Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorHernández Ortiz, Juan Pablo
dc.contributor.advisorCiuoderis Aponte, Karl Adolf
dc.contributor.authorÚsuga Restrepo, Jaime Andrés
dc.date.accessioned2024-01-24T20:14:33Z
dc.date.available2024-01-24T20:14:33Z
dc.date.issued2023-08-01
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85425
dc.descriptionIlustraciones
dc.description.abstractAunque se ha demostrado la amplia circulación del virus influenza (VI) A en cerdos y humanos en el mundo y en Colombia, existen pocos estudios que hayan caracterizado los aspectos biológicos de estos virus. Por tanto, éste trabajo se basó en el análisis computacional de la proteína de superficie hemaglutinina (HA) de cepas pandémicas del VI circulantes en el país, y su relación con un cambio en las propiedades biológicas de estos. Este trabajo se desarrolló en tres capítulos, en el primero se caracterizó la composición genómica de la HA, seguido de la identificación de las mutaciones en esta proteína y su posible contribución a la diseminación de estos virus en la región. Los últimos dos capítulos, correspondieron al análisis estructural de la HA y su interacción con los receptores celulares. En general, se sugiere que las mutaciones I322V, P84S, S204T, E375K entre otras, pudieron haber contribuido al fitness y en el establecimiento de estos virus en las poblaciones actuales en Colombia. Las mutaciones más relevantes (E375K y S163N) estaban relacionadas con el aumento de la virulencia y la capacidad de evadir la respuesta inmune. Adicionalmente, se observó un clúster filogenéticamente relacionado que presentó dos mutaciones únicas (D223X y Q224X) no reportadas previamente. Por otra parte, para los modelos de los consensos tridimensionales de la HA, se observó que el modelo cBri18 (con mutaciones únicas R46G, P283A y I299V), representativo de su clúster, mostró comportamientos estructurales ligeramente distintos a los otros modelos y presentó cambios en el loop130 del sitio de unión al receptor. Adicionalmente, luego del análisis de los modelos de HA más relevantes, se encontró que estos mantienen preferencia la unión con los receptores celulares humanos (SA2,6) sobre los aviares (SA2,3). También que el modelo cCal09 tuvo mayor afinidad por SA2,6; y que el modelo cBri18 fue el única interactuó con SA2,3, hecho que puede atribuirse a los cambios evidenciados en el loop130. En conclusión, la presencia de ciertas mutaciones en la proteína HA de VI H1N1pdm de Colombia están posiblemente influenciando las propiedades biológicas de estos virus, sin embargo, otros estudios son necesarios para poder confirmar estos hallazgos. No obstante, este conocimiento generado aporta en el fortalecimiento de las acciones en la vigilancia y control de estos virus en el país y la región. (texto tomado de la fuente)
dc.description.abstractDespite circulation of influenza virus (IV) in pigs and humans globally, few studies have characterized its biological features in Colombia. Therefore, in this study a computational analysis of the hemagglutinin (HA) surface protein of IV pandemic strains circulating in the country, and its relationship with a change in their biological properties was carried out. This work was developed in three chapters, in the first one, the genomic composition of HA was characterized, followed by the identification of the mutations and their possible contribution to the dissemination of these viruses in the region. The last two chapters corresponded to the structural analysis of HA and its interaction with cell receptors. In general, the mutations I322V, P84S, S204T, E375K, among others, have contributed to the fitness and establishment of these viruses in current populations in Colombia. The most relevant changes (E375K and S163N) were related to increased virulence and the ability to evade the immune response. In addition, a phylogenetically related cluster was found that exhibited two unique changes (D223X and Q224X) not previously reported. On the other hand, for the three-dimensional consensus models of the HA, it was shown that the cBri18 model (with exclusive mutations R46G, P283A and I299V), representative of its cluster, showed structural changes in the loop130 of receptor binding domain behaviors slightly different from the other models. In addition, analyzing the most relevant HA models, it was found that they preferentially bind to human cell receptors (SA2,6) over avian (SA2,3). Also, that the cCal09 model had a higher affinity for SA2,6; and that the cBri18 model was the only one that interacted with SA2,3, a fact that can be attributed to the changes observed in loop130. In conclusion, the presence of certain mutations in the HA protein of IV H1N1pdm from Colombia might be influencing the biological properties of these viruses, however, other studies are necessary to confirm these findings. However, this generated knowledge contributes to strengthening actions in the surveillance and control of these viruses in the country and the region.
dc.format.extent103 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc570 - Biología
dc.titleAnálisis computacional de la hemaglutinina de los virus influenza A de linaje pandémico en Colombia
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Materiales y Procesos
dc.contributor.researchgroupCrs-Tid Center for Research and Surveillance of Tropical and Infectious Diseases
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesos
dc.description.researchareaBioinformática
dc.description.researchareaVirología
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedLaReferencia
dc.relation.referencesAbraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindah, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/J.SOFTX.2015.06.001
dc.relation.referencesAl Khatib, H. A., Al Thani, A. A., & Yassine, H. M. (2018a). Evolution and dynamics of the pandemic H1N1 influenza hemagglutinin protein from 2009 to 2017. Archives of Virology, 163(11), 3035–3049. https://doi.org/10.1007/S00705-018-3962-Z/FIGURES/5
dc.relation.referencesAlhossary, A., Handoko, S. D., Mu, Y., & Kwoh, C. K. (2015). Fast, accurate, and reliable molecular docking with QuickVina 2. Bioinformatics, 31(13), 2214–2216. https://doi.org/10.1093/BIOINFORMATICS/BTV082
dc.relation.referencesAnderson, T. K., Macken, C. A., Lewis, N. S., Scheuermann, R. H., Reeth, K. Van, Brown, I. H., Swenson, S. L., Simon, G., Saito, T., Berhane, Y., Ciacci-Zanella, J., Pereda, A., Davis, C. T., Donis, R. O., Webby, R. J., & Vincent, A. L. (2016). A Phylogeny-Based Global Nomenclature System and Automated Annotation Tool for H1 Hemagglutinin Genes from Swine Influenza A Viruses. mSphere, 1(6). https://doi.org/10.1128/MSPHERE.00275-16
dc.relation.referencesAyres, D. L., Darling, A., Zwickl, D. J., Beerli, P., Holder, M. T., Lewis, P. O., Huelsenbeck, J. P., Ronquist, F., Swofford, D. L., Cummings, M. P., Rambaut, A., & Suchard, M. A. (2012). BEAGLE: An Application Programming Interface and High-Performance Computing Library for Statistical Phylogenetics. Systematic Biology, 61(1), 170. https://doi.org/10.1093/SYSBIO/SYR100
dc.relation.referencesBawono, P., & Heringa, J. (2014). Phylogenetic Analyses. Comprehensive Biomedical Physics, 6, 93–110. https://doi.org/10.1016/B978-0-444-53632-7.01108-4
dc.relation.referencesBII Flusurver - Frequently Asked Questions. (s/f). Recuperado el 2 de julio de 2023, de https://flusurver.bii.a-star.edu.sg/help/faq.html
dc.relation.referencesBoni, M. F., Galvani, A. P., Wickelgren, A. L., & Malani, A. (2013). Economic epidemiology of avian influenza on smallholder poultry farms. Theoretical Population Biology, 90, 135–144. https://doi.org/10.1016/j.tpb.2013.10.001
dc.relation.referencesBouvier, N. M., & Palese, P. (2008). THE BIOLOGY OF INFLUENZA VIRUSES. Vaccine.
dc.relation.referencesBoyoglu-Barnum, S., Ellis, D., Gillespie, R. A., Hutchinson, G. B., Park, Y. J., Moin, S. M., Acton, O. J., Ravichandran, R., Murphy, M., Pettie, D., Matheson, N., Carter, L., Creanga, A., Watson, M. J., Kephart, S., Ataca, S., Vaile, J. R., Ueda, G., Crank, M. C., … Kanekiyo, M. (2021). Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature, 592(7855), 623–628. https://doi.org/10.1038/S41586-021-03365-X
dc.relation.referencesBradley, K. C., Jones, C. A., Tompkins, S. M., Tripp, R. A., Russell, R. J., Gramer, M. R., Heimburg-Molinaro, J., Smith, D. F., Cummings, R. D., & Steinhauer, D. A. (2011). Comparison of the receptor binding properties of contemporary swine isolates and early human pandemic H1N1 isolates (Novel 2009 H1N1). Virology, 413(2), 169–182. https://doi.org/10.1016/J.VIROL.2011.01.027
dc.relation.referencesBrice, A. R., & Dominy, B. N. (2011). Analyzing the robustness of the MM/PBSA free energy calculation method: Application to DNA conformational transitions. Journal of Computational Chemistry, 32(7), 1431–1440. https://doi.org/10.1002/JCC.21727
dc.relation.referencesBussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of chemical physics, 126(1). https://doi.org/10.1063/1.2408420
dc.relation.referencesByrd-Leotis, L., Cummings, R. D., & Steinhauer, D. A. (2017). Molecular Sciences The Interplay between the Host Receptor and Influenza Virus Hemagglutinin and Neuraminidase. https://doi.org/10.3390/ijms18071541
dc.relation.referencesCador, C., Andraud, M., Willem, L., & Rose, N. (2017). Control of endemic swine flu persistence in farrow-to-finish pig farms: A stochastic metapopulation modeling assessment. Veterinary Research, 48(1), 1–14. https://doi.org/10.1186/S13567-017-0462-1/FIGURES/7
dc.relation.referencesCarbone, V., Schneider, E. K., Rockman, S., Baker, M., Huang, J. X., Ong, C., Cooper, M. A., Yuriev, E., Li, J., & Velkov, T. (2015). Molecular Characterisation of the Haemagglutinin Glycan-Binding Specificity of Egg-Adapted Vaccine Strains of the Pandemic 2009 H1N1 Swine Influenza A Virus. Molecules, 20(6), 10415. https://doi.org/10.3390/MOLECULES200610415
dc.relation.referencesChen, L. M., Blixt, O., Stevens, J., Lipatov, A. S., Davis, C. T., Collins, B. E., Cox, N. J., Paulson, J. C., & Donis, R. O. (2012). In vitro evolution of H5N1 avian influenza virus toward human-type receptor specificity. Virology, 422(1), 105. https://doi.org/10.1016/J.VIROL.2011.10.006
dc.relation.referencesChen, L. M., Rivailler, P., Hossain, J., Carney, P., Balish, A., Perry, I., Davis, C. T., Garten, R., Shu, B., Xu, X., Klimov, A., Paulson, J. C., Cox, N. J., Swenson, S., Stevens, J., Vincent, A., Gramer, M., & Donis, R. O. (2011). Receptor specificity of subtype H1 influenza A viruses isolated from swine and humans in the United States. Virology, 412(2), 401. https://doi.org/10.1016/J.VIROL.2011.01.015
dc.relation.referencesChen, Z., Wang, W., Zhou, H., Amorsolo L. Suguitan, Jr., Shambaugh, C., Kim, L., Zhao, J., Kemble, G., & Jin, H. (2010). Generation of Live Attenuated Novel Influenza Virus A/California/7/09 (H1N1) Vaccines with High Yield in Embryonated Chicken Eggs. Journal of Virology, 84(1), 44. https://doi.org/10.1128/JVI.02106-09
dc.relation.referencesChepkwony, S., Parys, A., Vandoorn, E., Stadejek, W., Xie, J., King, J., Graaf, A., Pohlmann, A., Beer, M., Harder, T., & Van Reeth, K. (2021). Genetic and antigenic evolution of H1 swine influenza A viruses isolated in Belgium and the Netherlands from 2014 through 2019. Scientific Reports 2021 11:1, 11(1), 1–12. https://doi.org/10.1038/s41598-021-90512-z
dc.relation.referencesChilds, R. A., Palma, A. S., Wharton, S., Matrosovich, T., Liu, Y., Chai, W., Campanero-Rhodes, M. A., Zhang, Y., Eickmann, M., Kiso, M., Hay, A., Matrosovich, M., & Feizi, T. (2009). Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray. Nature biotechnology, 27(9), 797. https://doi.org/10.1038/NBT0909-797
dc.relation.referencesChua, K., & Chai, H. (2012). Hemagglutinin protein of Asian strains of human inluenza virus A H1N1 binds to sialic acid-a major component of human airway receptors. Genetics and Molecular Research, 11(1), 636–643. https://doi.org/10.4238/2012.March.16.1
dc.relation.referencesChutinimitkul, S., Herfst, S., Steel, J., Lowen, A. C., Ye, J., van Riel, D., Schrauwen, E. J. A., Bestebroer, T. M., Koel, B., Burke, D. F., Sutherland-Cash, K. H., Whittleston, C. S., Russell, C. A., Wales, D. J., Smith, D. J., Jonges, M., Meijer, A., Koopmans, M., Rimmelzwaan, G. F., … Fouchier, R. A. M. (2010). Virulence-Associated Substitution D222G in the Hemagglutinin of 2009 Pandemic Influenza A(H1N1) Virus Affects Receptor Binding. Journal of Virology, 84(22), 11802–11813. https://doi.org/10.1128/JVI.01136-10/SUPPL_FILE/27_8_10_REVISED_SOM_JVI01136_10.DOC
dc.relation.referencesConsuelo Ramirez-Nieto, G., Augusto, C., Rojas, D., Julio, V., Alfonso, V., Correa, J., Dario, J., & Galvis, M. (2012). First isolation and identification of H1N1 swine influenza viruses in Colombian pig farms. 4, 983–990. https://doi.org/10.4236/health.2012.430150
dc.relation.referencesCotter, C. R., Jin, H., & Chen, Z. (2014). A Single Amino Acid in the Stalk Region of the H1N1pdm Influenza Virus HA Protein Affects Viral Fusion, Stability and Infectivity. PLoS Pathogens, 10(1). https://doi.org/10.1371/JOURNAL.PPAT.1003831
dc.relation.referencesDarden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
dc.relation.referencesDou, D., Revol, R., Östbye, H., Wang, H., & Daniels, R. (2018). Influenza A virus cell entry, replication, virion assembly and movement. En Frontiers in Immunology (Vol. 9, Número JUL). Frontiers Media S.A. https://doi.org/10.3389/fimmu.2018.01581
dc.relation.referencesDrummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29(8), 1969. https://doi.org/10.1093/MOLBEV/MSS075
dc.relation.referencesDuBois, R. M., Aguilar-Yañez, J. M., Mendoza-Ochoa, G. I., Oropeza-Almazán, Y., Schultz-Cherry, S., Alvarez, M. M., White, S. W., & Russell, C. J. (2011). The Receptor-Binding Domain of Influenza Virus Hemagglutinin Produced in Escherichia coli Folds into Its Native, Immunogenic Structure . Journal of Virology, 85(2), 865–872. https://doi.org/10.1128/jvi.01412-10
dc.relation.referencesFiser, A., & Šali, A. (2003). Modeller: Generation and Refinement of Homology-Based Protein Structure Models. Methods in Enzymology, 374, 461–491. https://doi.org/10.1016/S0076-6879(03)74020-8
dc.relation.referencesForli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols 2016 11:5, 11(5), 905–919. https://doi.org/10.1038/nprot.2016.051
dc.relation.referencesFraser, C., Cummings, D. A. T., Klinkenberg, D., Burke, D. S., & Ferguson, N. M. (2011). Special Article Influenza Transmission in Households During the 1918 Pandemic. 174(5). https://doi.org/10.1093/aje/kwr122
dc.relation.referencesGao, S., Anderson, T. K., Walia, R. R., Dorman, K. S., Janas-Martindale, A., & Vincent, A. L. (2017). The genomic evolution of H1 influenza A viruses from swine detected in the United States between 2009 and 2016. The Journal of General Virology, 98(8), 2001. https://doi.org/10.1099/JGV.0.000885
dc.relation.referencesGorbalenya, A. E., & Lauber, C. (2017). Phylogeny of Viruses. Reference Module in Biomedical Sciences. https://doi.org/10.1016/B978-0-12-801238-3.95723-4
dc.relation.referencesGraaf Miranda, & Fouchier Ron A. (2014). Role of receptor binding specificity in influenza A virus transmission and pathogenesis. EMBO, 33(8), 823–841. https://doi.org/https://doi.org/10.1002/embj.201387442
dc.relation.referencesGuedes, I. A., Costa, L. S. C., dos Santos, K. B., Karl, A. L. M., Rocha, G. K., Teixeira, I. M., Galheigo, M. M., Medeiros, V., Krempser, E., Custódio, F. L., Barbosa, H. J. C., Nicolás, M. F., & Dardenne, L. E. (2021). Drug design and repurposing with DockThor-VS web server focusing on SARS-CoV-2 therapeutic targets and their non-synonym variants. Scientific Reports 2021 11:1, 11(1), 1–20. https://doi.org/10.1038/s41598-021-84700-0
dc.relation.referencesGuldemir, D., Coskun-Ari, F. F., Altas, A. B., Bakkaloglu, Z., Unaldi, O., Bayraktar, F., Korukluoglu, G., Aktas, A. R., & Durmaz, R. (2019). Molecular characterization of the influenza A(H1N1)pdm09 isolates collected in the 2015-2016 season and comparison of HA mutations detected in Turkey since 2009. Journal of Medical Virology, 91(12), 2074–2082. https://doi.org/10.1002/JMV.25565
dc.relation.referencesGuvench, O., & MacKerell, A. D. (2008). Comparison of protein force fields for molecular dynamics simulations. Methods in Molecular Biology, 443, 63–88. https://doi.org/10.1007/978-1-59745-177-2_4/COVER
dc.relation.referencesHan, Y., Sun, N., Lv, Q. yue, Liu, D. hong, & Liu, D. peng. (2016). Molecular epidemiology and phylogenetic analysis of HA gene of influenza A(H1N1)pdm09 strain during 2010–2014 in Dalian, North China. Virus Genes, 52(5), 606–612. https://doi.org/10.1007/S11262-016-1358-2/FIGURES/2
dc.relation.referencesHanssen, H., Hincapié, O., & López, J. H. (1977). INFLUENZA EN PORCINOS DE ANTIOQUIA, COLOMBIA ’.
dc.relation.referencesHollingsworth, S. A., & Dror, R. O. (2018). Review Molecular Dynamics Simulation for All. Neuron, 1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011
dc.relation.referencesHorimoto, T., & Kawaoka, Y. (2005). INFLUENZA: LESSONS FROM PAST PANDEMICS, WARNINGS FROM CURRENT INCIDENTS. https://doi.org/10.1038/nrmicro1208
dc.relation.referencesHornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple AMBER force fields and development of improved protein backbone parameters. Proteins, 65(3), 712. https://doi.org/10.1002/PROT.21123
dc.relation.referencesHou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods: I. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of chemical information and modeling, 51(1), 69. https://doi.org/10.1021/CI100275A
dc.relation.referencesHuang, D. T. N., Lu, C. Y., Chi, Y. H., Li, W. L., Chang, L. Y., Lai, M. J., Chen, J. S., Hsu, W. M., & Huang, L. M. (2017). Adaptation of influenza A (H7N9) virus in primary human airway epithelial cells. Scientific Reports, 7(1). https://doi.org/10.1038/S41598-017-10749-5
dc.relation.referencesIvan, F. X., Zhou, X., Lau, S. H., Rashid, S., Teo, J. S. M., Lee, H. K., Koay, E. S., Chan, K. P., Leo, Y. S., Chen, M. I. C., Kwoh, C. K., & Chow, V. T. (2020). Molecular insights into evolution, mutations and receptor-binding specificity of influenza A and B viruses from outpatients and hospitalized patients in Singapore. International Journal of Infectious Diseases, 90, 84–96. https://doi.org/10.1016/J.IJID.2019.10.024
dc.relation.referencesJavanian, M., Barary, M., Ghebrehewet, S., Koppolu, V., Vasigala, V. K. R., & Ebrahimpour, S. (2021). A brief review of influenza virus infection. En Journal of Medical Virology (Vol. 93, Número 8, pp. 4638–4646). John Wiley and Sons Inc. https://doi.org/10.1002/jmv.26990
dc.relation.referencesJorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
dc.relation.referencesKapli, P., Yang, Z., & Telford, M. J. (2020). Phylogenetic tree building in the genomic age. Nature Reviews Genetics 2020 21:7, 21(7), 428–444. https://doi.org/10.1038/s41576-020-0233-0
dc.relation.referencesKarlsson, E. A., Ciuoderis, K., Freiden, P. J., Seufzer, B., Jones, J. C., Johnson, J., Parra, R., Gongora, A., Cardenas, D., Barajas, D., Osorio, J. E., & Schultz-Cherry, S. (2013). Prevalence and characterization of influenza viruses in diverse species in Los Llanos, Colombia. Emerging Microbes and Infections, 2. https://doi.org/10.1038/emi.2013.20
dc.relation.referencesKatoh, K., Rozewicki, J., & Yamada, K. D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20(4), 1160–1166. https://doi.org/10.1093/BIB/BBX108
dc.relation.referencesKim, H., Webster, R. G., & Webby, R. J. (2018). Influenza Virus: Dealing with a Drifting and Shifting Pathogen. Viral Immunology, 31(2), 174–183. https://doi.org/10.1089/vim.2017.0141
dc.relation.referencesKitchen, D. B., Decornez, H., Furr, J. R., & Bajorath, J. (2004). Docking and scoring in virtual screening for drug discovery: Methods and applications. En Nature Reviews Drug Discovery (Vol. 3, Número 11, pp. 935–949). https://doi.org/10.1038/nrd1549
dc.relation.referencesKlement, E., Weng, H.-Y., Poljak, Z., Orlando, F., Pardo, C., Alba-Casals, A., Nerem, J., Morrison, R. B., Puig, P., & Torremorell, M. (2017). influenza herd-level Prevalence and seasonality in Breed-to-Wean Pig Farms in the Midwestern United states. 4, 11. https://doi.org/10.3389/fvets.2017.00167
dc.relation.referencesKoel, B. F., Burke, D. F., Bestebroer, T. M., Van Der Vliet, S., Zondag, G. C. M., Vervaet, G., Skepner, E., Lewis, N. S., Spronken, M. I. J., Russell, C. A., Eropkin, M. Y., Hurt, A. C., Barr, I. G., De Jong, J. C., Rimmelzwaan, G. F., Osterhaus, A. D. M. E., Fouchier, R. A. M., & Smith, D. J. (2013). Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution. Science, 342(6161), 976–979. https://doi.org/10.1126/SCIENCE.1244730/SUPPL_FILE/KOEL.SM.PDF
dc.relation.referencesKoul, P. A., Mir, M. A., Bali, N. K., Chawla-Sarkar, M., Sarkar, M., Kaushik, S., Khan, U. H., Ahmad, F., Garten, R., Lal, R. B., & Broor, S. (2011). Pandemic and seasonal influenza viruses among patients with acute respiratory illness in Kashmir (India). Influenza and Other Respiratory Viruses, 5(6), e521. https://doi.org/10.1111/J.1750-2659.2011.00261.X
dc.relation.referencesKuhner, M. K. (2009). Coalescent genealogy samplers: windows into population history. Trends in ecology & evolution, 24(2), 86. https://doi.org/10.1016/J.TREE.2008.09.007
dc.relation.referencesKuntz, I. D., Blaney, J. M., Oatley, S. J., Langridge, R., & Ferrin, T. E. (1982). A Geometric Approach to Macromolecule-Ligand Interactions. En J. Mol. Bid.
dc.relation.referencesLaskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
dc.relation.referencesLaskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/CI200227U/ASSET/IMAGES/MEDIUM/CI-2011-00227U_0006.GIF
dc.relation.referencesLee, A. N., Hartono, Y. D., Sun, T., Leow, M. L., Liu, X. W., Huang, X., & Zhang, D. (2011). Molecular dynamics studies of human receptor molecule in hemagglutinin of 1918 and 2009 H1N1 influenza viruses. Journal of Molecular Modeling, 17(7), 1635–1641. https://doi.org/10.1007/S00894-010-0867-5/METRICS
dc.relation.referencesLetunic, I., & Bork, P. (2021). Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49(W1), W293–W296. https://doi.org/10.1093/NAR/GKAB301
dc.relation.referencesLevitt, M. (2014). Birth and Future of Multiscale Modeling for Macromolecular Systems (Nobel Lecture). Angewandte Chemie International Edition, 53(38), 10006–10018. https://doi.org/10.1002/ANIE.201403691
dc.relation.referencesMaines, T. R., Jayaraman, A., Belser, J. A., Wadford, D. A., Pappas, C., Zeng, H., Gustin, K. M., Pearce, M. B., Viswanathan, K., Shriver, Z. H., Raman, R., Cox, N. J., Sasisekharan, R., Katz, J. M., & Tumpey, T. M. (2009). Transmission and Pathogenesis of Swine-Origin 2009 A(H1N1) Influenza Viruses in Ferrets and Mice. Science (New York, N.Y.), 325(5939), 484. https://doi.org/10.1126/SCIENCE.1177238
dc.relation.referencesMark Berg Jeremy, Stryer Lubert, & Tymoczko John. (2006). Biochemistry (6th ed.). https://books.google.com.cu/books?id=HRr4MNH2YssC&printsec=frontcover#v=onepage&q&f=false
dc.relation.referencesMatrosovich, M., Tuzikov, A., Bovin, N., Gambaryan, A., Klimov, A., Castrucci, M. R., Donatelli, I., & Kawaoka, Y. (2000). Early Alterations of the Receptor-Binding Properties of H1, H2, and H3 Avian Influenza Virus Hemagglutinins after Their Introduction into Mammals. Journal of Virology, 74(18), 8502. https://doi.org/10.1128/JVI.74.18.8502-8512.2000
dc.relation.referencesMcAuley, J. L., Gilbertson, B. P., Trifkovic, S., Brown, L. E., & McKimm-Breschkin, J. L. (2019). Influenza virus neuraminidase structure and functions. En Frontiers in Microbiology (Vol. 10, Número JAN). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2019.00039
dc.relation.referencesMcGinnis, S., & Madden, T. L. (2004). BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Research, 32(Web Server issue), W20. https://doi.org/10.1093/NAR/GKH435
dc.relation.referencesMichaelis, M., Doerr, H. W., & Cinatl, J. (2009). An influenza A H1N1 virus revival - Pandemic H1N1/09 virus. En Infection (Vol. 37, Número 5, pp. 381–389). https://doi.org/10.1007/s15010-009-9181-5
dc.relation.referencesMinh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., Von Haeseler, A., Lanfear, R., & Teeling, E. (2020). IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution, 37(5), 1530–1534. https://doi.org/10.1093/MOLBEV/MSAA015
dc.relation.referencesMunjal, G., Hanmandlu, M., & Srivastava, S. (2019). Phylogenetics Algorithms and Applications. Ambient Communications and Computer Systems, 904, 187. https://doi.org/10.1007/978-981-13-5934-7_17
dc.relation.referencesNi, F., Kondrashkina, E., & Wang, Q. (2018). Determinant of receptor-preference switch in influenza hemagglutinin. Virology, 513, 98. https://doi.org/10.1016/J.VIROL.2017.10.010
dc.relation.referencesOsorio-Zambrano, W. F., Ospina-Jimenez, A. F., Alvarez-Munoz, S., Gomez, A. P., & Ramirez-Nieto, G. C. (2022). Zooming in on the molecular characteristics of swine influenza virus circulating in Colombia before and after the H1N1pdm09 virus. Frontiers in Veterinary Science, 9. https://doi.org/10.3389/FVETS.2022.983304/FULL
dc.relation.referencesOtte, J., Hinrichs, J., Rushton, J., Roland-Holst, D., & Zilberman, D. (2008). Impacts of avian influenza virus on animal production in developing countries. En CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources (Vol. 3). https://doi.org/10.1079/PAVSNNR20083080
dc.relation.referencesParrinello, M., Rahman, A., Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. JAP, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
dc.relation.referencesPatel, H., & Kukol, A. (2021). Integrating molecular modelling methods to advance influenza A virus drug discovery. Drug Discovery Today, 26(2), 503–510. https://doi.org/10.1016/J.DRUDIS.2020.11.014
dc.relation.referencesPetrova, V. N., & Russell, C. A. (2017). The evolution of seasonal influenza viruses. Nature Publishing Group, 16. https://doi.org/10.1038/nrmicro.2017.118
dc.relation.referencesRajao, D. S., Anderson, T. K., Kitikoon, P., Stratton, J., Lewis, N. S., & Vincent, A. L. (2018). Antigenic and genetic evolution of contemporary swine H1 influenza viruses in the United States. Virology, 518, 45–54. https://doi.org/10.1016/J.VIROL.2018.02.006
dc.relation.referencesRajapaksha, H., Petrovsky, N., & Guan, Y. (2014). In Silico Structural Homology Modelling and Docking for Assessment of Pandemic Potential of a Novel H7N9 Influenza Virus and Its Ability to Be Neutralized by Existing Anti-Hemagglutinin Antibodies. PLoS ONE. https://doi.org/10.1371/journal.pone.0102618
dc.relation.referencesRambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2018). Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology, 67(5), 901. https://doi.org/10.1093/SYSBIO/SYY032
dc.relation.referencesRambo-Martin, B. L., Keller, M. W., Wilson, M. M., Nolting, J. M., Anderson, T. K., Vincent, A. L., Bagal, U. R., Jang, Y., Neuhaus, E. B., Davis, C. T., Bowman, A. S., Wentworth, D. E., & Barnes, J. R. (2020). Influenza A Virus Field Surveillance at a Swine-Human Interface. mSphere, 5(1). https://doi.org/10.1128/MSPHERE.00822-19/ASSET/43499F7B-FAE5-42D2-BBA4-4D2CB9F4741F/ASSETS/GRAPHIC/MSPHERE.00822-19-F0004.JPEG
dc.relation.referencesRamos, A. P., Herrera, B. A., Ramírez, O. V., García, A. A., Jiménez, M. M., Valdés, C. S., Fernández, A. G., González, G., Fernández, S. I. O., Báez, G. G., & Espinosa, B. H. (2013). Molecular and phylogenetic analysis of influenza A H1N1 pandemic viruses in Cuba, May 2009 to August 2010. International Journal of Infectious Diseases, 17(7), e565–e567. https://doi.org/10.1016/j.ijid.2013.01.028
dc.relation.referencesRogers’ And, G. N., & D’souz~, B. L. (1989). 322 Receptor Binding Properties of Human and Animal Hl Influenza Virus Isolates. En VIROLOGY (Vol. 173).
dc.relation.referencesŠali, A., & Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. Journal of molecular biology, 234(3), 779–815. https://doi.org/10.1006/JMBI.1993.1626
dc.relation.referencesSandbulte, M. R., Spickler, A. R., Zaabel, P. K., & Roth, J. A. (2015). Optimal Use of Vaccines for Control of Influenza A Virus in Swine. Vaccines 2015, Vol. 3, Pages 22-73, 3(1), 22–73. https://doi.org/10.3390/VACCINES3010022
dc.relation.referencesSchneider, R., Sharma, A. R., & Rai, A. (2008). Introduction to molecular dynamics. Lecture Notes in Physics, 739, 3–40. https://doi.org/10.1007/978-3-540-74686-7_1/COVER
dc.relation.referencesShen, M., & Sali, A. (2006). Statistical potential for assessment and prediction of protein structures. Protein Science : A Publication of the Protein Society, 15(11), 2507. https://doi.org/10.1110/PS.062416606
dc.relation.referencesSippl, M. J. (1993). Recognition of errors in three‐dimensional structures of proteins. Proteins: Structure, Function, and Bioinformatics, 17(4), 355–362. https://doi.org/10.1002/PROT.340170404/ABSTRACT
dc.relation.referencesSoundararajan, V., Tharakaraman, K., Raman, R., Raguram, S., Shriver, Z., Sasisekharan, V., & Sasisekharan, R. (2009). Extrapolating from sequence—the 2009 H1N1 “swine” influenza virus. Nature Biotechnology 2009 27:6, 27(6), 510–513. https://doi.org/10.1038/nbt0609-510
dc.relation.referencesSousa Da Silva, A. W., & Vranken, W. F. (2012). ACPYPE - AnteChamber PYthon Parser interfacE. BMC Research Notes, 5, 367. https://doi.org/10.1186/1756-0500-5-367
dc.relation.referencesStanley, W. M. (1944). THE SIZE OF INFLUENZA VIRUS. Journal of Experimental Medicine, 79(3), 267–283. https://doi.org/10.1084/JEM.79.3.267
dc.relation.referencesTafalla, M., Buijssen, M., Egine Geets, R., & Vonk Noordegraaf-Schouten, M. (2016). A comprehensive review of the epidemiology and disease burden of Influenza B in 9 European countries. Human Vaccines & Immunotherapeutics, 12. https://doi.org/10.1080/21645515.2015.1111494
dc.relation.referencesTamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38(7), 3022–3027. https://doi.org/10.1093/MOLBEV/MSAB120
dc.relation.referencesTaubenberger, J. K., & Morens, D. M. (2008). The Pathology of Influenza Virus Infections. https://doi.org/10.1146/annurev.pathmechdis.3.121806.154316.
dc.relation.referencesTorres, P. H. M., Sodero, A. C. R., Jofily, P., & Silva-Jr, F. P. (2019). Key topics in molecular docking for drug design. En International Journal of Molecular Sciences (Vol. 20, Número 18). MDPI AG. https://doi.org/10.3390/ijms20184574
dc.relation.referencesTramontano, A., & Morea, V. (2003). Assessment of Homology-Based Predictions in CASP5. Proteins: Structure, Function and Genetics, 53, 352–368. https://doi.org/Doi: 10.1002/prot.10543
dc.relation.referencesTse, H., Kao, R. Y. T., Wu, W. L., Lim, W. W. L., Chen, H., Yeung, M. Y., Woo, P. C. Y., Sze, K. H., & Yuen, K. Y. (2011). Structural basis and sequence co-evolution analysis of the hemagglutinin protein of pandemic influenza A/H1N1 (2009) virus, 236(8), 915–925. https://doi.org/10.1258/EBM.2011.010264
dc.relation.referencesTzarum, N., De Vries, R. P., Paulson, J. C., & Wilson, I. A. (2015). Structure and Receptor Binding of the Hemagglutinin from a Human H6N1 Influenza Virus. Cell Host & Microbe. https://doi.org/10.1016/j.chom.2015.02.005
dc.relation.referencesValdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). gmx_MMPBSA: A New Tool to Perform End-State Free Energy Calculations with GROMACS. Journal of chemical theory and computation, 17(10), 6281–6291. https://doi.org/10.1021/ACS.JCTC.1C00645
dc.relation.referencesVincent, A. L., Ma, W., Lager, K. M., Janke, B. H., & Richt, J. A. (2008). Chapter 3 Swine Influenza Viruses: A North American Perspective. Advances in Virus Research, 72, 127–154. https://doi.org/10.1016/S0065-3527(08)00403-X
dc.relation.referencesVyas, V. K., Ukawala, R. D., Ghate, M., & Chintha, C. (2012). Homology modeling a fast tool for drug discovery: Current perspectives. Indian Journal of Pharmaceutical Sciences, 74(1), 1–17. https://doi.org/10.4103/0250-474X.102537
dc.relation.referencesWang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/ACS.CHEMREV.9B00055/ASSET/IMAGES/MEDIUM/CR-2019-000558_0003.GIF
dc.relation.referencesWang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and Testing of a General Amber Force Field. En J Comput Chem (Vol. 25).
dc.relation.referencesWang, Y., Tang, C. Y., & Wan, X.-F. (2022). Antigenic characterization of influenza and SARS-CoV-2 viruses. Analytical and Bioanalytical Chemistry, 414, 3. https://doi.org/10.1007/s00216-021-03806-6
dc.relation.referencesWaterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., De Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/NAR/GKY427
dc.relation.referencesWaterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M., & Barton, G. J. (2009). Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics, 25(9), 1189–1191. https://doi.org/10.1093/BIOINFORMATICS/BTP033
dc.relation.referencesWatson, S. J., Langat, P., Reid, S. M., Lam, T. T.-Y., Cotten, M., Kelly, M., Reeth, K. Van, Qiu, Y., Simon, G., Bonin, E., Foni, E., Chiapponi, C., Larsen, L., Hjulsager, C., Markowska-Daniel, I., Urbaniak, K., Dürrwald, R., Schlegel, M., Huovilainen, A., … Kellam, P. (2015). Molecular Epidemiology and Evolution of Influenza Viruses Circulating within European Swine between 2009 and 2013. Journal of Virology, 89(19), 9920. https://doi.org/10.1128/JVI.00840-15
dc.relation.referencesWebster, R. G., & Govorkova, E. A. (2014). Continuing challenges in influenza. Annals of the New York Academy of Sciences, 1323(1), 115. https://doi.org/10.1111/NYAS.12462
dc.relation.referencesWennekes Tom. (2013). New Flu Vaccine? Drug Shuts Down Resistant Strains of Influenza Virus. https://www.medicaldaily.com/new-flu-vaccine-drug-shuts-down-resistant-strains-influenza-virus-244497
dc.relation.referencesWiederstein, M., & Sippl, M. J. (2007). ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407. https://doi.org/10.1093/NAR/GKM290
dc.relation.referencesXu, R., McBride, R., Nycholat, C. M., Paulson, J. C., & Wilson, I. A. (2012). Structural Characterization of the Hemagglutinin Receptor Specificity from the 2009 H1N1 Influenza Pandemic. Journal of Virology, 86(2), 982–990. https://doi.org/10.1128/JVI.06322-11
dc.relation.referencesYang, H., Carney, P., & Stevens, J. (2010). Structure and Receptor binding properties of a pandemic H1N1 virus hemagglutinin. PLoS Currents, 2(MAR). https://doi.org/10.1371/CURRENTS.RRN1152
dc.relation.referencesYasugi, M., Nakamura, S., Daidoji, T., Kawashita, N., Ramadhany, R., Yang, C. S., Yasunaga, T., Iida, T., Horii, T., Ikuta, K., Takahashi, K., & Nakaya, T. (2012). Frequency of D222G and Q223R Hemagglutinin Mutants of Pandemic (H1N1) 2009 Influenza Virus in Japan between 2009 and 2010. PLoS ONE, 7(2). https://doi.org/10.1371/JOURNAL.PONE.0030946
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembDinámica molecular
dc.subject.lembVariación genética
dc.subject.lembVirus de la influenza
dc.subject.proposalHA
dc.subject.proposalInfluenza virus
dc.subject.proposalInfluenza
dc.subject.proposalDiversidad genética
dc.subject.proposalDinámica molecular
dc.subject.proposalMutaciones
dc.subject.proposalDocking
dc.subject.proposalGenetic diversity
dc.subject.proposalMolecular dynamics
dc.subject.proposalMutations
dc.title.translatedComputational analysis of the hemagglutinin of pandemic lineage influenza A viruses in Colombia
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores
dc.description.curricularareaÁrea Curricular de Materiales y Nanotecnología
dc.contributor.orcid0009-0005-2830-908X


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito