Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorVallejo Díaz, Bibiana Margarita
dc.contributor.authorRodríguez Vera, Edward Andrés
dc.date.accessioned2024-01-22T20:02:36Z
dc.date.available2024-01-22T20:02:36Z
dc.date.issued2023-08-02
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85403
dc.descriptionilustraciones, diagramas, fotografías
dc.description.abstractEn esta investigación se estudiaron los fenómenos de transporte de masa y momento en un dispositivo de dimensiones milimétricas, fabricado con el propósito de recrear un modelo simplificado de cavidad nasal; este dispositivo permite la inserción de una película polimérica y el flujo de un fluido simulado de sangre. La descripción de estos fenómenos se realizó a través del planteamiento de un modelo matemático que fue discretizado con un esquema combinado de diferencias finitas centradas y diferencias finitas hacia atrás, incorporando un método de avance temporal semi-implícito. Para validar el modelo matemático se realizó un experimento que consiste en insertar una película polimérica cargada de rodamina dentro del dispositivo de estudio y se capturan imágenes en un microscopio de fluorescencia a diferentes tiempos; por otro lado, a la salida del dispositivo se recolectan muestras que se cuantifican posteriormente por medio de un espectrofotómetro UV-vis. También, se desarrollaron una serie de experimentos complementarios que retroalimentan la simulación. El resultado de las operaciones computacionales sumado a la estandarización del método de elaboración de películas seleccionado (vertimiento en placa) permitió aplicar bases científicas y matemáticas al diseño de películas poliméricas siguiendo algunos conceptos de la metodología del Diseño Integrado de Producto y Proceso. Gracias a los experimentos y las herramientas computacionales, se plantearon una serie de casos para el análisis de la influencia de parámetros en el desempeño de la liberación de películas poliméricas. (Texto tomado de la fuente).
dc.description.abstractIn the current research, the mass and momentum transport phenomena were studied in a device of millimeter dimensions, manufactured with the purpose of recreating a simplified model of the nasal cavity; this device allows the insertion of a polymeric film and the flow of a simulated blood fluid. Phenomena description was carried out through the approach of a mathematical model that was discretized with a combined centered finite differences and backwards finite differences schemes, incorporating a semi-implicit time advance method. To validate the mathematical model, it was developed an experiment that consists of inserting a rhodamine-loaded polymeric film inside the study device and capturing images in a fluorescence microscope at different times; on the other hand, at the exit of the device, samples are collected and quantified by means of a UV-vis spectrophotometer. Also, a series of complementary experiments were elaborated to feed back the simulation. The results of the computational operations added to the standardization method to produce films (casting) allowed to apply scientific and mathematical bases to polymeric films design following some concepts of the Integrated Product and Process Development methodology. As a result of the experiments and the computational tools, a series of cases were raised for the analysis of the influence of parameters on the release performance of polymeric films.
dc.format.extentxviii, 148 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
dc.subject.ddc530 - Física::532 - Mecánica de fluidos
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéutica
dc.titleEstudio de los fenómenos de transporte de masa a escala microscópica, para su aplicación en el diseño de sistemas de liberación modificada del tipo película polimérica
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias Farmacéuticas
dc.contributor.researchgroupInvestigación en Procesos de Transformación de Materiales Para la Industria Farmacéutica
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Farmacéuticas
dc.description.researchareaFarmacotecnia e ingeniería farmacéutica
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedBireme
dc.relation.referencesAchberger, K., Probst, C., Haderspeck, J., Bolz, S., Rogal, J., Chuchuy, J., Nikolova, M., Cora, V., Antkowiak, L., Haq, W., Shen, N., Schenke-Layland, K., Ueffing, M., Liebau, S., & Loskill, P. (2019). Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform. ELife, 8, e46188. https://doi.org/10.7554/eLife.46188
dc.relation.referencesAdrover, A., & Nobili, M. (2015). Release kinetics from oral thin films: Theory and experiments. Chemical Engineering Research and Design, 98, 188-201. https://doi.org/10.1016/j.cherd.2015.04.016
dc.relation.referencesAlexeenko, A. A., Ganguly, A., & Nail, S. L. (2009). Computational analysis of fluid dynamics in pharmaceutical freeze-drying. Journal of Pharmaceutical Sciences, 98(9), 3483-3494. https://doi.org/10.1002/jps.21862
dc.relation.referencesAlSalka, Y., Hakki, A., Fleisch, M., & Bahnemann, D. W. (2018). Understanding the degradation pathways of oxalic acid in different photocatalytic systems: Towards simultaneous photocatalytic hydrogen evolution. Journal of Photochemistry and Photobiology A: Chemistry, 366, 81-90. https://doi.org/10.1016/j.jphotochem.2018.04.008
dc.relation.referencesAnderson, J. D. (1995). Computational fluid dynamics: The basics with applications. McGraw-Hill.
dc.relation.referencesAscanio, G., Castro, B., & Galindo, E. (2004). Measurement of Power Consumption in Stirred Vessels—A Review. Chemical Engineering Research and Design, 82(9), 1282-1290. https://doi.org/10.1205/cerd.82.9.1282.44164
dc.relation.referencesASTM Standards. (2018). Standard Test Method for Tensile Properties of Thin Plastic Sheeting. https://www.astm.org/d0882-18.html
dc.relation.referencesBader, R. A., Herzog, K. T., & Kao, W. J. (2009). A study of diffusion in poly(ethyleneglycol)-gelatin based semi-interpenetrating networks for use in wound healing. Polymer Bulletin, 62(3), 381-389. https://doi.org/10.1007/s00289-008-0023-x
dc.relation.referencesBain, A., Chandna, P., Butcher, G., & Bryant, J. (2000). Picosecond polarized fluorescence studies of anisotropic fluid media. II. Experimental studies of molecular order and motion in jet aligned rhodamine 6G and resorufin solutions. The Journal of Chemical Physics, 112, 10435-10449. https://doi.org/10.1063/1.481679
dc.relation.referencesBanerjee, A., Shuai, Y., Dixit, R., Papautsky, I., & Klotzkin, D. (2010). Concentration dependence of fluorescence signal in a microfluidic fluorescence detector. Journal of Luminescence, 130(6), 1095-1100. https://doi.org/10.1016/j.jlumin.2010.02.002
dc.relation.referencesBassi, P., & Kaur, G. (2017). Polymeric films as a promising carrier for bioadhesive drug delivery: Development, characterization and optimization. Saudi Pharmaceutical Journal, 25(1), 32-43. https://doi.org/10.1016/j.jsps.2015.06.003
dc.relation.referencesBeebe, D. J., Mensing, G. A., & Walker, G. M. (2002). Physics and Applications of Microfluidics in Biology. Annual Review of Biomedical Engineering, 4(1), 261-286. https://doi.org/10.1146/annurev.bioeng.4.112601.125916
dc.relation.referencesBird, R. B., Stewart, W. E., & Lightfoot, E. N. (2007). Transport phenomena (Revised ed). Wiley.
dc.relation.referencesBöhling, P., Khinast, J. G., Jajcevic, D., Davies, C., Carmody, A., Doshi, P., Am Ende, M. T., & Sarkar, A. (2019). Computational Fluid Dynamics-Discrete Element Method Modeling of an Industrial-Scale Wurster Coater. Journal of Pharmaceutical Sciences, 108(1), 538-550. https://doi.org/10.1016/j.xphs.2018.10.016
dc.relation.referencesBudak, K., Sogut, O., & Aydemir Sezer, U. (2020). A review on synthesis and biomedical applications of polyglycolic acid. Journal of Polymer Research, 27(8), 208. https://doi.org/10.1007/s10965-020-02187-1
dc.relation.referencesBusatto, C., Pesoa, J., Helbling, I., Luna, J., & Estenoz, D. (2018). Effect of particle size, polydispersity and polymer degradation on progesterone release from PLGA microparticles: Experimental and mathematical modeling. International Journal of Pharmaceutics, 536(1), 360-369. https://doi.org/10.1016/j.ijpharm.2017.12.006
dc.relation.referencesChen, X., Partheniadis, I., Nikolakakis, I., & Al-Obaidi, H. (2020). Solubility Improvement of Progesterone from Solid Dispersions Prepared by Solvent Evaporation and Co-milling. Polymers, 12(4), 854. https://doi.org/10.3390/polym12040854
dc.relation.referencesColombo, S., Beck-Broichsitter, M., Bøtker, J. P., Malmsten, M., Rantanen, J., & Bohr, A. (2018). Transforming nanomedicine manufacturing toward Quality by Design and microfluidics. Advanced Drug Delivery Reviews, 128, 115-131. https://doi.org/10.1016/j.addr.2018.04.004
dc.relation.referencesConnors, K. A., Amidon, G. L., & Stella, V. J. (1986). Chemical stability of pharmaceuticals: A handbook for pharmacists (2nd ed). Wiley.
dc.relation.referencesCulbertson, C. (2002). Diffusion coefficient measurements in microfluidic devices. Talanta, 56(2), 365-373. https://doi.org/10.1016/S0039-9140(01)00602-6
dc.relation.referencesde Guzman, R., Polykratis, I. A., Sondeen, J. L., Darlington, D. N., Cap, A. P., & Dubick, M. A. (2013). Stability of Tranexamic Acid after 12-Week Storage at Temperatures from –20°C to 50°C. Prehospital Emergency Care, 17(3), 394-400. https://doi.org/10.3109/10903127.2013.792891
dc.relation.referencesDepartment of Defense. (1998). Integrated Product and Process Development Handbook.
dc.relation.referencesDing, C., Zhang, M., & Li, G. (2015). Preparation and characterization of collagen/hydroxypropyl methylcellulose (HPMC) blend film. Carbohydrate Polymers, 119, 194-201. https://doi.org/10.1016/j.carbpol.2014.11.057
dc.relation.referencesEntwistle, C. A., & Rowe, R. C. (2011). Plasticization of cellulose ethers used in the film coating of tablets. Journal of Pharmacy and Pharmacology, 31(1), 269-272. https://doi.org/10.1111/j.2042-7158.1979.tb13499.x
dc.relation.referencesFerreira, L. F. M., Thomaz, D. V., Duarte, M. P. F., Lopez, R. F. V., Pedrazzi, V., Freitas, O. de, & Couto, R. O. do. (2021). Quality by Design-driven investigation of the mechanical properties of mucoadhesive films for needleless anesthetics administration. Revista de Ciências Farmacêutica Básica e Aplicadas - RCFBA, 42, e707. https://doi.org/10.4322/2179-443X.0707
dc.relation.referencesFerziger, J. H., & Perić, M. (2002). Computational methods for fluid dynamics (3rd, rev. ed ed.). Springer.
dc.relation.referencesGendron, P.-O., Avaltroni, F., & Wilkinson, K. J. (2008). Diffusion Coefficients of Several Rhodamine Derivatives as Determined by Pulsed Field Gradient–Nuclear Magnetic Resonance and Fluorescence Correlation Spectroscopy. Journal of Fluorescence, 18(6), 1093-1101. https://doi.org/10.1007/s10895-008-0357-7
dc.relation.referencesGhadermazi, R., Hamdipour, S., Sadeghi, K., Ghadermazi, R., & Khosrowshahi Asl, A. (2019). Effect of various additives on the properties of the films and coatings derived from hydroxypropyl methylcellulose—A review. Food Science & Nutrition, 7(11), 3363-3377. https://doi.org/10.1002/fsn3.1206
dc.relation.referencesGuarino, V., Gentile, G., Sorrentino, L., & Ambrosio, L. (2017). Polycaprolactone: Synthesis, Properties, and Applications: POLYCAPROLACTONE: SYNTHESIS, PROPERTIES, AND APPLICATIONS. En John Wiley & Sons, Inc. (Ed.), Encyclopedia of Polymer Science and Technology (pp. 1-36). John Wiley & Sons, Inc. https://doi.org/10.1002/0471440264.pst658
dc.relation.referencesHajji, H., Kolsi, L., Hassen, W., Al-Rashed, A. A. A. A., Borjini, M. N., & Aichouni, M. A. (2018). Finite element simulation of antigen-antibody transport and adsorption in a microfluidic chip. Physica E: Low-Dimensional Systems and Nanostructures, 104, 177-186. https://doi.org/10.1016/j.physe.2018.07.034
dc.relation.referencesHonary, S., & Orafai, H. (2002). The Effect of Different Plasticizer Molecular Weights and Concentrations on Mechanical and Thermomechanical Properties of Free Films. Drug Development and Industrial Pharmacy, 28(6), 711-715. https://doi.org/10.1081/DDC-120003863
dc.relation.referencesHonary, S., Orafai, H., & Shojaei, A. H. (2000). The Influence of Plasticizer Molecular Weight on Spreading Droplet Size of HPMC Aqueous Solutions Using an Indirect Method. Drug Development and Industrial Pharmacy, 26(9), 1019-1024. https://doi.org/10.1081/DDC-100101332
dc.relation.referencesKalyan, S., & Bansal, M. (2012). Recent Trends in the Development of Oral dissolving Film.
dc.relation.referencesKanabekova, P., Kadyrova, A., & Kulsharova, G. (2022). Microfluidic Organ-on-a-Chip Devices for Liver Disease Modeling In Vitro. Micromachines, 13(3), 428. https://doi.org/10.3390/mi13030428
dc.relation.referencesKaratay, E. (2013). Microfluidic studies of interfacial transport [PhD, University of Twente]. https://doi.org/10.3990/1.9789036506915
dc.relation.referencesKaya, D., Küçükada, K., & Alemdar, N. (2019). Modeling the drug release from reduced graphene oxide-reinforced hyaluronic acid/gelatin/poly(ethylene oxide) polymeric films. Carbohydrate Polymers, 215, 189-197. https://doi.org/10.1016/j.carbpol.2019.03.041
dc.relation.referencesKremer, D. M., & Hancock, B. C. (2006). Process Simulation in the Pharmaceutical Industry: A Review of Some Basic Physical Models. Journal of Pharmaceutical Sciences, 95(3), 517-529. https://doi.org/10.1002/jps.20583
dc.relation.referencesKrevelen, D. W. van, & Nijenhuis, K. te. (2009). Properties of polymers: Their correlation with chemical structure: their numerical estimation and prediction from additive group contributions (4th, completely rev. ed ed.). Elsevier.
dc.relation.referencesLakshmi, P., Sridharan, A., & Sreekanth, J. (2011). Formulation development of fast releasing oral thin films of levocetrizine dihydrochloride with Eudragit ® Epo and optimization through Taguchi orthogonal experimental design. Asian Journal of Pharmaceutics, 5(2), 84. https://doi.org/10.4103/0973-8398.84548
dc.relation.referencesLi, X., & Zhou, Y. (Eds.). (2013). Microfluidic devices for biomedical applications. Woodhead Publishing.
dc.relation.referencesLi, Z., & Seker, E. (2017). Configurable microfluidic platform for investigating therapeutic delivery from biomedical device coatings. Lab on a Chip, 17(19), 3331-3337. https://doi.org/10.1039/C7LC00851A
dc.relation.referencesLiew, K. B., Tan, Y. T. F., & Peh, K.-K. (2014). Effect of polymer, plasticizer and filler on orally disintegrating film. Drug Development and Industrial Pharmacy, 40(1), 110-119. https://doi.org/10.3109/03639045.2012.749889
dc.relation.referencesLuo, Y., Hong, Y., Shen, L., Wu, F., & Lin, X. (2021). Multifunctional Role of Polyvinylpyrrolidone in Pharmaceutical Formulations. AAPS PharmSciTech, 22(1), 34. https://doi.org/10.1208/s12249-020-01909-4
dc.relation.referencesLustig, S. R., & Peppas, N. A. (1988). Solute diffusion in swollen membranes. IX. Scaling laws for solute diffusion in gels. Journal of Applied Polymer Science, 36(4), 735-747. https://doi.org/10.1002/app.1988.070360401
dc.relation.referencesMcMillan, D. E., Strigberger, J., & Utterback, N. G. (1987). Rapidly recovered transient flow resistance: A newly discovered property of blood. American Journal of Physiology-Heart and Circulatory Physiology, 253(4), H919-H926. https://doi.org/10.1152/ajpheart.1987.253.4.H919
dc.relation.referencesMedical Cañada. (s. f.). EPISTAXIS Y TAPONAMIENTO NASAL. RAUCOCEL. Recuperado 2 de octubre de 2022, de https://blog.medicalcanada.es/2015/07/epistaxis-y-taponamiento-nasal-raucocel/
dc.relation.referencesMinisterio de Energía de España. (s. f.). Ministerio para la Transición Ecológica y el Reto Demográfico—Documentos reconocidos. Recuperado 13 de febrero de 2023, de https://energia.gob.es/desarrollo/EficienciaEnergetica/RITE/Reconocidos/Paginas/IndexDocumentosReconocidos.aspx
dc.relation.referencesMinisterio de la Protección Social. (2005). DECRETO NÚMERO 4725 DE 2005.
dc.relation.referencesMukherjee, S., Ghati, A., & Paul, G. (2021). An Ultraviolet–Visible Spectrophotometric Approach to Establish a Method for Determining the Presence of Rhodamine B in Food Articles. ACS Food Science & Technology, 1(9), 1615-1622. https://doi.org/10.1021/acsfoodscitech.1c00172
dc.relation.referencesNaik, V., Patil, N., Aparadh, V., & Karadge, B. (2014). METHODOLOGY IN DETERMINATION OF OXALIC ACID IN PLANT TISSUE: A COMPARATIVE APPROACH. Journal Global Trends in Pharmaceutical Sciences, 5, 1662-1672.
dc.relation.referencesnanoComposix. (s. f.). Molecular Weight to Size Calculator. NanoComposix. Recuperado 28 de julio de 2023, de https://nanocomposix.com/pages/molecular-weight-to-size-calculator
dc.relation.referencesNasouri, K., Shoushtari, A. M., & Mojtahedi, M. R. M. (2015). Thermodynamic Studies on Polyvinylpyrrolidone Solution Systems Used for Fabrication of Electrospun Nanostructures: Effects of the Solvent: RESEARCH ARTICLE. Advances in Polymer Technology, 34(3), n/a-n/a. https://doi.org/10.1002/adv.21495
dc.relation.referencesNiaounakis, M. (2015). Properties. En Biopolymers: Processing and Products (pp. 79-116). Elsevier. https://doi.org/10.1016/B978-0-323-26698-7.00002-7
dc.relation.referencesOhtsuki, C. (s. f.). How to prepare the simulated body fluid (SBF) and its related solutions. Recuperado 7 de octubre de 2022, de https://www.chembio.nagoya-u.ac.jp/archive/apchem/ketsu5/contents/SBF/
dc.relation.referencesOssa, A., Zapata, V., & Botero-Jaramillo, E. (2015, noviembre 18). METODOLOGÍA PARA RESOLVER POR DIFERENCIAS FINITAS NUEVOS MODELOS CONSTITUTIVOS EN EL PROGRAMA FLAC3D.
dc.relation.referencesPanda, B., Parihar, A. S., & Mallick, S. (2014). Effect of plasticizer on drug crystallinity of hydroxypropyl methylcellulose matrix film. International Journal of Biological Macromolecules, 67, 295-302. https://doi.org/10.1016/j.ijbiomac.2014.03.033
dc.relation.referencesPedacchia, A., & Adrover, A. (2014). Study of release kinetics and diffusion coefficients in swellable cellulosic thin films by means of a simple spectrophotometric technique. Chemical Engineering Research and Design, 92(11), 2550-2556. https://doi.org/10.1016/j.cherd.2014.03.017
dc.relation.referencesPeppas, N. A., & Narasimhan, B. (2014). Mathematical models in drug delivery: How modeling has shaped the way we design new drug delivery systems. Journal of Controlled Release, 190, 75-81. https://doi.org/10.1016/j.jconrel.2014.06.041
dc.relation.referencesPervin, R., Ghosh, P., & Basavaraj, M. G. (2021). Engineering polymer film porosity for solvent triggered actuation. Soft Matter, 17(10), 2900-2912. https://doi.org/10.1039/D0SM01772H
dc.relation.referencesPolyvinyl Alcohol—An overview | ScienceDirect Topics. (s. f.). Recuperado 18 de julio de 2023, de https://www.sciencedirect.com/topics/chemical-engineering/polyvinyl-alcohol
dc.relation.referencesPranzo, D., Larizza, P., Filippini, D., & Percoco, G. (2018). Extrusion-Based 3D Printing of Microfluidic Devices for Chemical and Biomedical Applications: A Topical Review. Micromachines, 9(8), 374. https://doi.org/10.3390/mi9080374
dc.relation.referencesQiu, S., Chu, H., Zou, Y., Xiang, C., Zhang, H., Sun, L., & Xu, F. (2016). Thermochemical studies of Rhodamine B and Rhodamine 6G by modulated differential scanning calorimetry and thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 123(2), 1611-1618. https://doi.org/10.1007/s10973-015-5055-5
dc.relation.referencesRao, N. M., & Sankar, D. G. (2016). Development and Validation of Stability-indicating RP-HPLC Method for The Estimation of Pseudoephedrine, Ambroxol and Desloratadine in Bulk and Their Tablet Dosage Forms. Indian Journal of Pharmaceutical Sciences, 78(4). https://doi.org/10.4172/pharmaceutical-sciences.1000144
dc.relation.referencesRiahi, S., Hadiloo, F., Milani, S. M. R., Davarkhah, N., Ganjali, M. R., Norouzi, P., & Seyfi, P. (2011). A new technique for spectrophotometric determination of Pseudoephedrine and Guaifenesin in syrup and synthetic mixture. Drug Testing and Analysis, 3(5), 319-324. https://doi.org/10.1002/dta.235
dc.relation.referencesRiccio, B. V. F., Silvestre, A. L. P., Meneguin, A. B., Ribeiro, T. de C., Klosowski, A. B., Ferrari, P. C., & Chorilli, M. (2022). Exploiting Polymeric Films as a Multipurpose Drug Delivery System: A Review. AAPS PharmSciTech, 23(7), 269. https://doi.org/10.1208/s12249-022-02414-6
dc.relation.referencesRomero, A. I., Villegas, M., Cid, A. G., Parentis, M. L., Gonzo, E. E., & Bermúdez, J. M. (2018). Validation of kinetic modeling of progesterone release from polymeric membranes. Asian Journal of Pharmaceutical Sciences, 13(1), 54-62. https://doi.org/10.1016/j.ajps.2017.08.007
dc.relation.referencesRoy, A., Ghosh, A., Datta, S., Das, S., Mohanraj, P., Deb, J., & Bhanoji Rao, M. E. (2009). Effects of plasticizers and surfactants on the film forming properties of hydroxypropyl methylcellulose for the coating of diclofenac sodium tablets. Saudi Pharmaceutical Journal, 17(3), 233-241. https://doi.org/10.1016/j.jsps.2009.08.004
dc.relation.referencesSadia, M., Arafat, B., Ahmed, W., Forbes, R. T., & Alhnan, M. A. (2018). Channelled tablets: An innovative approach to accelerating drug release from 3D printed tablets. Journal of Controlled Release, 269, 355-363. https://doi.org/10.1016/j.jconrel.2017.11.022
dc.relation.referencesSai Cheong Wan, L., Wan Sia Heng, P., & Fun Wong, L. (1995). Matrix swelling: A simple model describing extent of swelling of HPMC matrices. International Journal of Pharmaceutics, 116(2), 159-168. https://doi.org/10.1016/0378-5173(94)00285-D
dc.relation.referencesSakellariou, P., Hassan, A., & Rowe, R. C. (1993). Plasticization of aqueous poly(vinyl alcohol) and hydroxypropyl methylcellulose with polyethylene glycols and glycerol. European Polymer Journal, 29(7), 937-943. https://doi.org/10.1016/0014-3057(93)90289-R
dc.relation.referencesSeiffert, S., & Thiele, J. (2020). Microfluidics: Theory and practice for beginners. De Gruyter.
dc.relation.referencesSetapa, A., Ahmad, N., Mohd Mahali, S., & Mohd Amin, M. C. I. (2020). Mathematical Model for Estimating Parameters of Swelling Drug Delivery Devices in a Two-Phase Release. Polymers, 12(12), Article 12. https://doi.org/10.3390/polym12122921
dc.relation.referencesShamsi, M., Mohammadi, A., Manshadi, M. K. D., & Sanati-Nezhad, A. (2019). Mathematical and computational modeling of nano-engineered drug delivery systems. Journal of Controlled Release, 307, 150-165. https://doi.org/10.1016/j.jconrel.2019.06.014
dc.relation.referencesSiepmann, J., Kranz, H., Bodmeier, R., & Peppas, N. A. (1999). HPMC-Matrices for Controlled Drug Delivery: A New Model Combining Diffusion, Swelling, and Dissolution Mechanisms and Predicting the Release Kinetics. Pharmaceutical Research, 16(11), 1748-1756. https://doi.org/10.1023/A:1018914301328
dc.relation.referencesSiepmann, J., & Siepmann, F. (2012). Modeling of diffusion controlled drug delivery. Journal of Controlled Release, 161(2), 351-362. https://doi.org/10.1016/j.jconrel.2011.10.006
dc.relation.referencesSkolotneva, E., Cretin, M., & Mareev, S. (2021). A Simple 1D Convection-Diffusion Model of Oxalic Acid Oxidation Using Reactive Electrochemical Membrane. Membranes, 11(6), 431. https://doi.org/10.3390/membranes11060431
dc.relation.referencesSkoog, D. A., Holler, F. J., & Crouch, S. R. (2018). Principles of instrumental analysis (Seventh edition). Cengage Learning.
dc.relation.referencesSoylak, M., Unsal, Y. E., Yilmaz, E., & Tuzen, M. (2011). Determination of rhodamine B in soft drink, waste water and lipstick samples after solid phase extraction. Food and Chemical Toxicology, 49(8), 1796-1799. https://doi.org/10.1016/j.fct.2011.04.030
dc.relation.referencesStationery Office. (2009). British pharmacopoeia.
dc.relation.referencesStone, R. B., & Wood, K. L. (1999). Development of a Functional Basis for Design. Volume 3: 11th International Conference on Design Theory and Methodology, 261-275. https://doi.org/10.1115/DETC99/DTM-8765
dc.relation.referencesSuzuki, T., & Nakagami, H. (1999). Effect of crystallinity of microcrystalline cellulose on the compactability and dissolution of tablets. European Journal of Pharmaceutics and Biopharmaceutics, 47(3), 225-230. https://doi.org/10.1016/S0939-6411(98)00102-7
dc.relation.referencesTang, S., Zhang, R., Liu, F., & Liu, X. (2015). Hansen solubility parameters of polyglycolic acid and interaction parameters between polyglycolic acid and solvents. European Polymer Journal, 72, 83-88. https://doi.org/10.1016/j.eurpolymj.2015.09.009
dc.relation.referencesTho, I. (2018). Experimental and Modeling Study of Drug Release from HPMC-Based Erodible Oral Thin Films. Pharmaceutics, 10, 222. https://doi.org/10.3390/pharmaceutics10040222
dc.relation.referencesTiwari, S. K., Bhat, S., & Mahato, K. K. (2020). Design and Fabrication of Low-cost Microfluidic Channel for Biomedical Application. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-65995-x
dc.relation.referencesTrache, D., Hussin, M. H., Hui Chuin, C. T., Sabar, S., Fazita, M. R. N., Taiwo, O. F. A., Hassan, T. M., & Haafiz, M. K. M. (2016). Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. International Journal of Biological Macromolecules, 93, 789-804. https://doi.org/10.1016/j.ijbiomac.2016.09.056
dc.relation.referencesTretinnikov, O. N., & Zagorskaya, S. A. (2012). Determination of the degree of crystallinity of poly(vinyl alcohol) by FTIR spectroscopy. Journal of Applied Spectroscopy, 79(4), 521-526. https://doi.org/10.1007/s10812-012-9634-y
dc.relation.referencesUragami, T., Sumida, I., Miyata, T., Shiraiwa, T., Tamura, H., & Yajima, T. (2011). Pervaporation Characteristics in Removal of Benzene from Water through Polystyrene-Poly (Dimethylsiloxane) IPN Membranes. Materials Sciences and Applications, 02(03), 169-179. https://doi.org/10.4236/msa.2011.23021
dc.relation.referencesUsher, J. M., Roy, U., & Parsaei, H. (1998). Integrated Product and Process Development: Methods, Tools, and Technologies. John Wiley & Sons.
dc.relation.referencesVallejo Díaz, B. M., Cortés Rodríguez, C. J., Espinosa, A., & Barbosa B., H. J. (2004). Aplicación de la metodología de diseño axiomático en el desarrollo de productos de liberación modificada. https://repositorio.unal.edu.co/handle/unal/28662
dc.relation.referencesVallejo Díaz, B. M. R., & Perilla Perilla, J. E. (2009). Estudio del fenómeno de adhesión a superficies biológicas de películas obtenidas partir de biopolímeros, para aplicaciones en el área de la salud.
dc.relation.referencesvan den Broek, C. N., Pullens, R. A. A., Frøbert, O., Rutten, M. C. M., den Hartog, W. F., & van de Vosse, F. N. (2008). Medium with blood-analog mechanical properties for cardiovascular tissue culturing. Biorheology, 45(6), 651-661. https://doi.org/10.3233/BIR-2008-0513
dc.relation.referencesVarani, G. (2017). Buccal and Topical drug delivery [PhD]. University of Rome.
dc.relation.referencesVulović, A., Šušteršič, T., Cvijić, S., Ibrić, S., & Filipović, N. (2018). Coupled in silico platform: Computational fluid dynamics (CFD) and physiologically-based pharmacokinetic (PBPK) modelling. European Journal of Pharmaceutical Sciences, 113, 171-184. https://doi.org/10.1016/j.ejps.2017.10.022
dc.relation.referencesWise, D. L. (2000). Handbook of Pharmaceutical Controlled Release Technology. CRC Press.
dc.relation.referencesYan, P., Zhou, M., & Sebastian, D. (1999). An integrated product and process development methodology: Concept formulation. Robotics and Computer-Integrated Manufacturing, 15(3), 201-210. https://doi.org/10.1016/S0736-5845(99)00025-3
dc.relation.referencesYoung, R. E., & Huh, D. D. (2021). Organ-on-a-chip technology for the study of the female reproductive system. Advanced Drug Delivery Reviews, 173, 461-478. https://doi.org/10.1016/j.addr.2021.03.010
dc.relation.referencesZeinali Kalkhoran, A. H., Vahidi, O., & Naghib, S. M. (2018). A new mathematical approach to predict the actual drug release from hydrogels. European Journal of Pharmaceutical Sciences, 111, 303-310. https://doi.org/10.1016/j.ejps.2017.09.038
dc.relation.referencesZhang, L., Huang, Y.-K., Yue, L.-N., Xu, L., Qian, J.-Y., & He, X.-D. (2022). Variation of blending ratio and drying temperature optimize the physical properties and compatibility of HPMC/curdlan films. Carbohydrate Polymers, 296, 119951. https://doi.org/10.1016/j.carbpol.2022.119951
dc.relation.referencesZhang, L., Yu, L., Liu, H., Wang, Y., Simon, G. P., Ji, Z., & Qian, J. (2017). Effect of processing conditions on microstructures and properties of hydroxypropyl methylcellulose/hydroxypropyl starch blends. Food Hydrocolloids, 70, 251-259. https://doi.org/10.1016/j.foodhyd.2017.03.019
dc.relation.referencesZhang, S., & Byrne, G. (2021). Characterization of transport mechanisms for controlled release polymer membranes using focused ion beam scanning electron microscopy image-based modelling. Journal of Drug Delivery Science and Technology, 61, 102136. https://doi.org/10.1016/j.jddst.2020.102136
dc.relation.referencesZhu, L., Liu, Q., Yang, B., Ju, H., & Lei, J. (2018). Pixel Counting of Fluorescence Spots Triggered by DNA Walkers for Ultrasensitive Quantification of Nucleic Acid. Analytical Chemistry, 90(11), 6357-6361. https://doi.org/10.1021/acs.analchem.8b01146
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decssistemas de liberación de medicamentos
dc.subject.decsDrug Delivery Systems
dc.subject.decsdiseño de fármacos
dc.subject.decsDrug Design
dc.subject.decsmecánica de fluidos
dc.subject.decsFlow Mechanics
dc.subject.proposalMIcrofluidos
dc.subject.proposalPelícula polimérica
dc.subject.proposalMIcrofluidics
dc.subject.proposalPolymeric film
dc.subject.proposalDinámica de fluidos computacional
dc.subject.proposalSistemas de liberación modificada
dc.subject.proposalDiseño integrado de producto y proceso
dc.subject.proposalComputational fluid dynamics
dc.subject.proposalModified release system
dc.subject.proposalIntegrated product and process development
dc.title.translatedStudy of mass transport phenomena at a microscopic scale, for its application in the design of modified release systems of the polymeric film type
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameFacultad de Ciencias - Universidad Nacional de Colombia
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentMedios de comunicación
dcterms.audience.professionaldevelopmentPúblico general


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-CompartirIgual 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito