboulis, D., Zaspalis, V.T., Zouboulis, A.I., 2015. Development of bubble-less ozonation and membrane filtration process for the treatment of contaminated water. J Memb Sci 492, 40–47. https://doi.org/10.1016/j.memsci.2015.05.036
dc.relation.referencesSu, L., Chen, X., Wang, H., Wang, Y., Lu, Z., 2022. Oxygen vacancies promoted heterogeneous catalytic ozonation of atrazine by defective 4A zeolite. J Clean Prod 336. https://doi.org/10.1016/j.jclepro.2022.130376
dc.relation.referencesSzabó, R.K., Megyeri, Cs., Illés, E., Gajda-Schrantz, K., Mazellier, P., Dombi, A., 2011. Phototransformation of ibuprofen and ketoprofen in aqueous solutions. Chemosphere 84, 1658–1663. https://doi.org/10.1016/j.chemosphere.2011.05.012
dc.relation.referencesTell, J., Caldwell, D.J., Häner, A., Hellstern, J., Hoeger, B., Journel, R., Mastrocco, F., Ryan, J.J., Snape, J., Straub, J.O., Vestel, J., 2019. Science-based Targets for Antibiotics in Receiving Waters from Pharmaceutical Manufacturing Operations. Integr Environ Assess Manag 15, 312–319. https://doi.org/10.1002/ieam.4141
dc.relation.referencesTherrien, J.D., Vanrolleghem, P.A., Dorea, C.C., 2019. Characterization of the performance of venturi-based aeration devices for use in wastewater treatment in low-resource settings. Water SA 45, 251–258. https://doi.org/10.4314/WSA.V45I2.12
dc.relation.referencesValdés, H., Farfán, V.J., Manoli, J.A., Zaror, C.A., 2009. Catalytic ozone aqueous decomposition promoted by natural zeolite and volcanic sand. J Hazard Mater 165, 915–922. https://doi.org/10.1016/j.jhazmat.2008.10.093
dc.relation.referencesValdés, H., Tardón, R.F., Zaror, C.A., 2012. Role of surface hydroxyl groups of acid-treated natural zeolite on the heterogeneous catalytic ozonation of methylene blue contaminated waters. Chemical Engineering Journal 211–212, 388–395. https://doi.org/10.1016/j.cej.2012.09.069
dc.relation.referencesValdés, M.E., Huerta, B., Wunderlin, D.A., Bistoni, M.A., Barceló, D., Rodriguez-Mozaz, S., 2016. Bioaccumulation and bioconcentration of carbamazepine and other pharmaceuticals in fish under field and controlled laboratory experiments. Evidences of carbamazepine metabolization by fish. Science of The Total Environment 557–558, 58–67. https://doi.org/10.1016/j.scitotenv.2016.03.045
dc.relation.referencesVasilachi, I.C., Asiminicesei, D.M., Fertu, D.I., Gavrilescu, M., 2021. Occurrence and Fate of Emerging Pollutants in Water Environment and Options for Their Removal. Water 2021, Vol. 13, Page 181 13, 181. https://doi.org/10.3390/W13020181
dc.relation.referencesVölker, J., Stapf, M., Miehe, U., Wagner, M., 2019. Systematic review of toxicity removal by advanced wastewater treatment technologies via ozonation and activated carbon. Environ Sci Technol. https://doi.org/10.1021/acs.est.9b00570
dc.relation.referencesvon Sonntag, C., von Gunten, U., 2012. Chemistry of Ozone in Water and Wastewater Treatment: From Basic Principles to Applications, Chemistry of Ozone in Water and Wastewater Treatment: From Basic Principles to Applications. IWA Publishing. https://doi.org/10.2166/9781780400839
dc.relation.referencesWang, B., Xiong, X., Shui, Y., Huang, Z., Tian, K., 2019. A systematic study of enhanced ozone mass transfer for ultrasonic-assisted PTFE hollow fiber membrane aeration process. Chemical Engineering Journal 357, 678–688. https://doi.org/10.1016/j.cej.2018.09.188
dc.relation.referencesWang, B., Zhang, H., Meng, Q., Ren, H., Xiong, M., Gao, C., Wang, B., 2021. The enhancement of ozone-liquid mass transfer performance in a PTFE hollow fiber membrane contactor using ultrasound as a catalyzer. RSC Adv 11, 14017–14028. https://doi.org/10.1039/d1ra00452b
dc.relation.referencesWang, H., Zhang, S., He, X., Yang, Y., Yang, X., Van Hulle, S.W.H., 2023. Comparison of macro and micro-pollutants abatement from biotreated landfill leachate by single ozonation, O3/H2O2, and catalytic ozonation processes. Chemical Engineering Journal 452, 139503. https://doi.org/10.1016/j.cej.2022.139503
dc.relation.referencesWang, J., Chen, H., 2020. Catalytic ozonation for water and wastewater treatment: Recent advances and perspective. Science of The Total Environment 704, 135249. https://doi.org/10.1016/J.SCITOTENV.2019.135249
dc.relation.referencesWang, J., Wang, S., 2018. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chemical Engineering Journal 334, 1502–1517. https://doi.org/10.1016/j.cej.2017.11.059
dc.relation.referencesWang, X.H., Yu, Y., Huang, T., Qin, W.C., Su, L.M., Zhao, Y.H., 2016. Comparison of Toxicities to Vibrio fischeri and Fish Based on Discrimination of Excess Toxicity from Baseline Level. PLoS One 11, e0150028. https://doi.org/10.1371/journal.pone.0150028
dc.relation.referencesWhitman, W.G., 1962. The two film theory of gas absorption. Int J Heat Mass Transf 5, 429–433. https://doi.org/10.1016/0017-9310(62)90032-7
dc.relation.referencesWHO, 2021. WHO model list of essential medicines - 22nd list, 2021 [WWW Document]. URL https://www.who.int/publications/i/item/WHO-MHP-HPS-EML-2021.02
dc.relation.referencesWilke, C.R., Chang, P., 1955. Correlation of diffusion coefficients in dilute solutions. AIChE Journal 1, 264–270. https://doi.org/10.1002/AIC.690010222
dc.relation.referencesWilson, E.E., 1915. A basis for rational design of heat transfer apparatus. Trans. ASME, 37(47), pp.47-82. The J Am Soc Mech Engrs 53, 1689–1699.
dc.relation.referencesWorld Water Assessment Programme, 2018. The United Nations world water development report 2018: nature-based solutions for water. UN Water Report 154.
dc.relation.referencesYang, Y., Jiang, J., Lu, X., Ma, J., Liu, Y., 2015. Production of Sulfate Radical and Hydroxyl Radical by Reaction of Ozone with Peroxymonosulfate: A Novel Advanced Oxidation Process. Environ Sci Technol 49, 73307339. https://doi.org/10.1021/es506362e
dc.relation.referencesYao, W., Ur Rehman, S.W., Wang, H., Yang, H., Yu, G., Wang, Y., 2018. Pilot-scale evaluation of micropollutant abatements by conventional ozonation, UV/O3, and an electro-peroxone process. Water Res 138, 106–117. https://doi.org/10.1016/j.watres.2018.03.044
dc.relation.referencesYou, W.D., Ye, P., Yang, B., Luo, X., Fang, J., Mai, Z.T., Sun, J.L., 2021. Degradation of 17 Benzodiazepines by the UV/H2O2 Treatment. Front Environ Sci 9, 474. https://doi.org/10.3389/FENVS.2021.764841/BIBTEX
dc.relation.referencesYu, G., Wang, Y., Cao, H., Zhao, H., Xie, Y., 2020. Reactive Oxygen Species and Catalytic Active Sites in Heterogeneous Catalytic Ozonation for Water Purification. Environ Sci Technol 54, 5931–5946. https://doi.org/10.1021/acs.est.0c00575
dc.relation.referencesYu, X., Qin, W., Yuan, X., Sun, L., Pan, F., Xia, D., 2021. Synergistic mechanism and degradation kinetics for atenolol elimination via integrated UV/ozone/peroxymonosulfate process. J Hazard Mater 407, 124393. https://doi.org/10.1016/j.jhazmat.2020.124393
dc.relation.referencesYuan, Z., Sui, M., Yuan, B., Li, P., Wang, J., Qin, J., Xu, G., 2017. Degradation of ibuprofen using ozone combined with peroxymonosulfate. Environ Sci (Camb) 3, 960–969. https://doi.org/10.1039/c7ew00174f
dc.relation.referencesZhang, Y., Li, K., Wang, J., Hou, D., Liu, H., 2017. Ozone mass transfer behaviors on physical and chemical absorption for hollow fiber membrane contactors. Water Sci Technol 76, 1360–1369. https://doi.org/10.2166/WST.2017.254
dc.relation.referencesZhou, S., Di Paolo, C., Wu, X., Shao, Y., Seiler, T.B., Hollert, H., 2019. Optimization of screening-level risk assessment and priority selection of emerging pollutants – The case of pharmaceuticals in European surface waters. Environ Int 128, 1–10. https://doi.org/10.1016/j.envint.2019.04.034
dc.relation.referencesZimmermann, S.G., Wittenwiler, M., Hollender, J., Krauss, M., Ort, C., Siegrist, H., von Gunten, U., 2011. Kinetic assessment and modeling of an ozonation step for full-scale municipal wastewater treatment: Micropollutant oxidation, by-product formation and disinfection. Water Res 45, 605–617. https://doi.org/10.1016/J.WATRES.2010.07.080
dc.relation.referencesZoumpouli, G.A., Baker, R., Taylor, C.M., Chippendale, M.J., Smithers, C., Ho, S.S.X., Mattia, D., Chew, Y.M.J., Wenk, J., 2018. A single tube contactor for testing membrane ozonation. Water (Switzerland) 10, 1416. https://doi.org/10.3390/w10101416
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembPurificación de aguas residuales
dc.subject.lembOxidación
dc.subject.lembTransformación de residuos
dc.subject.proposalOzono
dc.subject.proposalOzone
dc.subject.proposalContaminants of emerging concern
dc.subject.proposalContaminantes de preocupación emergente
dc.subject.proposalWastewater treatment
dc.subject.proposalTratamiento de aguas residuales
dc.title.translatedDegradación de compuestos farmacéuticos presentes en efluentes de aguas residuales municipales mediante procesos de oxidación avanzada-basados en ozono
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovación de Colombia (MINCIENCIAS)
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaÁrea Curricular de Medio Ambiente
dc.contributor.orcid0000-0002-3814-3686
dc.contributor.cvlacPrada Vásquez, María Angélica
dc.contributor.researchgatePrada Vásquez, María Angélica


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito