Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorPatiño Ladino, Oscar Javier
dc.contributor.advisorPrieto Rodríguez, Juliet Angélica
dc.contributor.authorLozada Diaz, Yohum Steven
dc.date.accessioned2024-01-24T21:04:29Z
dc.date.available2024-01-24T21:04:29Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85430
dc.descriptionilustraciones, diagramas, figuras, fotografías
dc.description.abstractLa obesidad (OB) y la diabetes mellitus tipo 2 (DM2) son enfermedades sistémicas y crónicas que han alcanzado proporciones epidémicas a nivel mundial y constituyen un grave problema de salud pública, pues se encuentran entre las mayores causas de mortalidad y morbilidad. Estas dos patologías tienen estrecha relación a tal punto que el término "diabesidad" se ha empezado a utilizar para poner de manifiesto su interdependencia. Un enfoque que ha tomado relevancia para el control de la OB y DM2 involucra la inhibición de enzimas relacionadas con el metabolismo de carbohidratos y lípidos, como lipasa pancreática (LP), α-glucosidasa (AG) y α-amilasa (AA). En este sentido, la especie Neurolaena lobata (L.) R.Br. ex Cas, ampliamente empleada en diferentes partes del mundo para el tratamiento de OB y DM2, siendo una especie interesante para la búsqueda de inhibidores de AG, AA y LP. La presente investigación contribuye a la búsqueda de moléculas con potencial inhibitorio multidiana frente a LP, AA y AG a partir del estudio a partir de sustancias de origen natural. La metodología incluyó el estudio fitoquímico biodirigido del extracto hidroalcohólico de hojas de N. lobata para aislar e identificar los compuestos con potencial inhibidor sobre las enzimas diana de interés y determinar su efecto citotóxico sobre dos líneas celulares: BHK-21 y MRC-5. Adicionalmente, se realizó una caracterización química y biológica de las preparaciones tradicionales más empleadas de N. lobata en el pacífico colombiano para determinar si dichos extractos tienen la capacidad de inhibir las enzimas de interés y contienen los metabolitos bioactivos identificados. Finalmente, se determinaron los mecanismos de inhibición enzimática sobre LP, AA y AG de los compuestos bioactivos provenientes de N. lobata y algunos compuestos relacionados para establecer algunas relaciones preliminares de estructura-actividad. El estudio químico biodirigido permitió determinar que en las fracciones de AcOMe e iPrOH se concentra la actividad inhibitoria sobre las enzimas digestivas. A partir de estas fracciones se logró el aislamiento e identificación de dos sesquiterpenlactonas (neurolenina B C1 y lobatina A C2), dos derivados de ácido benzoico (ácido p-hidroxibenzoico C3 y ácido 3,4-dihidroxibenzoico C4) y dos flavonoides (5,6,4´-tetrahidroxi-3,7- dimetoxiflavonol C5 y 5,6,3´,4´-tetrahidroxi-3,7-dimetoxiflavonol C6). Los compuestos C1, C2, C5 y C6 demostraron ser inhibidores de LP y AG, con valores de CI50 entre 615 y 134 µM sobre LP y entre 639 y 170 μM sobre AG. Los compuestos C1 a C6 mostraron una actividad inhibidora débil sobre la enzima AA, con porcentajes de inhibición inferiores al 15%. Los estudios de citotoxicidad del extracto, las fracciones y compuestos bioactivos mostraron que el extracto HA y las fracciones de AcOMe e iPrOH presentaron una toxicidad moderada (viabilidad celular > 50%) con todas las concentraciones evaluadas sobre la línea celular MRC-5, mientras que sobre la línea BHK-21 el extracto también fue moderadamente tóxico y las fracciones fueron altamente tóxicas a la máxima concentración causando una mortalidad celular superior al 70%. Los compuestos C5 y C6 fueron altamente tóxicos sobre la línea celular BHK-21 causando mortalidades superiores al 62% con todas las concentraciones evaluadas, mientras que sobre la línea celular MRC-5 la toxicidad fue entre baja y moderada, siendo el compuesto C6 el menos tóxico sobre esta línea celular. Los resultados de la caracterización química y biológica de las preparaciones tradicionales (PT) de N. lobata mostraron que el extracto hidroalcohólico obtenido presentó un mejor perfil de actividad inhibitoria sobre las tres enzimas de interés comparado con las PT, sin embargo, se encontró que las PT obtenidas a partir hojas frescas fueron las únicas que inhibieron las tres enzimas de interés. Respecto a la presencia de los compuestos bioactivos en las PT, se encontró que el compuesto C1 está presente en todas las PT, tanto de hojas frescas como de hojas secas, mientras que los compuestos C5 y C6 solo pudieron ser detectados en las PT provenientes de hojas secas. Los resultados de los estudios de actividad enzimática de los compuestos bioactivos y compuestos relacionados indican que para que los compuestos de tipo sesquiterpenlactona estudiados inhiban la actividad catalítica de las enzimas AG y LP se requiere la presencia de grupos éster en las posiciones 9 y 8 del anillo lactónico, además estas sustancias se comportaron como inhibidores competitivos sobre las dos enzimas. En el caso de los flavonoides se encuentra que los compuestos de tipo flavanona no son capaces de inhibir ninguna de las enzimas, haciéndose evidente la importancia de la insaturación entre los carbonos 2 y 3 del núcleo flavonoide para ejercer efectos inhibitorios cobre las tres enzimas de interés. La mayoría de los flavonoides inhibidores de las enzimas se comportaron como inhibidores de tipo competitivo o mixto sobre AA, AG y/o LP. De los compuestos estudiados, solo C18 y C19 lograron inhibir la actividad catalítica de las tres enzimas digestivas, mientras que los compuestos C1, C2, C5 y C6 solo lograron inhibir AG y LP. (Texto tomado de la fuente)
dc.description.abstractObesity (OB) and type 2 diabetes mellitus (T2DM) are systemic and chronic diseases that have reached epidemic proportions globally and constitute a serious public health problem, as they are among the leading causes of mortality and morbidity. These two pathologies are closely related to the extent that the term "diabesity" has started to be used to highlight their interdependence. An approach that has gained relevance for the control of OB and T2DM involves the inhibition of enzymes related to carbohydrate and lipid metabolism, such as pancreatic lipase (PL), α-glucosidase (AG), and α-amylase (AA). In this regard, the species Neurolaena lobata (L.) R.Br. ex Cas, widely used in different parts of the world for the treatment of OB and T2DM, is an interesting species for the search for inhibitors of AG, AA, and PL. This research contributes to the search for molecules with potential multi-target inhibitory activity against PL, AA, and AG by studying substances of natural origin. The methodology included the bio-guided phytochemical study of the hydroalcoholic extract of N. lobata leaves to isolate and identify compounds with potential inhibitory effects on the target enzymes of interest and to determine their cytotoxic effect on two cell lines: BHK-21 and MRC-5. Additionally, a chemical and biological characterization of the most commonly used traditional preparations of N. lobata in the Colombian Pacific region was performed to determine if these extracts have the ability to inhibit the enzymes of interest and contain the identified bioactive metabolites. Finally, the mechanisms of enzymatic inhibition on PL, AA, and AG by bioactive compounds from N. lobata and some related compounds were determined to establish preliminary structure-activity relationships. The bio-guided chemical study revealed that the AcOMe and iPrOH fractions concentrate the inhibitory activity on the digestive enzymes. From these fractions, the isolation and identification of two sesquiterpene lactones (neurolenin B C1 and lobatin A C2), two benzoic acid derivatives (p-hydroxybenzoic acid C3 and 3,4-dihydroxybenzoic acid C4), and two flavonoids (5,6,4'-trihydroxy-3,7-dimethoxyflavonol C5 and 5,6,3',4'-trihydroxy-3,7-dimethoxyflavonol C6) were achieved. Compounds C1, C2, C5, and C6 demonstrated inhibitory effects on PL and AG, with IC50 values between 615 and 134 µM on PL and between 639 and 170 μM on AG. Compounds C1 to C6 showed weak inhibitory activity on AA, with inhibition percentages below 15%. Cytotoxicity studies of the extract, fractions, and bioactive compounds showed that the HA extract and the AcOMe and iPrOH fractions exhibited moderate toxicity (cell viability > 50%) at all evaluated concentrations on the MRC-5 cell line, while on the BHK-21 cell line, the extract was also moderately toxic, and the fractions were highly toxic at the maximum concentration, causing cellular mortality of over 70%. Compounds C5 and C6 were highly toxic on the BHK-21 cell line, causing mortalities above 62% at all evaluated concentrations, while their toxicity on the MRC-5 cell line ranged from low to moderate, with compound C6 being the least toxic on this cell line. The results of the chemical and biological characterization of the traditional preparations (TP) of N. lobata showed that the hydroalcoholic extract exhibited a better profile of inhibitory activity on the three enzymes of interest compared to the TP. However, it was found that the TP obtained from fresh leaves were the only ones that inhibited the three enzymes of interest. Regarding the presence of bioactive compounds in the TP, it was found that compound C1 is present in all TPs, both from fresh and dried leaves, while compounds C5 and C6 could only be detected in TPs from dried leaves. The results of the enzymatic activity studies of the bioactive compounds and related compounds indicate that for the studied sesquiterpene lactone compounds to inhibit the catalytic activity of AG and PL, the presence of ester groups at positions 9 and 8 of the lactone ring is required. Furthermore, these substances behaved as competitive inhibitors on both enzymes. In the case of flavonoids, it was found that flavanone-type compounds are not capable of inhibiting any of the enzymes, highlighting the importance of unsaturation between carbons 2 and 3 of the flavonoid nucleus to exert inhibitory effects on all three enzymes of interest. Most of the enzyme-inhibiting flavonoids acted as competitive or mixed inhibitors on AA, AG, and/or PL. Among the studied compounds, only C18 and C19 managed to inhibit the catalytic activity of all three digestive enzymes, while compounds C1, C2, C5, and C6 only managed to inhibit AG and PL.
dc.format.extent153 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc540 - Química y ciencias afines
dc.subject.ddc570 - Biología::572 - Bioquímica
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéutica
dc.titleBúsqueda de moléculas de origen natural con acción multidiana sobre enzimas pancreáticas digestivas: α-Glucosidasa, α-Amilasa y Lipasa pancreática
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Química
dc.contributor.researchgroupQuímica de Productos Naturales Vegetales Bioactivos (QuiProNaB)
dc.contributor.researchgroupGrupo de Investigación Fitoquímica Universidad Javeriana (GIFUJ)
dc.coverage.countryColombia
dc.coverage.regionPacífico (Región)
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Química
dc.description.researchareaQuímica de Productos Naturales
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAbdullah, Nur Hakimah et al. 2016. “Chemical Constituents of Malaysian U. Cordata Var. Ferruginea and Their in Vitro α-Glucosidase Inhibitory Activities.” Molecules 2016, Vol. 21, Page 525 21(5): 525. https://www.mdpi.com/1420-3049/21/5/525/htm (March 8, 2023)
dc.relation.referencesAbuelizz, Hatem A. et al. 2019. “Triazoloquinazolines as a New Class of Potent α-Glucosidase Inhibitors: In Vitro Evaluation and Docking Study.” PLoS ONE 14(8).
dc.relation.referencesAlbayati, Samah Hashim et al. 2020. “Main Structural Targets for Engineering Lipase Substrate Specificity.” Catalysts 10(7).
dc.relation.referencesAllen, Lindsay P. et al. 2023. “Plant Medicine Usage of People Living with Type 2 Diabetes Mellitus in Belize: A Qualitative Exploratory Study.” PloS one 18(8): e0289212. https://pubmed.ncbi.nlm.nih.gov/37535596/ (August 15, 2023).
dc.relation.referencesAndrade-Cetto, Adolfo, Elda Carola Cruz, Christian Alan Cabello-Hernández, and René Cárdenas-Vázquez. 2019a. “Hypoglycemic Activity of Medicinal Plants Used among the Cakchiquels in Guatemala for the Treatment of Type 2 Diabetes.” Evidence-based Complementary and Alternative Medicine : eCAM 2019. /pmc/articles/PMC6332994/ (March 13, 2023).
dc.relation.referencesAnitha Gopal, B., and G. Muralikrishna. 2009. “Porcine Pancreatic -Amylase and Its Isoforms: Purification and Kinetic Studies.” International Journal of Food Properties 12(3).
dc.relation.referencesArrijal, Imam Malikul Hadi, Burhan Ma’arif, and Arief Suryadinata. 2018. “ACTIVITY OF ETHYL ACETATE EXTRACT FROM Chrysophyllum Cainito L. LEAVES IN DECREASING BLOOD SUGAR LEVEL IN MALE WISTAR RATS.” Journal of Islamic Pharmacy 3(1).
dc.relation.referencesAsano, Naoki. 2005. “Naturally Occurring Iminosugars and Related Compounds: Structure, Distribution, and Biological Activity.” Current Topics in Medicinal Chemistry 3(5). Aschner, P. 2010. “Epidemiología de La Diabetes En Colombia.” Avances en Diabetología 26(2): 95–100.
dc.relation.referencesAtlas de diabetes de la FID 2021. 2021. “No Title Atlas de Diabetes de La FID.” 10th edition. https://diabetesatlas.org/atlas/tenth-edition/ (February 2, 2023).
dc.relation.referencesAwosika, Temitola O., and Rotimi E. Aluko. 2019. “Inhibition of the in Vitro Activities of α-Amylase, α-Glucosidase and Pancreatic Lipase by Yellow Field Pea (Pisum Sativum L.) Protein Hydrolysates.” International Journal of Food Science & Technology 54(6): 2021–34. https://onlinelibrary.wiley.com/doi/full/10.1111/ijfs.14087 (February 17, 2023).
dc.relation.referencesBailey, Clifford J., and Caroline Day. 2004. “Metformin: Its Botanical Background.” Practical Diabetes International 21(3): 115–17. https://onlinelibrary.wiley.com/doi/full/10.1002/pdi.606 (March 12, 2023).
dc.relation.referencesBalslev, Henrik et al. 2008. “Enciclopedia de Las Plantas Útiles Del Ecuador (Con Extracto de Datos).” : 1–3. https://scholarspace.manoa.hawaii.edu/bitstreams/b80ee8d6-b073-4788-b63e-176042ec952d/download (August 22, 2023).
dc.relation.referencesBan, Ju Yeon et al. 2007. “3,4-Dihydroxybenzoic Acid from Smilacis Chinae Rhizome Protects Amyloid β Protein (25-35)-Induced Neurotoxicity in Cultured Rat Cortical Neurons.” Neuroscience Letters 420(2).
dc.relation.referencesBandara, Subhani, Shelby Devereaux, and Aruna Weerasooriya. 2023. “Methods to Evaluate the Antiobesity Effects of Medicinal Plants Using Enzyme Assays.” Obesities 3(1).
dc.relation.referencesBarrett, J. S. et al. 2022. “High Intramuscular Triglyceride Turnover Rates and the Link to Insulin Sensitivity: Influence of Obesity, Type 2 Diabetes and Physical Activity.” Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme 47(4): 343–56. https://pubmed.ncbi.nlm.nih.gov/35061523/ (August 13, 2023).
dc.relation.referencesBatista, Mateus Alves et al. 2022. “Potential of the Compounds from Bixa Orellana Purified Annatto Oil and Its Granules (Chronic®) against Dyslipidemia and Inflammatory Diseases: In Silico Studies with Geranylgeraniol and Tocotrienols.” Molecules 27(5).
dc.relation.referencesBirari, Rahul B., and Kamlesh K. Bhutani. 2007. “Pancreatic Lipase Inhibitors from Natural Sources: Unexplored Potential.” Drug Discovery Today 12(19–20): 879–89.
dc.relation.referencesBischoff, H. 1994. “Pharmacology of Alpha-Glucosidase Inhibition.” European journal of clinical investigation 24 Suppl 3.
dc.relation.referencesBlair, Silvia., and Beatriz. Madrigal Calle. 2005. “Plantas Antimaláricas de Tumaco : Costa Pacífica Colombiana.” : 347.
dc.relation.referencesBlair, Silvia et al. 2002. “Antimalarial Activity of Neurolenin B and Derivates of Eupatorium Inulaefolium (Asteraceae).” Pharmazie 57(6).
dc.relation.referencesBonesi, Marco et al. 2018. “Exploring the Anti-Proliferative, pro-Apoptotic, and Antioxidant Properties of Santolina Corsica Jord. & Fourr. (Asteraceae).” Biomedicine and Pharmacotherapy 107(August): 967–78.
dc.relation.referencesBouyahya, Abdelhakim et al. 2021. “Moroccan Antidiabetic Medicinal Plants: Ethnobotanical Studies, Phytochemical Bioactive Compounds, Preclinical Investigations, Toxicological Validations and Clinical Evidences; Challenges, Guidance and Perspectives for Future Management of Diabetes Worldw.” Trends in Food Science & Technology 115: 147–254.
dc.relation.referencesBuchholz, Tina, and Matthias F. Melzig. 2016. “Medicinal Plants Traditionally Used for Treatment of Obesity and Diabetes Mellitus - Screening for Pancreatic Lipase and α-Amylase Inhibition.” Phytotherapy Research 30(2).
dc.relation.referencesBujjirao, Gude, and P K Ratna Kumar. 2013. “Anti-Obese Therapeutics From Medicinal Plants-a Review.” International Jornal of Bioassays 02(10)
dc.relation.referencesCáceres, Armando et al. 1998. “Plants Used in Guatemala for the Treatment of Protozoal Infections. I. Screening of Activity to Bacteria, Fungi and American Trypanosomes of 13 Native Plants.” Journal of Ethnopharmacology 62(3).
dc.relation.referencesCai, Chao Yun et al. 2017. “Analogues of Xanthones——Chalcones and Bis-Chalcones as α-Glucosidase Inhibitors and Anti-Diabetes Candidates.” European Journal of Medicinal Chemistry 130: 51–59.
dc.relation.referencesCalderón, Ángela I. et al. 2006. “Screening of Latin American Plants for Cytotoxic Activity.” Pharmaceutical Biology 44(2).
dc.relation.referencesChen, H C et al. 1995. “Active Compounds from Saussurea Lappa Clarks That Suppress Hepatitis B Virus Surface Antigen Gene Expression in Human Hepatoma Cells.” Antiviral research 27(1–2): 99–109.
dc.relation.referencesCheng, Chung Wah et al. 2017. “CONSORT Extension for Chinese Herbal Medicine Formulas 2017: Recommendations, Explanation, and Elaboration (Traditional Chinese Version).” Annals of internal medicine 167(2): W7–20.
dc.relation.referencesChinchilla-Carmona, Misael et al. 2011. “Evaluación in Vivo de La Actividad Antimalárica de 25 Plantas Provenientes de Una Reserva de Conservación Biológica de Costa Rica.” Revista Chilena de Historia Natural 84(1): 115–23.
dc.relation.referencesChinsembu, Kazhila C. 2019. “Diabetes Mellitus and Nature’s Pharmacy of Putative Antidiabetic Plants.” Journal of Herbal Medicine 15.
dc.relation.referencesChoi, Jun Hui, and Seung Kim. 2022. “In Vitro Antithrombotic, Hematological Toxicity, and Inhibitor Studies of Protocatechuic, Isovanillic, and p-Hydroxybenzoic Acids from Maclura Tricuspidata (Carr.) Bur.” Molecules 2022, Vol. 27, Page 3496 27(11): 3496. https://www.mdpi.com/1420-3049/27/11/3496/htm (August 20, 2023).
dc.relation.referencesClavijo, Briggyth Katherine Rojas, María Angélica Castillo Celis, and Johanna Marcela Moscoso Gama. 2019. “Inhibidores de La Lipasa Pancreática Como Alternativa de Tratamiento Frente a La Obesidad.” Medicina e Investigación Universidad Autónoma del Estado de México 7(2): 17–24. https://medicinainvestigacion.uaemex.mx/article/view/18914 (March 5, 2023).
dc.relation.referencesCodario, Ronald A. 2011. Type 2 Diabetes, Pre-Diabetes, and the Metabolic Syndrome Type 2 Diabetes, Pre-Diabetes, and the Metabolic Syndrome.
dc.relation.referencesCopyright de Worthington Biochemical Corp. 1993. “Worthington Enzyme Manual.” Crujeiras, Ana B. et al. 2015. “Leptin Resistance in Obesity: An Epigenetic Landscape.” Life Sciences 140.
dc.relation.referencesCruz, Elda Carola, and Adolfo Andrade-Cetto. 2015. “Ethnopharmacological Field Study of the Plants Used to Treat Type 2 Diabetes among the Cakchiquels in Guatemala.” Journal of Ethnopharmacology 159: 238–44.
dc.relation.referencesDaneschvar, Homayoun L., Mark D. Aronson, and Gerald W. Smetana. 2016. “FDA-Approved Anti-Obesity Drugs in the United States.” American Journal of Medicine 129(8).
dc.relation.referencesDieseldorff, Nathalia Granados. 2007. “Clínicas Odontológicas de Norteamérica: Sobredentaduras Parciales Removibles / Dir. Ivan McDermontt ; Tr. José A. Ramos Tercero.--.” : 72. https://biblioteca-farmacia.usac.edu.gt/library/index.php?title=331&query=@title=Special:GSMSearchPage@process=@field1=autores@value1=GRANADOS DIESELDORFF, NATHALIA @mode=advanced&recnum=1 (August 12, 2023).
dc.relation.referencesDirir, Amina M., Marianne Daou, Ahmed F. Yousef, and Lina F. Yousef. 2022. “A Review of Alpha-Glucosidase Inhibitors from Plants as Potential Candidates for the Treatment of Type-2 Diabetes.” Phytochemistry Reviews 21(4).
dc.relation.referencesDoan, Hau Van, Siriporn Riyajan, Roongtip Iyara, and Nuannoi Chudapongse. 2018. “Antidiabetic Activity, Glucose Uptake Stimulation and α-Glucosidase Inhibitory Effect of Chrysophyllum Cainito L. Stem Bark Extract.” BMC Complementary and Alternative Medicine 18(1).
dc.relation.referencesDurmaz, Lokman. 2021. “Antioxidant, Antiepileptic, and Anticholinergic Properties of 4′,5,7-Trihydroxy-3,6-Dimethoxyflavone as Natural Phenolic Compound: A Toxicology Approach.” Toxin Reviews 40(3).
dc.relation.referencesEkanem, A. P., M. Wang, J. E. Simon, and D. A. Moreno. 2007. “Antiobesity Properties of Two African Plants (Afromomum Meleguetta and Spilanthes Acmella) by Pancreatic Lipase Inhibition.” Phytotherapy Research 21(12).
dc.relation.referencesElekofehinti, Olusola Olalekan. 2015. “Saponinas: Principios Antidiabéticos de Plantas Medicinales - Una Revisión.” Pathophysiology 22(2): 95–103.
dc.relation.referencesEliza, J., P. Daisy, S. Ignacimuthu, and V. Duraipandiyan. 2009. “Antidiabetic and Antilipidemic Effect of Eremanthin from Costus Speciosus (Koen.)Sm., in STZ-Induced Diabetic Rats.” Chemico-Biological Interactions 182(1): 67–72.
dc.relation.referencesEwa, MŁodzinska. 2009. “Survey of Plant Pigments: Molecular and Environmental Determinants of Plant Colors.” Acta Biologica Cracoviensia Series Botanica 51(1).
dc.relation.referencesEzebuiro, V. et al. 2022. “Optimization of α-Amylase Production by Enterobacter Cloacae Strain D1 Isolated from Cassava Effluent-Impacted Soil Using Response Surface Methodology.” Asian Journal of Biotechnology and Bioresource Technology.
dc.relation.referencesFarias Paiva de Lucena, Reinaldo, and Denise Dias da Cruz. “Ethnobotany of the Mountain Regions of Brazil.”
dc.relation.referencesFrançois, Guido et al. 2004. “Evaluación in Vivo de La Actividad Antimalárica de 25 Plantas Provenientes de Una Reserva de Conservación Biológica de Costa Rica.” Revista Chilena de Historia Natural 18(1): 184–86.
dc.relation.referencesrançois, Guido, Claus M. Passreiter, Herman J. Woerdenbag, and Marleen Van Looveren. 1996. “Antiplasmodial Activities and Cytotoxic Effects of Aqueous Extracts and Sesquiterpene Lactones from Neurolaena Iobata.” Planta Medica 62(2): 126–29. http://www.thieme-connect.de/DOI/DOI?10.1055/s-2006-957833 (February 18, 2023).
dc.relation.referencesG., Luis Fernando Ospina, and Roberto Pinzón Serrano. 1995. “PLANTAS USADAS COMO ANTIDIABETICAS EN LA MEDICINA POPULAR COLOMBIANA.” Revista Colombiana de Ciencias Químico-Farmacéuticas 23(1).
dc.relation.referencesGarayev, Elnur et al. 2017. “New Sesquiterpene Acid and Inositol Derivatives from Inula Montana L.” Fitoterapia 120.
dc.relation.referencesGenovese, Massimo, Ilaria Nesi, Anna Caselli, and Paolo Paoli. 2021. “Natural α-Glucosidase and Protein Tyrosine Phosphatase 1B Inhibitors: A Source of Scaffold Molecules for Synthesis of New Multitarget Antidiabetic Drugs.” Molecules 2021, Vol. 26, Page 4818 26(16): 4818. https://www.mdpi.com/1420-3049/26/16/4818/htm (August 13, 2023).
dc.relation.referencesGhani, Usman. 2015. “Re-Exploring Promising α-Glucosidase Inhibitors for Potential Development into Oral Anti-Diabetic Drugs: Finding Needle in the Haystack.” European Journal of Medicinal Chemistry 103: 133–62.
dc.relation.referencesGomes, José Hugo de Sousa et al. 2021. “Polyphenol-Rich Extract and Fractions of Terminalia Phaeocarpa Eichler Possess Hypoglycemic Effect, Reduce the Release of Cytokines, and Inhibit Lipase, α-Glucosidase, and α-Amilase Enzymes.” Journal of Ethnopharmacology 271: 113847.
dc.relation.referencesGonzález, Jorge, Jairo Rodríguez, and Alberto Del Monte. 2010. “Lipases: Enzymes Having the Potential for Developing Immobilised Biocatalysts by Interfacial Adsorption.” Rev. Colomb. Biotecnol 1.
dc.relation.referencesGopal, B. Anitha, Sridevi A. Singh, and G. Muralikrishna. 2008. “Porcine Pancreatic Alpha Amylase and Its Isoforms-Effect of Deglycosylation by Peptide-N-Glycosidase F.” International Journal of Biological Macromolecules 43(2).
dc.relation.referencesGracioso, J. S., C. A. Hiruma-Lima, and A. R.M. Souza Brito. 2000. “Antiulcerogenic Effect of a Hydroalcoholic Extract and Its Organic Fractions of Neurolaena Lobata (L.) R.BR.” Phytomedicine 7(4): 283–89.
dc.relation.referencesGupta, Mahabir P., Nilka G. Solis, Mario Esposito Avella, and Ceferino Sanchez. 1984a. “Hypoglycemic Activity of Neurolaena Lobata (L.) R. Br.” Journal of Ethnopharmacology 10(3): 323–27
dc.relation.referencesGupta, Mahabir, Isabel Santana, and Alex Espinosa. 1905. “Libro de Plantas Medicinales de Panamá.” Rev Farmacol 45: 115–45.
dc.relation.referencesGupta, Rani, Pooja Rathi, Namita Gupta, and Sapna Bradoo. 2003. “Lipase Assays for Conventional and Molecular Screening: An Overview.” Biotechnology and Applied Biochemistry 37(1)
dc.relation.referencesHabtemariam, Solomon, and George Kabakasseril Varghese. 2017. “Antioxidant, Anti-Alpha-Glucosidase and Pancreatic Beta-Cell Protective Effects of Methanolic Extract of Ensete Superbum Cheesm Seeds.” Asian Pacific Journal of Tropical Biomedicine 7(2).
dc.relation.referencesHamdani, Syeda Shamila et al. 2020. “Synthesis, Crystal Structures, Computational Studies and α-Amylase Inhibition of Three Novel 1,3,4-Oxadiazole Derivatives.” Journal of Molecular Structure 1200.
dc.relation.referencesHan, Xue et al. 2022. “P-Hydroxybenzoic Acid Ameliorates Colitis by Improving the Mucosal Barrier in a Gut Microbiota-Dependent Manner.” Nutrients 14(24): 5383. https://www.mdpi.com/2072-6643/14/24/5383/htm (August 20, 2023).
dc.relation.referencesHanh, Tran Thi Hong, Nguyen Hai Dang, and Nguyen Tien Dat. 2016. “α -Amylase and α -Glucosidase Inhibitory Saponins from Polyscias Fruticosa Leaves.” Journal of Chemistry 2016.
dc.relation.referencesHriscu, Monica, Laura Chiş, Monica Toşa, and Florin Dan Irimie. 2013. “PH-Profiling of Thermoactive Lipases and Esterases: Caveats and Further Notes.” European Journal of Lipid Science and Technology 115(5).
dc.relation.referencesHuo, Peng Chao et al. 2021. “Design, Synthesis and Biological Evaluation of Novel Chalcone-like Compounds as Potent and Reversible Pancreatic Lipase Inhibitors.” Bioorganic & Medicinal Chemistry 29: 115853.
dc.relation.referencesJensen, Michael D. et al. 2014. “2013 AHA/ACC/TOS Guideline for the Management of Overweight and Obesity in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Obesity Society.” Circulation 129(25 SUPPL. 1).
dc.relation.referencesJensen, Robert G., Felice A. DeJong, and Richard M. Clark. 1983. “Determination of Lipase Specificity.” Lipids 18(3).
dc.relation.referencesJerbi, Amel, Amal Derbali, Abdelfatteh Elfeki, and Majed Kammoun. 2017. “Essential Oil Composition and Biological Activities of Eucalyptus Globulus Leaves Extracts from Tunisia.” Journal of Essential Oil-Bearing Plants 20(2).
dc.relation.referencesJiao, Ping et al. 2014. “Lipase Inhibition and Antiobesity Effect of Atractylodes Lancea.” Planta Medica 80(7).
dc.relation.referencesKarale, Pushpa, S. C. Dhawale, and M. A. Karale. 2022. “Quantitative Phytochemical Profile, Antioxidant and Lipase Inhibitory Potential of Leaves of Momordica Charantia L. and Psoralea Corylifolia L.” Indian Journal of Pharmaceutical Sciences 84(1).
dc.relation.referencesKashtoh, Hamdy, and Kwang Hyun Baek. 2022. “Recent Updates on Phytoconstituent Alpha-Glucosidase Inhibitors: An Approach towards the Treatment of Type Two Diabetes.” Plants 2022, Vol. 11, Page 2722 11(20): 2722. https://www.mdpi.com/2223-7747/11/20/2722/htm (May 24, 2023).
dc.relation.referencesKaur, Baljinder, Santosh Kumar, and Brajesh Kumar Kaushik. 2022. “Recent Advancements in Optical Biosensors for Cancer Detection.” Biosensors and Bioelectronics 197.
dc.relation.referencesKaur, Navjot et al. 2021. “Alpha-Amylase as Molecular Target for Treatment of Diabetes Mellitus: A Comprehensive Review.” Chemical Biology & Drug Design 98(4): 539–60. https://europepmc.org/article/MED/34173346 (March 5, 2023).
dc.relation.referencesKerr, K. M., T. J. Mabry, and S. Yoser. 1981. “6-Hydroxy- and 6-Methoxyflavonoids from Neurolaena Lobata and N. Macrocephala.” Phytochemistry 20(4): 791–94.
dc.relation.referencesKim, Jang Hoon et al. 2020. “An Investigation of the Inhibitory Mechanism of α-Glucosidase by Chysalodin from Aloe Vera.” International Journal of Biological Macromolecules 147: 314–18.
dc.relation.referencesKiss, Izabella et al. 2015. “Lobatin B Inhibits NPM/ALK and NF-ΚB Attenuating Anaplastic-Large-Cell-Lymphomagenesis and Lymphendothelial Tumour Intravasation.” Cancer Letters 356(2).
dc.relation.referencesKlein, Samuel, Amalia Gastaldelli, Hannele Yki-Järvinen, and Philipp E. Scherer. 2022. “Why Does Obesity Cause Diabetes?” Cell Metabolism 34(1): 11–20. http://www.cell.com/article/S1550413121006318/fulltext (August 13, 2023).
dc.relation.referencesKooti, Wesam et al. 2016. “The Role of Medicinal Plants in the Treatment of Diabetes: A Systematic Review.” Electronic physician 8(1).
dc.relation.referencesKovács, Tibor et al. 2023. “Isolation and NMR Scaling Factors for the Structure Determination of Lobatolide H, a Flexible Sesquiterpene from Neurolaena Lobata †.” International Journal of Molecular Sciences 24(6)
dc.relation.referencesKrogerus, Kristoffer, Tuulikki Seppänen-Laakso, Sandra Castillo, and Brian Gibson. 2017. “Inheritance of Brewing-Relevant Phenotypes in Constructed Saccharomyces Cerevisiae×Saccharomyces Eubayanus Hybrids.” Microbial Cell Factories 16(1).
dc.relation.referencesKumar, Ashwani, and Shilpi Chauhan. 2021. “Pancreatic Lipase Inhibitors: The Road Voyaged and Successes.” Life Sciences 271.
dc.relation.referencesKumashiro, Naoki et al. 2011. “Cellular Mechanism of Insulin Resistance in Nonalcoholic Fatty Liver Disease.” Proceedings of the National Academy of Sciences of the United States of America 108(39): 16381–85. https://www.pnas.org/doi/abs/10.1073/pnas.1113359108 (March 12, 2023).
dc.relation.referencesLaakso, Markku, and Johanna Kuusisto. 2014. “Insulin Resistance and Hyperglycaemia in Cardiovascular Disease Development.” Nature reviews. Endocrinology 10(5): 293–302.
dc.relation.referencesLajter, Ildikó et al. 2014. “Sesquiterpenes from Neurolaena Lobata and Their Antiproliferative and Anti-Inflammatory Activities.” Journal of Natural Products 77(3): 576–82. https://pubs.acs.org/doi/full/10.1021/np400834c (February 17, 2023).
dc.relation.referencesLankatillake, Chintha et al. 2021. “Screening Natural Product Extracts for Potential Enzyme Inhibitors: Protocols, and the Standardisation of the Usage of Blanks in α-Amylase, α-Glucosidase and Lipase Assays.” Plant Methods 17(1): 1–19. https://plantmethods.biomedcentral.com/articles/10.1186/s13007-020-00702-5 (March 5, 2023)
dc.relation.referencesLankatillake, Chintha, Tien Huynh, and Daniel A. Dias. 2019. “Understanding Glycaemic Control and Current Approaches for Screening Antidiabetic Natural Products from Evidence-Based Medicinal Plants.” Plant Methods 15(1).
dc.relation.referencesLapertosa S, Fernanda, Aquino, Natalia Aráoz, Silvana Fernández. 2010. “Prevalencia de Enfermedad Coronaria En Pacientes Con Diabetes Mellitus Tipo Ii.” Revista de Posgrado de la VIa Cátedra de Medicina 200(August 2003): 4–9.
dc.relation.referencesLee, Hana, and Junsoo Lee. 2021. “Anti-Diabetic Effect of Hydroxybenzoic Acid Derivatives in Free Fatty Acid-Induced HepG2 Cells via MiR-1271/IRS1/PI3K/AKT/FOXO1 Pathway.” Journal of Food Biochemistry 45(12).
dc.relation.referencesLehoczki, Gábor, Lili Kandra, and Gyöngyi Gyémánt. 2018. “The Use of Starch Azure for Measurement of Alpha-Amylase Activity.” Carbohydrate Polymers 183.
dc.relation.referencesLévuok, Kevin Prince. 2016. “Búsqueda de Inhibidores de Las Enzimas Digestivas α-Glucosidasa, α-Amilasa y Lipasa Pancreática a Partir Del Extracto Hidroalcohólico y El Aceite Esencial Obtenido de La Corteza de Vismia Macrophylla Kunth (Hypericaceae).” : 191.
dc.relation.referencesLi, Ke et al. 2018. “Inhibitory Effects against α-Glucosidase and α-Amylase of the Flavonoids-Rich Extract from Scutellaria Baicalensis Shoots and Interpretation of Structure–Activity Relationship of Its Eight Flavonoids by a Refined Assign-Score Method.” Chemistry Central Journal 12(1): 1–11. https://bmcchem.biomedcentral.com/articles/10.1186/s13065-018-0445-y (May 24, 2023).
dc.relation.referencesLi, Mang Mang et al. 2023. “Structure-Activity Relationship of Dietary Flavonoids on Pancreatic Lipase.” Current Research in Food Science 6: 100424.
dc.relation.referencesLi, Xican, Xiaozhen Wang, Dongfeng Chen, and Shuzhi Chen. 2011. “Antioxidant Activity and Mechanism of Protocatechuic Acid in Vitro.” Functional Foods in Health and Disease 1(7).
dc.relation.referencesLin, Hsiang-Ru. 2012. “Sesquiterpene Lactones from Tithonia Diversifolia Act as Peroxisome Proliferator-Activated Receptor Agonists.” Bioorganic & medicinal chemistry letters 22(8): 2954–58.
dc.relation.referencesLiu, Song et al. 2013. “Inhibition of Pancreatic Lipase, α-Glucosidase, α-Amylase, and Hypolipidemic Effects of the Total Flavonoids from Nelumbo Nucifera Leaves.” Journal of Ethnopharmacology 149(1): 263–69.
dc.relation.referencesLópez-Martínez, Leticia X., Luisa M. Aguilar Cisneros, and Octavio Dublán-García. 2014. “Actividad Antioxidante e Inhibidora de α-Glucosidasa y α-Amilasa de Tres Variedades de Cebolla (Allium Cepa L.).” Nova Scientia 6(12): 234.
dc.relation.referencesLozada Diaz, Yohum Steven. 2019. “Búsqueda de Inhibidores de Enzimas Digestivas a Partir Del Extracto Hidroalcohólico de Hojas de Neurolaena Lobata (Asteraceae) - Hdl:11349/23381.” Universidad Distrital Francisco José de Caldas. https://repository.udistrital.edu.co/handle/11349/23381 (March 17, 2023)
dc.relation.referencesLunagariya, Nitin A., Neeraj K. Patel, Sneha C. Jagtap, and Kamlesh K. Bhutani. 2014. “Inhibitors of Pancreatic Lipase: State of the Art and Clinical Perspectives.” EXCLI Journal 13.
dc.relation.referencesMacbride, J. Francis, and A. Weberbauer. 1936. “Flora of Peru.” 13. https://www.biodiversitylibrary.org/bibliography/7205 (August 22, 2023).
dc.relation.referencesMahomoodally, M. Fawzi et al. 2012. “Traditional Medicinal Herbs and Food Plants Have the Potential to Inhibit Key Carbohydrate Hydrolyzing Enzymes in Vitro and Reduce Postprandial Blood Glucose Peaks in Vivo.” The Scientific World Journal 2012.
dc.relation.referencesMalarz, Janusz et al. 2023. “Constituents of Pulicaria Inuloides and Cytotoxic Activities of Two Methoxylated Flavonols.” Molecules 28(2)
dc.relation.referencesMalviya, N, S Jain, and S Malviya. 2010. “Antidiabetic Potential of Medicinal Plants.” Acta Poloniae Pharmaceutica - Drug Research 67(2): 113–18.
dc.relation.referencesMarengo, Mauro et al. 2022. “Evaluation of Porcine and Aspergillus Oryzae α-Amylases as Possible Model for the Human Enzyme.” Processes 10(4).
dc.relation.referencesMaridass, Muthiah. 2008. “Evaluation of Brine Shrimp Lethality of Cinnamomum Species.” Ethnobotanical Leaflets 12.
dc.relation.referencesMcKinnon, R. et al. 2014. “Pharmacological Insight into the Anti-Inflammatory Activity of Sesquiterpene Lactones from Neurolaena Lobata (L.) R.Br. Ex Cass.” Phytomedicine : international journal of phytotherapy and phytopharmacology 21(12): 1695–1701. https://pubmed.ncbi.nlm.nih.gov/25442279/ (February 17, 2023).
dc.relation.referencesMendez-Callejas, Gina et al. 2023. “A New Flavanone from Chromolaena Tacotana (Klatt) R. M. King and H. Rob, Promotes Apoptosis in Human Breast Cancer Cells by Downregulating Antiapoptotic Proteins.” Molecules 28(1): 58. https://www.mdpi.com/1420-3049/28/1/58/htm (May 29, 2023).
dc.relation.referenceseng, Yonghong et al. 2016. “Evaluation of Total Flavonoids, Myricetin, and Quercetin from Hovenia Dulcis Thunb. As Inhibitors of α-Amylase and α-Glucosidase.” Plant Foods for Human Nutrition 71(4): 444–49. https://link.springer.com/article/10.1007/s11130-016-0581-2 (May 24, 2023).
dc.relation.referencesModak, Manisha et al. 2007. “Indian Herbs and Herbal Drugs Used for the Treatment of Diabetes.” Journal of Clinical Biochemistry and Nutrition 40(3).
dc.relation.referencesMukherjee, Manjari. 2003. “Human Digestive and Metabolic Lipases - A Brief Review.” Journal of Molecular Catalysis B: Enzymatic 22(5–6).
dc.relation.referencesNair, Sindhu S, Vaibhavi Kavrekar, and Anshu Mishra. 2013. “In Vitro Studies on Alpha Amylase and Alpha Glucosidase Inhibitory Activities of Selected Plant Extracts.” European Journal of Experimental Biology 3(1).
dc.relation.referencesNakai, Hiroyuki et al. 2005. “Molecular Analysis of α-Glucosidase Belonging to GH-Family 31.” Biologia, Brastilava 60: 131–35.
dc.relation.referencesNam Han Cho et al. 2013. “Executive Summary- IDF Diabetes Atlas.” Diabetes Atlas: 16.
dc.relation.referencesNavarrete, Hugo et al. 2008. Herbario QCA & Herbario AAU Enciclopedia de Las Plantas Útiles Del Ecuador (Con Extracto de Datos).
dc.relation.references“Neurolaena Lobata.” 2022. CABI Compendium CABI Compe.
dc.relation.referencesNg, Arnold C.T., Victoria Delgado, Barry A. Borlaug, and Jeroen J. Bax. 2020. “Diabesity: The Combined Burden of Obesity and Diabetes on Heart Disease and the Role of Imaging.” Nature Reviews Cardiology 2020 18:4 18(4): 291–304. https://www.nature.com/articles/s41569-020-00465-5 (August 13, 2023).
dc.relation.referencesNguyen, Dang Minh Chanh et al. 2013. “Nematicidal Activity of 3,4-Dihydroxybenzoic Acid Purified from Terminalia Nigrovenulosa Bark against Meloidogyne Incognita.” Microbial pathogenesis 59–60: 52–59. https://pubmed.ncbi.nlm.nih.gov/23603737/ (May 30, 2023).
dc.relation.referencesNguyen, Huy Truong et al. 2022. “α-Glucosidase Inhibitory and Antimicrobial Benzoylphloroglucinols from Garcinia Schomburgakiana Fruits: In Vitro and In Silico Studies.” Molecules 27(8): 2574. https://www.mdpi.com/1420-3049/27/8/2574/htm (March 5, 2023).
dc.relation.referencesNkambo, W., Norbert G. Anyama, and B. Onegi. 2013. “Ein Vivo Hypoglycemic Effect of Methanolic Fruit Extract of Momordica Charantia L.” African Health Sciences 13(4): 933–39.
dc.relation.referencesOgunyemi, Oludare M. et al. 2022. “Inhibition Mechanism of Alpha-Amylase, a Diabetes Target, by a Steroidal Pregnane and Pregnane Glycosides Derived from Gongronema Latifolium Benth.” Frontiers in Molecular Biosciences 9: 808.
dc.relation.referencesOliveira, Cláudia Lourenço, Catarina Morais Fonseca, and Cristina Ramos Silva. 2022. “Uso Da Metformina Na Prevenção Da Diabetes Gestacional Na Grávida Obesa Não Diabética: Uma Revisão Baseada Na Evidência.” Revista Portuguesa de Medicina Geral e Familiar 38(1): 74–80. https://rpmgf.pt/ojs/index.php/rpmgf/article/view/13128 (August 13, 2023).
dc.relation.referencesOMS. 2021. “Obesidad y Sobrepeso.” https://www.who.int/es/news-room/fact-sheets/detail/obesity-and-overweight (February 17, 2023).
dc.relation.references“Diabetes.” 16 de septiembre. https://www.who.int/es/news-room/fact-sheets/detail/diabetes (February 17, 2023).
dc.relation.referencesOPS/OMS. 2021. “Diabetes - OPS/OMS | Organización Panamericana de La Salud.” https://www.paho.org/es/temas/diabetes (February 17, 2023).
dc.relation.referencesPan American Health Organization. 2022. “Panorama of Diabetes in the Americas.” Panorama of Diabetes in the Americas.
dc.relation.referencesPaniagua-Zambrana, Narel Y et al. 2020. “Neurolaena Lobata (L.) Cass. Asteraceae.” : 1–3. https://link.springer.com/referenceworkentry/10.1007/978-3-319-77093-2_204-1 (August 11, 2023).
dc.relation.referencesParapouli, Maria, Anastasios Vasileiadis, Amalia Sofia Afendra, and Efstathios Hatziloukas. 2020. “Saccharomyces Cerevisiae and Its Industrial Applications.” AIMS Microbiology 6(1).
dc.relation.referencesassreiter, Claus M., and Murray B. Isman. 1997. “Antifeedant Bioactivity of Sesquiterpene Lactones from Neurolaena Lobata and Their Antagonism by γ-Aminobutyric Acid.” Biochemical Systematics and Ecology 25(5): 371–77.
dc.relation.referencesPassreiter, Claus M., Detlef Wendisch, and Daniel Gondol. 1995. “Sesquiterpene Lactones from Neurolaena Lobata.” Phytochemistry 39(1): 133–37.
dc.relation.referencesPatel, D. K., S. K. Prasad, R. Kumar, and S. Hemalatha. 2012. “An Overview on Antidiabetic Medicinal Plants Having Insulin Mimetic Property.” Asian Pacific Journal of Tropical Biomedicine 2(4).
dc.relation.referencesPatricia, Diana, and Rey Padilla. 2013. “Evaluación in Vitro Del Efecto de Un Extracto de Frutos de Physalis Peruviana Sobre Algunas Carbohidrasas Intestina.”
dc.relation.referencesaul, Jai Shankar et al. 2021. “Aspects and Recent Trends in Microbial α-Amylase: A Review.” Applied Biochemistry and Biotechnology 193(8).
dc.relation.referencesPrakash, Ved. 2022. “Determination of α-Amylase Inhibitory Potential of Leaf Extracts of Rhododendron Arboreum Sm. and Rhododendron Campanulatum D. Don.” Journal of Drug Delivery and Therapeutics 12(1-S).
dc.relation.referencesQin, Xiao Ya et al. 2022. “Discovery and Characterization of the Naturally Occurring Inhibitors Against Human Pancreatic Lipase in Ampelopsis Grossedentata.” Frontiers in Nutrition 9: 181.
dc.relation.referencesReid, Tirissa J., and Judith Korner. 2022. “Medical and Surgical Treatment of Obesity.” Medical Clinics of North America 106(5).
dc.relation.referencesRestrepo, Sánchez. 2017. “Cuantificación de Clorofila ‘ a ’ Clorofilas.” Departamento de quimica organica, UNAM.
dc.relation.referencesRigolon, Thais Coroline Buttow, Isadora Rebouças Nolasco de Oliveira, and Paulo Cesar Stringheta. 2021. “Antocianinas.” In Corantes Naturais: Da Diversidade Da Natureza as Aplicações e Benefícios,.
dc.relation.referencesRíos, José Luis, Flavio Francini, and Guillermo R. Schinella. 2015. “Natural Products for the Treatment of Type 2 Diabetes Mellitus.” Planta Medica 81(12–13): 975–94. http://www.thieme-connect.com/products/ejournals/html/10.1055/s-0035-1546131 (March 12, 2023).
dc.relation.referencesRíos, José Luis, Flavio Francini, and Guillermo R Schinella. 2016. “Productos Naturales Para El Tratamiento de La Diabetes (I): Mecanismos de Acción.” Revista de Fitoterapia 16(1).
dc.relation.referencesRodhi, Miradatul Najwa Muhd, Fazlena Hamzah, and Ku Halim Ku Hamid. 2020. “Kinetic Behaviour of Pancreatic Lipase Inhibition by Ultrasonicated A. Malaccensis and A. Subintegra Leaves of Different Particle Sizes.” Bulletin of Chemical Reaction Engineering & Catalysis 15(3).
dc.relation.referencesRohde, Kerstin et al. 2019. “Genetics and Epigenetics in Obesity.” Metabolism: Clinical and Experimental 92.
dc.relation.referencesSalazar, Luz et al. 2020. “Caracterización, Clasificación y Usos de Las Enzimas Lipasas En La Producción Industrial.” Characterization, classification and uses of lipase enzymes in industrial production. 39(4).
dc.relation.referencesSaravia-Otten, Patricia et al. 2021. “Inhibición de Las Actividades Proteolítica y Fosfolipasa A2 Del Veneno de Bothrops Asper Por El Extracto Etanólico de Neurolaena Lobata (L.) Cass.” Ciencia, Tecnologí­a y Salud 8(1).
dc.relation.referencesInhibition of Enzymatic Activities of Bothrops Asper Snake Venom and Docking Analysis of Compounds from Plants Used in Central America to Treat Snakebite Envenoming.” Journal of Ethnopharmacology 283.
dc.relation.referencesŞener, Sıla Özlem et al. 2022. “Investigation of Selected Medicinal Plants for Their Anti-Obesity Properties.” Turkish Journal of Pharmaceutical Sciences 19(5).
dc.relation.referencesShaik Mohamed Sayed, Ummul Fathima et al. 2023. “Natural Products as Novel Anti-Obesity Agents: Insights into Mechanisms of Action and Potential for Therapeutic Management.” Frontiers in Pharmacology 14.
dc.relation.referencesShailajan, Sunita, and Deepti Gurjar. 2014. “Pharmacognostic and Phytochemical Evaluation of Chrysophyllum Cainito Linn. Leaves.” International Journal of Pharmaceutical Sciences Review and Research 26(1).
dc.relation.referencesShin, Hansol et al. 2019. “Optimization of in Vitro Carbohydrate Digestion by Mammalian Mucosal α-Glucosidases and Its Applications to Hydrolyze the Various Sources of Starches.” Food Hydrocolloids 87.
dc.relation.referencesSIB. “SIB Swiss Institute of Bioinformatics - Home Page.”
dc.relation.referencesSim, Lyann et al. 2008. “Human Intestinal Maltase–Glucoamylase: Crystal Structure of the N-Terminal Catalytic Subunit and Basis of Inhibition and Substrate Specificity.” Journal of Molecular Biology 375(3): 782–92.
dc.relation.referencesSimeonov, Anton, and Mindy I. Davis. 2004. Assay Guidance Manual Interference with Fluorescence and Absorbance.
dc.relation.referencesSosnowska, Dorota, Anna Podsędek, Małgorzata Redzynia, and Alicja Z. Kucharska. 2018. “Inhibitory Effect of Black Chokeberry Fruit Polyphenols on Pancreatic Lipase – Searching for Most Active Inhibitors.” Journal of Functional Foods 49.
dc.relation.referencesSpínola, Vítor, and Paula C. Castilho. 2021. “Assessing the In Vitro Inhibitory Effects on Key Enzymes Linked to Type-2 Diabetes and Obesity and Protein Glycation by Phenolic Compounds of Lauraceae Plant Species Endemic to the Laurisilva Forest.” Molecules 2021, Vol. 26, Page 2023 26(7): 2023. https://www.mdpi.com/1420-3049/26/7/2023/htm (March 5, 2023).
dc.relation.referencesSreedharan, Roshni, and Basem Abdelmalak. 2018. “Diabetes Mellitus: Preoperative Concerns and Evaluation.” Anesthesiology Clinics 36(4).
dc.relation.referencesSugimoto, Satoru, Hisakazu Nakajima, Kitaro Kosaka, and Hajime Hosoi. 2015. “Review: Miglitol Has Potential as a Therapeutic Drug against Obesity.” Nutrition and Metabolism 12(1).
dc.relation.referencesTadera, Kenjiro, Yuji Minami, Kouta Takamatsu, and Tomoko Matsuoka. 2006. “Inhibition of α-Glucosidase and α-Amylase by Flavonoids.” Journal of Nutritional Science and Vitaminology 52(2): 149–53.
dc.relation.referencesTian, Yongqi et al. 2022. “Efficient Screening of Pancreatic Lipase Inhibitors from Cod Meat Hydrolysate through Ligand Fishing Strategy.” Frontiers in Nutrition 9.
dc.relation.referencesTundis, R, M R Loizzo, and F Menichini. 2010. “Natural Products as Alpha-Amylase and Alpha-Glucosidase Inhibitors and Their Hypoglycaemic Potential in the Treatment of Diabetes: An Update.” Mini reviews in medicinal chemistry 10(4): 315–31.
dc.relation.referencesTurner, B. 1982. “Taxonomía de Neurolaena (Asteraceae-Heliantheae) En JSTOR.” : 142. https://www.jstor.org/stable/23642726 (August 11, 2023).
dc.relation.referencesUguz, Faruk et al. 2015. “Weight Gain and Associated Factors in Patients Using Newer Antidepressant Drugs.” General Hospital Psychiatry 37(1).
dc.relation.referencesUlubelen, Ayhan, Kathleen M. Kerr, and Tom J. Mabry. 1980. “New 6-Hydroxyflavonoids and Their Methyl Ethers and Glycosides from Neurolaena Oaxacana.” Phytochemistry 19(8).
dc.relation.referencesVasas, Andrea et al. 2021. “Isolation, Structure Determination of Sesquiterpenes from Neurolaena Lobata and Their Antiproliferative, Cell Cycle Arrest-Inducing and Anti-Invasive Properties against Human Cervical Tumor Cells.” Pharmaceutics 13(12): 2088. https://www.mdpi.com/1999-4923/13/12/2088/htm (February 17, 2023).
dc.relation.referencesVelez, Giler et al. 2022. “Análisis Fitoquímico de Neurolaena Lobata Con La Finalidad de Determinar Su Potencial Antioxidante.” http://repositorio.espe.edu.ec/jspui/handle/21000/28891 (August 12, 2023).
dc.relation.referencesVo, Cam Van T. et al. 2022. “Screening for Pancreatic Lipase Inhibitors: Evaluating Assay Conditions Using p-Nitrophenyl Palmitate as Substrate.” https://doi.org/10.1080/26895293.2021.2019131 15(1): 13–22. https://www.tandfonline.com/doi/abs/10.1080/26895293.2021.2019131 (February 17, 2023).
dc.relation.referencesWaldemar López-Valenzuela, Fredy, Jorge Mario Vargas Ponce, and María Nereida Marroquín Tinti. 2022. “Modelo de Publicación Sin Fines de Lucro Para Conservar La Naturaleza Académica y Abierta de La Comunicación Científica PDF Generado a Partir de XML-JATS4R.” http://portal.amelica.org/ameli/journal/50/503446007/ (August 14, 2023).
dc.relation.referencesWalker, Graeme M., and Graham G. Stewart. 2016. “Saccharomyces Cerevisiae in the Production of Fermented Beverages.” Beverages 2(4).
dc.relation.referencesWalshe-Roussel, Brendan et al. 2013. “Potent Anti-Inflammatory Activity of Sesquiterpene Lactones from Neurolaena Lobata (L.) R. Br. Ex Cass., a Q’eqchi’ Maya Traditional Medicine.” Phytochemistry 92.
dc.relation.referencesWilliams, Christine A. et al. 1995. “A Biologically Active Lipophilic Flavonol from Tanacetum Parthenium.” Phytochemistry 38(1).
dc.relation.referencesWolfender, Jean Luc, Guillaume Marti, Aurélien Thomas, and Samuel Bertrand. 2015. “Current Approaches and Challenges for the Metabolite Profiling of Complex Natural Extracts.” Journal of Chromatography A 1382.
dc.relation.referencesWongsa, Prinya et al. 2023. “Influence of Hot-Air Drying Methods on the Phenolic Compounds/Allicin Content, Antioxidant Activity and α-Amylase/α-Glucosidase Inhibition of Garlic (Allium Sativum L.).” European Food Research and Technology 249(2).
dc.relation.referencesWu, Yihang et al. 2006. “Hepatoprotective Effect of Total Flavonoids from Laggera Alata against Carbon Tetrachloride-Induced Injury in Primary Cultured Neonatal Rat Hepatocytes and in Rats with Hepatic Damage.” Journal of Biomedical Science 13(4).
dc.relation.referencesXin, X. L., H. A. Aisa, and H. Q. Wang. 2008. “Flavonoids and Phenolic Compounds from Seeds of the Chinese Plant Nigella Glandulifera.” Chemistry of Natural Compounds 44(3): 368–69. https://link.springer.com/article/10.1007/s10600-008-9066-3 (May 30, 2023).
dc.relation.referencesYang, Xiaoping, and Fanbin Kong. 2016. “Evaluation of the in Vitro α-Glucosidase Inhibitory Activity of Green Tea Polyphenols and Different Tea Types.” Journal of the Science of Food and Agriculture 96(3).
dc.relation.referencesYang, Yanqing, and Mark E. Lowe. 2000. “The Open Lid Mediates Pancreatic Lipase Function.” Journal of Lipid Research 41(1).
dc.relation.referencesYun, Jong Won. 2010. “Possible Anti-Obesity Therapeutics from Nature – A Review.” Phytochemistry 71(14–15): 1625–41.
dc.relation.referencesZeng, Su Ling et al. 2018. “Evaluation of Anti-Lipase Activity and Bioactive Flavonoids in the Citri Reticulatae Pericarpium from Different Harvest Time.” Phytomedicine 43: 103–9.
dc.relation.referencesZhu, Guoying et al. 2021. “Structure and Function of Pancreatic Lipase-Related Protein 2 and Its Relationship With Pathological States.” Frontiers in Genetics 12.
dc.relation.referencesZhu, Qibo et al. 2013. “Comparison of the Hypoglycemic Effect of Acarbose Monotherapy in Patients with Type 2 Diabetes Mellitus Consuming an Eastern or Western Diet: A Systematic Meta-Analysis.” Clinical Therapeutics 35(6).
dc.relation.referencesZubair, Shumaila et al. 2023. “New Ferrocene Integrated Amphiphilic Guanidines: Synthesis, Spectroscopic Elucidation, DFT Calculation and in Vitro α-Amylase and α-Glucosidase Inhibition Combined with Molecular Docking Approach.” Heliyon 9(4).
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsInhibidores Enzimáticos - química
dc.subject.decsEnzyme Inhibitors - chemistry
dc.subject.decsInhibidores de Glicósido Hidrolasas
dc.subject.decsGlycoside Hydrolase Inhibitors
dc.subject.decsalfa-Glucosidasas
dc.subject.decsalpha-Glucosidases
dc.subject.decsalfa-Amilasas
dc.subject.decsalpha-Amylases
dc.subject.decsalfa-Amilasas Pancreáticas
dc.subject.decsPancreatic alpha-Amylases
dc.subject.decsLipoproteína Lipasa
dc.subject.decsLipoprotein Lipase
dc.subject.decsDiabetes Mellitus Tipo 2
dc.subject.decsDiabetes Mellitus, Type 2
dc.subject.decsFitoquímicos
dc.subject.decsPhytochemicals
dc.subject.decsExtractos vegetales
dc.subject.decsPlant Extracts
dc.subject.proposalLipasa pancreática
dc.subject.proposalα-amilasa
dc.subject.proposalα-glucosidasa
dc.subject.proposalNeurolaena lobata
dc.subject.proposalFlavonoides
dc.subject.proposalDiabetes
dc.subject.proposalObesidad
dc.subject.proposalPancreatic lipase
dc.subject.proposalα-amylase
dc.subject.proposalα-glucosidase
dc.subject.proposalDiabetes
dc.subject.proposalObesity
dc.title.translatedSearch for molecules of natural origin with multidrug action on pancreatic digestive enzymes: α-Glucosidase, α-Amylase and Pancreatic lipase
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovación (MinCiencias). Contrato 003- 2017. Código 110174559038
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
dc.subject.wikidataNeurolaena lobata


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito