Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorArmenteras Pascual, Dolors
dc.contributor.authorMeza Elizalde, María Constanza
dc.date.accessioned2024-01-26T17:50:12Z
dc.date.available2024-01-26T17:50:12Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85466
dc.descriptionilustraciones, diagramas, figuras
dc.description.abstractEn las últimas décadas, se ha observado un aumento en la frecuencia e intensidad de los incendios forestales en los bosques inundables neotropicales, que se encuentran inmersos en la matriz de sabana. Esto plantea preocupaciones sobre los efectos en la diversidad y resiliencia de estos ecosistemas. Con el objetivo de comprender el impacto de los incendios forestales en la resiliencia de los bosques inundables de la cuenca del Orinoco, se llevó a cabo un estudio para analizar los cambios en la composición, estructura y diversidad taxonómica y funcional después de incendios de moderada y alta severidad e intensidad. También se investigaron los rasgos funcionales de evitación, resistencia y regeneración en especies forestales que podrían conferirles una ventaja de respuesta al fuego: haciendo análisis interespecíficos para las especies más dominantes e intraespecíficos para el saladillo rojo (Caraipa llanorum). Por último, se realizó un análisis multitemporal para evaluar la evolución de los combustibles vivos y leñosos muertos a tres, cinco y siete años posteriores a los incendios. El fuego provocó una homogeneización tanto taxonómica como funcional en la comunidad de árboles y palmas de los bosques, lo que redujo la diversidad y favoreció a especies con características similares. Se observó que el fuego filtró especies con rasgos de resistencia, como cortezas más gruesas, características caducifolias y mayor espesor foliar, que les brindan capacidad de supervivencia. A nivel intraespecífico, se identificó que el saladillo, tiene estrategias adquisitivas en bosques no quemados y estrategias conservativas en bosques quemados y sábanas propensas al fuego. Finalmente, se encontró que el fuego también provocó una disminución significativa en la cobertura del dosel y la biomasa aérea, así como una simplificación estructural del bosque. Estos cambios se asociaron con un aumento en la invasión de pastos y una mayor carga de combustible leñoso en bosques quemados, lo que aumenta su vulnerabilidad a futuros incendios. Los hallazgos de este estudio resaltan la importancia de comprender los efectos de los incendios forestales en los ecosistemas sensibles al fuego, como los bosques inundables. Adicionalmente, Asimismo, muestran que los bosques son altamente dinámicos después de la perturbación por incendios, lo que subraya la necesidad de un monitoreo continuo para la toma de decisiones oportunas de gestión tendientes a reducir el riesgo a incendios forestales y garantizar la conservación efectiva de la diversidad y funcionalidad de estos ecosistemas. (Texto tomado de la fuente)
dc.description.abstractIn recent decades, an increase in the frequency and intensity of forest fires has been observed in the neotropical floodplain forests, which are immersed in the savanna matrix. This raises concerns about the effects on the diversity and resilience of these ecosystems. With the aim of understanding the impact of forest fires on the resilience of the Orinoco floodplain forests, a study was conducted to analyze the changes in composition, structure, and taxonomic and functional diversity following fires of moderate and high severity and intensity. Functional traits related to avoidance, resistance, and regeneration were also investigated in forest species that could confer them a fire response advantage, conducting interspecific analysis for the dominant species and intraspecific analysis for the red saladillo (Caraipa llanorum). Finally, a multi-temporal analysis was performed to assess the evolution of live and dead fuel components three, five, and seven years after the fires. The fires resulted in both taxonomic and functional homogenization in the tree and palm community of the forests, reducing diversity and favoring species with similar traits. It was observed that the fires filtered species with resistance traits such as thicker bark, deciduous characteristics, and greater leaf thickness, which provide them with survival capacity. At the intraspecific level, it was identified that the saladillo species adopts acquisitive strategies in unburned forests and conservative strategies in burned forests and fire-prone savannas. Moreover, the fires also led to a significant reduction in canopy coverage and aboveground biomass, as well as structural simplification of the forest. These changes were associated with increased grass invasion and a higher load of woody fuel in burned forests, which increases their vulnerability to future fires. The findings of this study highlight the importance of understanding the effects of forest fires on fire-prone ecosystems like floodplain forests. Additionally, they demonstrate that forests are highly dynamic following fire disturbances, emphasizing the need for continuous monitoring to make timely management decisions to reduce the risk of forest fires and ensure effective conservation of the diversity and functionality of these ecosystems.
dc.format.extentxxviii, 308 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc570 - Biología::577 - Ecología
dc.subject.ddc570 - Biología::578 - Historia natural de los organismos y temas relacionados
dc.subject.lccResiliencia (Ecología)
dc.subject.lccResilience (Ecology)
dc.subject.lccEcología del fuego
dc.subject.lccFire ecology
dc.titleEfectos de los incendios forestales sobre la resiliencia de bosques tropicales de tierras bajas
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Biología
dc.contributor.researchgroupEcología del Paisaje y Modelación de Ecosistemas - ECOLMOD
dc.coverage.regionOrinoquía
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias - Biología
dc.description.researchareaEcología
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAger, A. A., A. Day, M., Finney, M. A., Vance-Borland, K., & Vaillant, N. M. (2014). Analyzing the transmission of wildfire exposure on a fire-prone landscape in Oregon, USA. Forest Ecology and Management, 334, 377–390. https://doi.org/10.1016/j.foreco.2014.09.017
dc.relation.referencesAlbert, C. H., Thuiller, W., Yoccoz, N. G., Douzet, R., Aubert, S., & Lavorel, S. (2010). A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Functional Ecology, 24(6), 1192–1201. https://doi.org/10.1111/j.1365-2435.2010.01727.x
dc.relation.referencesAlbert, C., Thuiller, W., Gilles, N., Soundant, A., Boucher, F., PATRICK, S., & Lavorel, S. (2010). Intraspecific functional variability : extent , structure and sources of variation. Journal of Ecology, 98, 604–613. https://doi.org/10.1111/j.1365-2745.2010.01651.x
dc.relation.referencesAltomare M, Vasconcelos HL, Raymundo D, et al (2021) Assessing the fire resilience of the savanna tree component through a functional approach. Acta Oecologica 111:103728. https://doi.org/10.1016/j.actao.2021.103728
dc.relation.referencesÁlvarez, F. S., Finegan, B., Delgado, D., Ramos, Z., Utrera, L. P., & Granda, V. (2021). Dispersal limitation, soil, and fire affect functional properties of tropical secondary forests on abandoned cattle ranching landscapes. Perspectives in Plant Ecology, Evolution and Systematics, 52(July). https://doi.org/10.1016/j.ppees.2021.125632
dc.relation.referencesAndela, N., Morton, D. C., Giglio, L., Chen, Y., Van Der Werf, G. R., Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S., Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Yue, C., & Randerson, J. T. (2017). A human-driven decline in global burned area. Science, 356(6345), 1356–1362. https://doi.org/10.1126/science.aal4108
dc.relation.referencesAraque, O., JAIMEZ, R., Azócar, C., Espinoza, W., & Tezara, W. (2009). RELACIONES ENTRE ANATOMÍA FOLIAR, INTERCAMBIO DE GASES Y CRECIMIENTO EN JUVENILES DE CUATRO ESPECIES FORESTALES. Interciencia, 34(10), 725–729.
dc.relation.referencesAraújo, I., Marimon, B. S., Scalon, M. C., Cruz, W. J. A., Fauset, S., Vieira, T. C. S., Galbraith, D. R., & Gloor, M. U. (2021). Intraspecific variation in leaf traits facilitates the occurrence of trees at the Amazonia–Cerrado transition. Flora: Morphology, Distribution, Functional Ecology of Plants, 279(October 2020), 151829. https://doi.org/10.1016/j.flora.2021.151829
dc.relation.referencesArmenteras-Pascual, D., Retana-Alumbreros, J., Molowny-Horas, R., Roman-Cuesta, R. M., Gonzalez-Alonso, F., & Morales-Rivas, M. (2011). Characterising fire spatial pattern interactions with climate and vegetation in Colombia. Agricultural and Forest Meteorology, 151(3), 279–289. https://doi.org/10.1016/j.agrformet.2010.11.002
dc.relation.referencesArmenteras D, Dávalos LM, Barreto JS, et al (2021a) Fire-induced loss of the world’s most biodiverse forests in Latin America. Sci Adv 7:. https://doi.org/10.1126/sciadv.abd3357
dc.relation.referencesArmenteras, D., González-Alonso, F., & Aguilera, C. F. (2009). Geographic and temporal distribution of fi re in Colombia using thermal anomalies data. Caldasia, 31(February), 303–318. http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0366-52322009000200007&lng=en&nrm=iso&tlng=en
dc.relation.referencesArmenteras, D., Meza, M. C., González, T. M., Oliveras, I., Balch, J. K., & Retana, J. (2021). Fire threatens the diversity and structure of tropical gallery forests. Ecosphere, 12(1). https://doi.org/10.1002/ecs2.3347
dc.relation.referencesArmenteras, D, Gónzález, T., Meza, M., Ramiréz - Delgado, J. P., Cabrera, E., Galindo, G., & Yepes, A. (2017). Causas de Degradación Forestal en Colombia: Una primera aproximación. Universidad Nacional de Colombia Sede Bogotá, Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia-IDEAM, Programa ONU-REDD.
dc.relation.referencesArmenteras, Dolors, Meza, M. C., González, T. M., Oliveras, I., Balch, J. K., & Retana, J. (2021). Fire threatens the diversity and structure of tropical gallery forests. Ecosphere, 12(1). https://doi.org/10.1002/ecs2.3347
dc.relation.referencesArmenteras, Dolors, & Vargas, O. (2016). Landscape Patterns and Restoration Scenarios : Bridging Scales. Acta Biológica Colombiana, 21(1), 229–240.
dc.relation.referencesBalch, J. R. K., Nepstad, D. C., Brando, P. M., Curran, L. M., Portela, O., de Carvalho, O., & Lefebvre, P. (2008). Negative fire feedback in a transitional forest of southeastern Amazonia. Global Change Biology, 14(10), 2276–2287. https://doi.org/10.1111/j.1365-2486.2008.01655.x
dc.relation.referencesBalch, J. K., Brando, P. M., Nepstad, D. C., Coe, M. T., Silvério, D., Massad, T. J., Davidson, E. A., Lefebvre, P., Oliveira-santos, C., Rocha, W., Cury, R. T. S., Parsons, A., & Carvalho, K. S. (2015). The Susceptibility of Southeastern Amazon Forests to Fire : Insights from a Large-Scale Burn Experiment. 65(9), 893–905. https://doi.org/10.1093/biosci/biv106
dc.relation.referencesBarker, J. W., Price, O. F., & Jenkins, M. E. (2022). High severity fire promotes a more flammable eucalypt forest structure. Austral Ecology, 47(3), 519–529. https://doi.org/10.1111/aec.13134
dc.relation.referencesBarlow, J., & Peres, C. A. (2008). Fire-mediated dieback and compositional cascade in an Amazonian forest. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(June 2008), 1787–1794. https://doi.org/10.1098/rstb.2007.0013
dc.relation.referencesBarrere, J., Reineking, B., Cordonnier, T., Kulha, N., Honkaniemi, J., Peltoniemi, M., Korhonen, K. T., Ruiz‐Benito, P., Zavala, M. A., & Kunstler, G. (2023). Functional traits and climate drive interspecific differences in disturbance‐induced tree mortality. Global Change Biology, December 2022, 2836–2851. https://doi.org/10.1111/gcb.16630
dc.relation.referencesBaselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19(1), 134–143. https://doi.org/10.1111/j.1466-8238.2009.00490.x
dc.relation.referencesBell, D. T. (2001). Ecological response syndromes in the flora of Southwestern Western Australia: Fire Resprouters versus Reseeders. The Botanical Review, 67(DECEMBER 2001), 417–440.
dc.relation.referencesBellingham, P. J. (2000). Resprouting as a life history strategy in woody plant communities. Oikos, 89(2), 409–416. https://doi.org/10.1080/00131857.2017.1516140
dc.relation.referencesBerenguer E, Gardner TA, Ferreira J, et al (2018) Seeing the woods through the saplings: Using wood density to assess the recovery of human-modified Amazonian forests. J Ecol 106:2190–2203. https://doi.org/10.1111/1365-2745.12991
dc.relation.referencesBhaskar, R., Arreola, F., Mora, F., Martinez-yrizar, A., Martinez-ramos, M., & Balvanera, P. (2017). Forest Ecology and Management Response diversity and resilience to extreme events in tropical dry secondary forests ☆. Forest Ecology and Management, 426(September 2017), 61–71. https://doi.org/10.1016/j.foreco.2017.09.028
dc.relation.referencesBernhardt-Römermann M, Baeten L, Craven D, et al (2015) Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Glob Chang Biol 21:3726–3737. https://doi.org/10.1111/gcb.12993
dc.relation.referencesBhaskar R, Arreola F, Mora F, et al (2018) Forest Ecology and Management Response diversity and resilience to extreme events in tropical dry secondary forests ☆. For Ecol Manage 426:61–71. https://doi.org/10.1016/j.foreco.2017.09.028
dc.relation.referencesBivand, R. S., & Wong, D. W. S. (2018). Comparing implementations of global and local indicators of spatial association. TEST. doi:10.1007/s11749-018-0599-x
dc.relation.referencesBond, W. J., Midgley, G. F., & Woodward, F. I. (2003). What controls South African vegetation - Climate or fire? South African Journal of Botany, 69(1), 79–91. https://doi.org/10.1016/S0254-6299(15)30362-8
dc.relation.referencesBorchert R, Rivera G, Hagnauer W (2002) Modification of vegetative phenology in a tropical semi-deciduous forest by abnormal drought and rain. Biotropica 34:27–39. https://doi.org/10.1111/j.1744-7429.2002.tb00239.x
dc.relation.referencesBradstock, R. A. (2010). A biogeographic model of fire regimes in Australia: Current and future implications. Global Ecology and Biogeography, 19(2), 145–158. https://doi.org/10.1111/j.1466-8238.2009.00512.x
dc.relation.referencesBrando, P. M., Balch, J. K., Nepstad, D. C., Morton, D. C., Putz, F. E., Coe, M. T., Silvério, D., Macedo, M. N., Davidson, E. A., Nóbrega, C. C., Alencar, A., & Soares-Filho, B. S. (2014). Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proceedings of the National Academy of Sciences of the United States of America, 111(17), 6347–6352. https://doi.org/10.1073/pnas.1305499111
dc.relation.referencesBrando, P. M., Oliveria-Santos, C., Rocha, W., Cury, R., & Coe, M. T. (2016). Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest. Global Change Biology, 22(7), 2516–2525. https://doi.org/10.1111/gcb.13172
dc.relation.referencesBrooks, M. L., Antonio, C. M. D., Richardson, D. M., Grace, B., Keeley, J. O. N. E., Ditomaso, J. M., Hobbs, R. J., Pellant, M., Pyke, D., Brooks, M. L., Antonio, C. M. D., Richardson, D. M., Grace, J. B., & Keeley, J. O. N. E. (2004). Effects of Invasive Alien Plants on Fire Regimes. 54(7), 677–688.
dc.relation.referencesBrown, J. (1974). Handbook for inventorying downed woody material.
dc.relation.referencesBrown, J. K., Oberheu, R. D., & Johnston, C. M. (1981). Handbook for inventorying surface fuels and biomass in the interior West.
dc.relation.referencesBrown, James K., & Bevins, C. D. (1986). Surface Fuel Loadings and Predicted Fire Behavior for Vegetation Types in the Northern Rocky Mountains. In United States Forest Service.
dc.relation.referencesCadotte. (2006). Dispersal and Species Diversity: A Meta-Analysis. The American Naturalist, 167(6), 913. https://doi.org/10.2307/3844747
dc.relation.referencesCardoso, A. W., Oliveras, I., Abernethy, K. A., Jeffery, K. J., Lehmann, D., Ndong, J. E., Mcgregor, I., Belcher, C. M., Bond, W. J., & Malhi, Y. S. (2017). Grass Species Flammability , Not Biomass , Drives Changes in Fire Behavior at Tropical Forest-Savanna Transitions. 1(November), 1–14. https://doi.org/10.3389/ffgc.2017.00006
dc.relation.referencesCardoso, M., Nobre, C. A., Sampaio, G., & Valeriano, D. M. (2009). Modelling of the decrease of tropical-forest resilience in Amazonia as affected by deforestation and fires. April.
dc.relation.referencesCarrijo, J. N., Maracahipes, L., Scalon, M. C., Silvério, D. V., Abadia, A. C., Fagundes, M. V., Veríssimo, A. A., Gonçalves, L. A., Carrijo, D., Martins, J., & Lenza, E. (2021). Functional traits as indicators of ecological strategies of savanna woody species under contrasting substrate conditions. Flora: Morphology, Distribution, Functional Ecology of Plants, 284(March). https://doi.org/10.1016/j.flora.2021.151925
dc.relation.referencesCasanoves, F., Pla, L., & Di Rienzo, J. A. (2011). Valoración y análisis de la diversidad funcional y su relación con los servicios ecosistémicos (Issue January).
dc.relation.referencesChao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., & Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 45–67. https://doi.org/10.1890/13-0133.1
dc.relation.referencesChase, J. M., Kraft, N. J. B., Smith, K. G., Vellend, M., & Inouye, B. D. (2011). Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere, 2(2), art24. doi:10.1890/es10-00117.1
dc.relation.referencesChapin, F. S. (1993). EVOLUTION OF SUITES OF TRAITS IN RESPONSE TO ENVIRONMENTAL STRESS of low-resource environments share a common suite Most plants characteristic and nutrient low rates of growth , of traits , absorption , including and high concentrations low rates of tissu. The American Naturalist, 142(July), S78–S92.
dc.relation.referencesChapin, F. S., Schulze, E. D., & Mooney, H. A. (1990). The ecology and economics of storage in plants. Annual Review of Ecology and Systematics, 21(1), 423–447. https://doi.org/10.1146/annurev.es.21.110190.002231
dc.relation.referencesChapin, S. (1991). Integrated Responses of Plants to Stress. BioScience, 41(January 1991), 29–36. https://doi.org/10.2307/1311538
dc.relation.referencesChapin, S., Zavaleta, E. S., Eviner, V. T., Naylor, R., Vitousek, P. M., Reynolds, H., Hooper, D., Lavorel, S., Sala, O., Hobbie, S. E., Mack, M., & Díaz, S. (2000). Consequences of changing biodiversity. Nature, 405(6), 234–242. https://doi.org/10.1093/asj/sjx227
dc.relation.referencesChazdon, R. L., Finegan, B., Capers, R. S., Salgado-Negret, B., Casanoves, F., Boukili, V., & Norden, N. (2010). Composition and dynamics of functional groups of trees during tropical forest succession in northeastern Costa Rica. Biotropica, 42(1), 31–40. https://doi.org/10.1111/j.1744-7429.2009.00566.x
dc.relation.referencesClarke, P. J., Lawes, M. J., Midgley, J. J., Lamont, B. B., Ojeda, F., Burrows, G. E., Enright, N. J., & Knox, K. J. E. (2012). Resprouting as a key functional trait: How buds, protection and resources drive persistence after fire. New Phytologist, 197(1), 19–35. https://doi.org/10.1111/nph.12001
dc.relation.referencesCochrane, M. (2003). Fire science for rainforests. 421(February), 913–919.
dc.relation.referencesCochrane, M. A. (2009). Tropical Fire Ecology. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-77381-8
dc.relation.referencesCochrane, M. A., Alencar, A., Schulze, M. D., Jr, C. M. S., Nepstad, C., Lefebvre, P., Davidson, E. A., Cochranel, M. A., Alencar, A., & Schulze, M. D. (1999). Positive Feedbacks in the Fire Dynamic of Closed Canopy Tropical Forests Published by : American Association for the Advancement of Science Stable URL : https://www.jstor.org/stable/2898051 Linked references are available on JSTOR for this article : You m. 284(5421), 1832–1835.
dc.relation.referencesCochrane, M. A., & Schulze, M. D. (1999a). Fire as a Recurrent Event in Tropical Forests of the Eastern Amazon : Effects on Forest Structure , Biomass , and Species Composition ’. Biotropica, 31(March 1999), 2–16.
dc.relation.referencesCochrane, M. A., & Schulze, M. D. (1999b). Fire as a recurrent event in tropical forests of the eastern Amazon: Effects on forest structure, biomass, and species composition. Biotropica, 31(1), 2–16. https://doi.org/10.1111/j.1744-7429.1999.tb00112.x
dc.relation.referencesCornelissen, J. H. C., Amsterdam, V. U., Lavorel, S., & Diaz, S. (2003). Handbook of protocols for standardised and easy measurement of plant functional traits worldwide A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. January. https://doi.org/10.1071/BT02124
dc.relation.referencesCorrea-gómez, D. F., & Stevenson, P. R. (2010). ESTRUCTURA Y DIVERSIDAD DE BOSQUES DE LOS LLANOS ORIENTALES COLOMBIANOS ( RESERVA TOMO GRANDE , VICHADA ) Structure and diversity of riparian forests in a seasonal savanna of the Llanos Orientales. 1, 31–48.
dc.relation.referencesCorrêa Scalon, M., Maia Chaves Bicalho Domingos, F., Jonatar Alves da Cruz, W., Marimon Júnior, B. H., Schwantes Marimon, B., & Oliveras, I. (2020). Diversity of functional trade-offs enhances survival after fire in Neotropical savanna species. Journal of Vegetation Science, 31(1), 139–150. https://doi.org/10.1111/jvs.12823
dc.relation.referencesCousins, A. B., Mullendore, D. L., & Sonawane, B. V. (2020). Recent developments in mesophyll conductance in C3 , C4 , and crassulacean acid metabolism plants. 816–830. https://doi.org/10.1111/tpj.14664
dc.relation.referencesDa Silva, A. P. G., Mews, H. A., Marimon-Junior, B. H., De Oliveira, E. A., Morandi, P. S., Oliveras, I., & Marimon, B. S. (2017). Recurrent wildfires drive rapid taxonomic homogenization of seasonally flooded Neotropical forests. Environmental Conservation, 45(4), 378–386. https://doi.org/10.1017/S0376892918000127
dc.relation.referencesde Almeida Souza, A. H., Batalha, M. A., Casagrande, J. C., Rivaben, R., Assunção, V. A., Pott, A., & Alves Damasceno-Júnior, G. (2019). Fire can weaken or trigger functional responses of trees to flooding in wetland forest patches. Journal of Vegetation Science, 30(3), 521–532. https://doi.org/10.1111/jvs.12719
dc.relation.referencesDe Cáceres, M., Legendre, P., & Moretti, M. (2010). Improving indicator species analysis by combining groups of sites. Oikos, 119(10), 1674–1684. https://doi.org/10.1111/j.1600-0706.2010.18334.x
dc.relation.referencesDe Pauw K, Meeussen C, Govaert S, et al (2021) Taxonomic, phylogenetic and functional diversity of understorey plants respond differently to environmental conditions in European forest edges. J Ecol 109:2629–2648. https://doi.org/10.1111/1365-2745.13671
dc.relation.referencesDel Tredici, P. (2001). Sprouting in temperate trees: A morphological and ecological review. Botanical Review, 67(2), 121–140. https://doi.org/10.1007/BF02858075
dc.relation.referencesDíaz, S., Hodgson, J. G., Thompson, K., Cabido, M., Cornelissen, J. H. C., Jalili, A., Montserrat-Martí, G., Grime, J. P., Zarrinkamar, F., Asri, Y., Band, S. R., Basconcelo, S., Castro-Díez, P., Funes, G., Hamzehee, B., Khoshnevi, M., Pérez-Harguindeguy, N., Pérez-Rontomé, M. C., Shirvany, F. A., … Zak, M. R. (2004). The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science, 15(3), 295–304. https://doi.org/10.1111/j.1654-1103.2004.tb02266.x
dc.relation.referencesDíaz, Sandra, Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Colin Prentice, I., Garnier, E., Bönisch, G., Westoby, M., Poorter, H., Reich, P. B., Moles, A. T., Dickie, J., Gillison, A. N., Zanne, A. E., … Gorné, L. D. (2016). The global spectrum of plant form and function. Nature, 529(7585), 167–171. https://doi.org/10.1038/nature16489
dc.relation.referencesDíaz, Sandra, Lavorel, S., De Bello, F., Quétier, F., Grigulis, K., & Robson, M. (2007). Incorporating plant functional diversity effects in ecosystem service assessments. PNAS, 104(52), 20684–20689.
dc.relation.referencesDuane, A., Castellnou, M., & Brotons, L. (2021). Towards a comprehensive look at global drivers of novel extreme wildfire events. Climatic Change, 165(3–4), 1–21. https://doi.org/10.1007/s10584-021-03066-4
dc.relation.referencesDufrêne, M., & Legendre, P. (1997). Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs, 67(3), 345–366. https://doi.org/10.2307/2963459
dc.relation.referencesEllis, T. M., Bowman, D. M. J. S., Jain, P., Flannigan, M. D., & Williamson, G. J. (2022). Global increase in wildfire risk due to climate-driven declines in fuel moisture. Global Change Biology, 28(4), 1544–1559. https://doi.org/10.1111/gcb.16006
dc.relation.referencesEspelta JM, Cruz-Alonso V, Alfaro-Sánchez R, et al (2020) Functional diversity enhances tree growth and reduces herbivory damage in secondary broadleaf forests, but does not influence resilience to drought. J Appl Ecol 57:2362–2372. https://doi.org/10.1111/1365-2664.13728
dc.relation.referencesFAO. (2005). Actualización de la evaluación de los recursos forestales mundiales a 2005. Términos y definiciones.
dc.relation.referencesFernández-garcía, V., Marcos, E., Fulé, P. Z., Santana, V. M., & Calvo, L. (2020). Fire regimes shape diversity and traits of vegetation under different climatic conditions. Science of the Total Environment, 137137. https://doi.org/10.1016/j.scitotenv.2020.137137
dc.relation.referencesFinegan, B., Peña-CLaros, M., de Oliveira, A., Ascarrunz, N., Bret-Harte, M. S., Carreño-Rocabado, G., Casanoves, F., Díaz, S., Velepucha, P., Fernandez, F., Licona, J.-C., Lorenzo, L., Salgado-Negret, B., Vaz, M., & Poorter, L. (2015). Does functional trait diversity predict above-ground biomass and productivity of tropical forests ? Testing three alternative hypotheses. Journal of Eco, 103, 191–201. https://doi.org/10.1111/1365-2745.12346
dc.relation.referencesFichtler E, Licona J, Poorter L, et al (2010) The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol 481–492. https://doi.org/10.1111/j.1469-8137.2009.03092.x
dc.relation.referencesFlexas, J., Carriquí, M., Coopman, R. E., Gago, J., Galmés, J., Martorell, S., Morales, F., & Diaz-Espejo, A. (2014). Stomatal and mesophyll conductances to CO2 in different plant groups: Underrated factors for predicting leaf photosynthesis responses to climate change? Plant Science, 226, 41–48. https://doi.org/10.1016/j.plantsci.2014.06.011
dc.relation.referencesFlores BM, Fagoaga R, Nelson BW, Holmgren M (2016) Repeated fires trap Amazonian blackwater floodplains in an open vegetation state. J Appl Ecol 53:1597–1603. https://doi.org/10.1111/1365-2664.12687
dc.relation.referencesFlores BM, Holmgren M, Xu C, et al (2017) Floodplains as an Achilles’ heel of Amazonian forest resilience. Proc Natl Acad Sci U S A 114:4442–4446. https://doi.org/10.1073/pnas.1617988114
dc.relation.referencesFlores BM, Piedade MTF, Nelson BW (2014) Fire disturbance in Amazonian blackwater floodplain forests. Plant Ecol Divers 7:319–327. https://doi.org/10.1080/17550874.2012.716086
dc.relation.referencesFlory, S. L., Bauer, J., Phillips, R. P., & Clay, K. (2017). Effects of a non-native grass invasion decline over time. Journal of Ecology, 105(6), 1475–1484. https://doi.org/10.1111/1365-2745.12850
dc.relation.referencesFlory, S. L., Clay, K., Emery, S. M., Robb, J. R., & Winters, B. (2015). Fire and non-native grass invasion interact to suppress tree regeneration in temperate deciduous forests. Journal of Applied Ecology, 52(4), 992–1000. https://doi.org/10.1111/1365-2664.12437
dc.relation.referencesFrançois-Nicolas Robinne, Janice Burns, Promode Kant, Mike D. Flannigan, Michael Kleine, Bill de Groot, D. M. W. (2017). Global Fire Challenges in a Warming World (Issue 32).
dc.relation.referencesFreeman JE, Kobziar LN (2011) Tracking postfire successional trajectories in a plant community adapted to high-severity fire. Ecol Appl 21:61–74. https://doi.org/10.1890/09-0948.1
dc.relation.referencesFreeman JE, Kobziar LN, Leone EH, Williges K (2019) Drivers of plant functional group richness and beta diversity in fire‐dependent pine savannas. Divers Distrib 25:1024–1044. https://doi.org/10.1111/ddi.12926
dc.relation.referencesFréjaville, T., Vilà-Cabrera, A., Curt, T., & Carcaillet, C. (2017). Aridity and competition drive fire resistance trait covariation in mountain trees. Ecosphere, 9(12). https://doi.org/10.1002/ecs2.2493
dc.relation.referencesGassón, R. A. (2002). Orinoquia: The archaeology of the Orinoco River basin. Journal of World Prehistory, 16(3), 237–311. https://doi.org/10.1023/A:1020978518142
dc.relation.referencesGill, A. M., & Zylstra, P. (2005). Flammability of Australian forests. Australian Forestry, 68(2), 87–93. https://doi.org/10.1080/00049158.2005.10674951
dc.relation.referencesGonzález, T. M., González-Trujillo, J. D., Muñoz, A., & Armenteras, D. (2021). Differential effects of fire on the occupancy of small mammals in neotropical savanna-gallery forests. Perspectives in Ecology and Conservation, 19(2), 179–188. https://doi.org/10.1016/j.pecon.2021.03.005
dc.relation.referencesGrime, J. P. (1998). Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology, 86, 891–899.
dc.relation.referencesHacke UG, Sperry JS, Pockman WT, et al (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461. https://doi.org/10.1007/s004420100628
dc.relation.referencesHammond DH, Varner JM, Kush JS, Fan Z (2015) Contrasting sapling bark allocation of five southeastern USA hardwood tree species in a fire prone ecosystem. Ecosphere 6:. https://doi.org/10.1890/ES15-00065.1
dc.relation.referencesHaltenhoff, H. (2005). Manual de Efectos del Fuego y Evaluación de Daños (Vol. 2903).
dc.relation.referencesHarmon, M. E., & Hua, C. (1991). Coarse Woody Debris Dynamics i n Two Old-Growth Ecosystems Comparing a deciduous forest in China and a conifer forest in Oregon. BioScience, 41, 604–610.
dc.relation.referencesHenn, J. J., Buzzard, V., Enquist, B. J., Halbritter, A. H., Klanderud, K., Maitner, B. S., Michaletz, S. T., Pötsch, C., Seltzer, L., Telford, R. J., Yang, Y., Zhang, L., & Vandvik, V. (2017). Intraspecific trait variation and phenotypic plasticity mediate alpine plant species response to climate change. Frontiers in Plant Science, 871(November), 1–11. https://doi.org/10.3389/fpls.2017.01548
dc.relation.referencesHicke, J. A., Johnson, M. C., Hayes, J. L., & Preisler, H. K. (2012). Effects of bark beetle-caused tree mortality on wildfire. In Forest Ecology and Management (Vol. 271, pp. 81–90). https://doi.org/10.1016/j.foreco.2012.02.005
dc.relation.referencesHoffmann, W. A., Orthen, B., Kielse, P., & Vargas Do Nascimento, P. K. (2003). Comparative Fire Ecology of Tropical Savanna and Forest Trees Author. Functional Ecology, 17(6), 720–726.
dc.relation.referencesHolling, C. S. (1973). Resilience and Stability of Ecological Systems. Annual Review of Ecology and Systematics, 4(1973), 1–23.
dc.relation.referencesHolling, C. S. (1978). Adaptive environmental assessment and management.
dc.relation.referencesHolling, C. S. (1986). The Resilience of Terrestrial Ecosystems. Sustainable Development of the Biosphere, 292–320.
dc.relation.referencesHolling, C. S. (2001). Understanding the Complexity of Economic , Ecological , and Social Systems. Ecosystems, 4, 390–405. https://doi.org/10.1007/s10021-001-0101-5
dc.relation.referencesHsieh, T.C., Ma., K. and Chao, A. 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution , 7, 1451–1456. https://doi.org/10.1111/2041-210X.12613
dc.relation.referencesIDEAM. (2019). Boletín de predicción climática y recomendación sectorial para planear y decidir.
dc.relation.referencesIwasa, Y., & Kubo, T. (1997). Optimal size of storage for recovery after unpredictable disturbances. Evolutionary Ecology, 11, 41–65.
dc.relation.referencesJanssen TAJ, Hölttä T, Fleischer K, et al (2020) Wood allocation trade-offs between fiber wall, fiber lumen, and axial parenchyma drive drought resistance in neotropical trees. Plant Cell Environ 43:965–980. https://doi.org/10.1111/pce.13687
dc.relation.referencesJohnstone, J. F., Allen, C. D., Franklin, J. F., Frelich, L. E., Harvey, B. J., Higuera, P. E., Mack, M. C., Meentemeyer, R. K., Metz, M. R., Perry, G. L. W., Schoennagel, T., & Turner, M. G. (2015). Changing disturbance regimes , ecological memory , and forest resilience. https://doi.org/10.1002/fee.1311
dc.relation.referencesKeeley, J. E. (2009). Fire intensity, fire severity and burn severity: A brief review and suggested usage. International Journal of Wildland Fire, 18(1), 116–126. https://doi.org/10.1071/WF07049
dc.relation.referencesKeeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J., & Bradstock, R. A. (2011). Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science, 16(8), 406–411. https://doi.org/10.1016/j.tplants.2011.04.002
dc.relation.referencesKembel, S. W., & Cahill, J. J. (2011). Independent Evolution of Leaf and Root Traits within and among Temperate Grassland Plant Communities. PLoS ONE, 6(6), 12–15. https://doi.org/10.1371/journal.pone.0019992
dc.relation.referencesKerns, B. K., Tortorelli, C., Day, M. A., Nietupski, T., Barros, A. M. G., Kim, J. B., & Krawchuk, M. A. (2020). Invasive grasses: A new perfect storm for forested ecosystems? Forest Ecology and Management, 463(November 2019), 117985. https://doi.org/10.1016/j.foreco.2020.117985
dc.relation.referencesKrix, D., & Murray, B. (2017). Landscape variation in plant leaf fl ammability is driven by leaf traits responding to environmental gradients. Ecosphere, 9(February), 1–13. https://doi.org/10.1002/ecs2.2093
dc.relation.referencesKuusk V, Niinemets Ü, Valladares F (2018) Structural controls on photosynthetic capacity through juvenile-to-adult transition and needle ageing in Mediterranean pines. Funct Ecol 32:1479–1491. https://doi.org/10.1111/1365-2435.13087
dc.relation.referencesLaliberté, A. E., Legendre, P., Shipley, B., & Laliberté, M. E. (2022). Package ‘ FD .’
dc.relation.referencesLaliberte, E., Declerck, F., Metcalfe, J., Catterall, C. P., & Sa, D. (2010). Land-use intensification reduces functional redundancy and response diversity in plant communities. 76–86. https://doi.org/10.1111/j.1461-0248.2009.01403.x
dc.relation.referencesLasso, C. A., S, U. J., F, T., & A, R. (2010). Biodiversidad de la cuenca del Orinoco. In Biodiversidad en la cuenca del Orinoco: bases científicas para la identificación de áreas prioritarias para la conservación y uso sostenible de la biodiversidad.
dc.relation.referencesLasso, C., Trujillo, F., & Morales - Betancourt, M. A. (2020). Biodiversidad de la Reserva Natural Bojonawi, Vichada, Colombia: río Orinoco y planicie de inundación (Serie Edit, Issue June).
dc.relation.referencesLavorel, S, & Garnier, E. (2002). Predicting changes in community composition and ecosystem functioning from plant traits : Functional Ecology, 16, 545–556.
dc.relation.referencesLavorel, Sandra, McIntyre, S., Landsberg, J., & Forbes, T. D. A. (1997). Plant functional classifications: from general groups to specific groups based on response to disturbance. TREE, 12(11), 474–478.
dc.relation.referencesLavorel S, Grigulis K, McIntyre S, et al (2008) Assessing functional diversity in the field - Methodology matters! Funct Ecol 22:134–147. https://doi.org/10.1111/j.1365-2435.2007.01339.x
dc.relation.referencesLawes MJ, Midgley J, Lamont BB, Clarke PJ (2012) Tansley review Resprouting as a key functional trait : how buds , protection and resources drive persistence after fire Author for correspondence : https://doi.org/10.1111/nph.12001
dc.relation.referencesLebrija-Trejos, E., Pérez-GarcíA, E. A., Meave, J. A., Bongers, F., & Poorter, L. (2010). Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology, 91(2), 386–398. https://doi.org/10.1890/08-1449.1
dc.relation.referencesLevin, S. A., & Paine, R. T. (1974). Disturbance , Patch Formation , and Community Structure A =. Proceedings of the National Academy of Sciences, 71(7), 2744–2747.
dc.relation.referencesLiu Z, Jiang F, Li F, Jin G (2019) Coordination of intra and inter-species leaf traits according to leaf phenology and plant age for three temperate broadleaf species with different shade tolerances. For Ecol Manage 434:63–75
dc.relation.referencesLourenço‐de‐Moraes, R., Campos, F. S., Ferreira, R. B., Beard, K. H., Solé, M., Llorente, G. A., & Bastos, R. P. (2019). Functional traits explain amphibian distribution in the Brazilian Atlantic Forest. Journal of Biogeography. doi:10.1111/jbi.13727
dc.relation.referencesLohbeck, M., Poorter, L., Lebrija-Trejos, E., Nez-Ramos, M. M., Meave, J. A., Paz, H., Perez-Garcia, E. A., Romero-Perez, I. E., Tauro, A., & Bongers, F. (2013). Successional changes in functional composition contrast for dry and wet tropical forest. Ecology, 94(6), 1211–1216. https://doi.org/10.1890/12-1850.1
dc.relation.referencesLutes, D. C., & Keane, R. E. (2006). Fuel Load (FL) sampling method. In USDA Forest Service - General Technical Report RMRS-GTR (Issues 164 RMRS-GTR).
dc.relation.referencesLydersen, J. M., Collins, B. M., Knapp, E. E., Roller, G. B., & Stephens, S. (2015). Relating fuel loads to overstorey structure and composition in a fire-excluded Sierra Nevada mixed conifer forest. International Journal of Wildland Fire, 24(4), 484–494. https://doi.org/10.1071/WF13066
dc.relation.referencesMaracahipes, L., Marimon, B. S., Lenza, E., Marimon-Junior, B. H., De Oliveira, E. A., Mews, H. A., Gomes, L., & Feldpausch, T. R. (2014). Post-fire dynamics of woody vegetation in seasonally flooded forests (impucas) in the Cerrado-Amazonian Forest transition zone. Flora: Morphology, Distribution, Functional Ecology of Plants, 209(5–6), 260–270. https://doi.org/10.1016/j.flora.2014.02.008
dc.relation.referencesMartins, F. Q., & Batalha, M. A. (2006). Pollination systems and floral traits in cerrado woody species of the upper taquari region (central Brazil). Brazilian Journal of Biology, 66(2 A), 543–552. https://doi.org/10.1590/S1519-69842006000300021
dc.relation.referencesMason, N. W. H., & De Bello, F. (2013). Functional diversity: A tool for answering challenging ecological questions. Journal of Vegetation Science, 24(5), 777–780. https://doi.org/10.1111/jvs.12097
dc.relation.referencesMeza-Elizalde MC, Armenteras-Pascual D (2021) Edge influence on the microclimate and vegetation of fragments of a north Amazonian forest. For Ecol Manage 498:119546. https://doi.org/10.1016/j.foreco.2021.119546
dc.relation.referencesMcColl-Gausden, S. C., Bennett, L. T., Clarke, H. G., Ababei, D. A., & Penman, T. D. (2022). The fuel–climate–fire conundrum: How will fire regimes change in temperate eucalypt forests under climate change? Global Change Biology, 28(17), 5211–5226. https://doi.org/10.1111/gcb.16283
dc.relation.referencesMcLauchlan, K. K., Higuera, P. E., Miesel, J., Rogers, B. M., Schweitzer, J., Shuman, J. K., Tepley, A. J., Varner, J. M., Veblen, T. T., Adalsteinsson, S. A., Balch, J. K., Baker, P., Batllori, E., Bigio, E., Brando, P., Cattau, M., Chipman, M. L., Coen, J., Crandall, R., … Watts, A. C. (2020). Fire as a fundamental ecological process: Research advances and frontiers. Journal of Ecology, 108(5), 2047–2069. https://doi.org/10.1111/1365-2745.13403
dc.relation.referencesMeza-Elizalde, M. C., & Armenteras-Pascual, D. (2021). Edge influence on the microclimate and vegetation of fragments of a north Amazonian forest. Forest Ecology and Management, 498(June), 119546. https://doi.org/10.1016/j.foreco.2021.119546
dc.relation.referencesMeza, M. C., Espelta, J. M., González, T. M., & Armenteras, D. (2023). Fire reduces taxonomic and functional diversity in Neotropical moist seasonally flooded forests. Perspectives in Ecology and Conservation, 21, 101–111. https://doi.org/10.1016/j.pecon.2023.04.003
dc.relation.referencesMeza, M. C., Espelta, J. M., González, T. M., & Armenteras, D. (2023). Fire reduces taxonomic and functional diversity in Neotropical moist seasonally flooded forests. Perspectives in Ecology and Conservation, 21, 101–111. https://doi.org/10.1016/j.pecon.2023.04.003
dc.relation.referencesMichelaki, C., Fyllas, N. M., Galanidis, A., Aloupi, M., Evangelou, E., Arianoutsou, M., & Dimitrakopoulos, P. G. (2020). Adaptive flammability syndromes in thermo-Mediterranean vegetation, captured by alternative resource-use strategies. Science of the Total Environment, 718, 137437. https://doi.org/10.1016/j.scitotenv.2020.137437
dc.relation.referencesMiller, C., & Urban, D. L. (2000). Connectivity of forest fuels and surface fire regimes. Landscape Ecology, 15(2), 145–154. https://doi.org/10.1023/A:1008181313360
dc.relation.referencesMolina, E., Espelta, J. M., Pino, J., Bagaria, G., & Armenteras, D. (2017). Influence of clay licks on the diversity and structure of an Amazonian forest. Biotropica, 50(5), 740–749. https://doi.org/10.1111/btp.12568
dc.relation.referencesMontenegro, A. L., & Vargas, O. (2008). Atributos vitales de especies de borde en fragmentos de bosque altoandino (Reserva forestal municipal de Cogua, Colombia). Revista Biología Tropical, 56(June), 705–720. http://www.infoandina.org/sites/default/files/recursos/la_restauracion_ecologica_en_practica.pdf
dc.relation.referencesMori, A. S., Lertzman, K. P., & Gustafsson, L. (2017). Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology. Journal of Applied Ecology, 54(1), 12–27. https://doi.org/10.1111/1365-2664.12669
dc.relation.referencesMouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H., & Bellwood, D. R. (2013). A functional approach reveals community responses to disturbances. Trends in Ecology and Evolution, 28(3), 167–177. https://doi.org/10.1016/j.tree.2012.10.004
dc.relation.referencesMouillot, D., Mason, N. W. H., Dumay, O., & Wilson, J. (2004). Functional regularity : A neglected aspect of functional diversity Functional regularity : a neglected aspect of functional diversity. Oecologia, 142(February), 353–359. https://doi.org/10.1007/s00442-004-1744-7
dc.relation.referencesMyers, R. L. (2006). Convivir con el fuego: Manteniendo los ecosistemas y los medios de subsistencia mediante el Manejo Integral del Fuego.
dc.relation.referencesNadal, M., Flexas, J., & Gulías, J. (2017). Possible link between photosynthesis and leaf modulus of elasticity among vascular plants: a new player in leaf traits relationships? Ecology Letters, 21(9), 1372–1379. https://doi.org/10.1111/ele.13103
dc.relation.referencesNelson, K. N., Turner, M. G., Romme, W. H., & Tinker, D. B. (2016). Landscape variation in tree regeneration and snag fall drive fuel loads in 24-year old post-fire lodgepole pine forests. Ecological Applications, 26(8), 2422–2436. https://doi.org/10.1002/eap.1412
dc.relation.referencesNepstad, D., Carvalho, G., Cristina, A., Alencar, A., Paulo, Ä., Bishop, J., Moutinho, P., Lefebvre, P., Lopes, U., Jr, S., & Prins, E. (2001). Road paving , ® re regime feedbacks , and the future of Amazon forests. 154.
dc.relation.referencesNepstad, D. C., Tohver, I. M., Ray, D., Moutinho, P., & Cardinot, G. (2007). MORTALITY OF LARGE TREES AND LIANAS FOLLOWING EXPERIMENTAL DROUGHT IN AN AMAZON FOREST. In Ecology (Vol. 88, Issue 9).
dc.relation.referencesNeSmith, J. E., Twine, W., & Holdo, R. M. (2021). Interspecific variation in post-disturbance growth responses of a savanna tree community and its implications for escaping the fire trap. Biotropica, 53(3), 896–905. https://doi.org/10.1111/btp.12936
dc.relation.referencesNóbrega, C. C., Brando, P. M., Silvério, D. V., Maracahipes, L., & de Marco, P. (2019). Effects of experimental fires on the phylogenetic and functional diversity of woody species in a neotropical forest. Forest Ecology and Management, 450(January). https://doi.org/10.1016/j.foreco.2019.117497
dc.relation.referencesOjeda, F., Brun, F. G., Vergara, J. J., & Ojeda, F. (2005). Fire , rain and the selection of seeder and resprouter life-histories in fire-recruiting , woody plants. New Phytologist, 168, 155–165.
dc.relation.referencesOksanen, J; FG Blanchet; R Kindt; P Legendre; PR Minchin; RB O'Hara; GL Simpson; P Solymos; MH; Stevens & HH Wagner. 2013. Vegan: Community Ecology Package. R PackageVersion. 2.0-10. https://github.com/vegandevs/ vegan. 10/05/19.
dc.relation.referencesPachepsky, L. B., & Acock, B. (1998). EFFECT OF LEAF ANATOMY ON HYPOSTOMATOUS LEAF GAS EXCHANGE : A THEORETICAL STUDY WITH THE 2DLEAF MODEL EFFECT OF LEAF ANATOMY ON HYPOSTOMATOUS LEAF GAS EXCHANGE : A THEORETICAL STUDY. Biotronics, 27, 1–14.
dc.relation.referencesParks, S. A., Miller, C., Holsinger, L. M., Baggett, L. S., & Bird, B. J. (2016). Wildland fire limits subsequent fire occurrence. International Journal of Wildland Fire, 25(2), 182–190. https://doi.org/10.1071/WF15107
dc.relation.referencesPausas, J. G. (2015). Bark thickness and fire regime. Functional Ecology, 29(3), 315–327. https://doi.org/10.1111/1365-2435.12372
dc.relation.referencesPausas, J. G. (2017). Bark thickness and fire regime: another twist. New Phytologist, 213(1), 13–15. https://doi.org/10.1111/nph.14277
dc.relation.referencesPausas, J. G. (2019). Generalized fire response strategies in plants and animals. Oikos, 128(2), 147–153. https://doi.org/10.1111/oik.05907
dc.relation.referencesPausas, J. G., & Bradstock, R. A. (2007). Fire persistence traits of plants along a productivity and disturbance gradient in mediterranean shrublands of south-east Australia. Global Ecology and Biogeography, 16(3), 330–340. https://doi.org/10.1111/j.1466-8238.2006.00283.x
dc.relation.referencesPausas, J. G., Bradstock, R. A., Keith, D. A., Keeley, J. E., Hoffman, W., Kenny, B., Lloret, F., & Trabaud, L. (2004). Plant functional traits in relation to fire in crown-fire ecosystems. Ecology, 85(4), 1085–1100. https://doi.org/10.1890/02-4094
dc.relation.referencesPausas, J. G., & Keeley, J. E. (2017). Epicormic Resprouting in Fire-Prone Ecosystems. Trends in Plant Science, 22(12), 1008–1015. https://doi.org/10.1016/j.tplants.2017.08.010
dc.relation.referencesPeeler, J. L., & Smithwick, E. A. H. (2018). Exploring invasibility with species distribution modeling: How does fire promote cheatgrass (Bromus tectorum) invasion within lower montane forests? Diversity and Distributions, 24(9), 1308–1320. https://doi.org/10.1111/ddi.12765
dc.relation.referencesPeláez, B. C., López, B. L., González, J. M., Camey, J. M. R., & Merino, E. G. (2020). Sample size for estimating fuel loads in oak forest in the Mountain Region of Guerrero State. Revista Mexicana de Ciencias Forestales, 11(57). https://doi.org/10.29298/rmcf.v11i57.617
dc.relation.referencesPérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M. S., Cornwell, W. K., Craine, J. M., Gurvich, D. E., Urcelay, C., Veneklaas, E. J., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., De Vos, A. C., … Cornelissen, J. H. C. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61(3), 167–234. https://doi.org/10.1071/BT12225
dc.relation.referencesPickett, S. T. ., Kolasa, J., Armesto, J., & Collins, S. L. (1989). The ecological concept of disturbance and its expression at various hierarchical levels. Oikos, 54, 129–136.
dc.relation.referencesPickett, S. T. ., & White, P. S. (1985). The Ecology of Natural Disturbance and Patch Dynamics. https://doi.org/10.1016/B978-0-12-554520-4.50002-2
dc.relation.referencesPinard, M. A., Putz, F. E., & Licona, J. C. (2016). Tree mortality and vine proliferation following a wildfire in a subhumid tropical forest in eastern Bolivia. Forest Ecology and Management, 116, 247–252.
dc.relation.referencesPinzón, J., & Spence, J. R. (2010). Bark-dwelling spider assemblages (Araneae) in the boreal forest: Dominance, diversity, composition and life-histories. Journal of Insect Conservation, 14(5), 439–458. https://doi.org/10.1007/s10841-010-9273-7
dc.relation.referencesPoorter, L., Mcneil, A., Hurtado, V. H., Prins, H. H. T., & Putz, F. E. (2014). Bark traits and life-history strategies of tropical dry- and moist forest trees. Functional Ecology, 28(1), 232–242. https://doi.org/10.1111/1365-2435.12158
dc.relation.referencesPrieto, I., Querejeta, J. I., Segrestin, J., Volaire, F., & Roumet, C. (2017). Leaf carbon and oxygen isotopes are coordinated with the leaf economics spectrum in Mediterranean rangeland species. Functional Ecology, 32(3), 612–625. https://doi.org/10.1111/1365-2435.13025
dc.relation.referencesQuintero-Gradilla, S. D., Jardel-Peláez, E. J., Cuevas-Guzmán, R., García-Oliva, F., & Martínez-Yrizar, A. (2019). Cambio postincendio en la estructura y composición del estrato arbóreo y carga de combustibles en un bosque de Pinus douglasiana de México. Madera y Bosques, 25(3). https://doi.org/10.21829/myb.2019.2531888
dc.relation.referencesRangel-Ch., J. O. y A. Garzón. 1994. Aspectos de la estructura, de la diversidad y de la dinámica de la vegetación del parque regional Ucumari. Pp. 59-84. En: Rangel-Ch. (Ed.), Ucumarí: un caso típico de la diversidad biótica andina.Universidad Nacional de Colombia. Instituto de Ciencias Naturales, Corporación Autónoma Regional de Risaralda. Pereira, Colombia.
dc.relation.referencesRangel-Ch., J. O y A. Velázquez. 1997. Métodos de estudio de la vegetación. Pp. 59-87. En: Rangel- Ch. J.O (Ed.), Colombia Diversidad Biótica II. Instituto de Ciencias Naturales. Universidad Nacional de Colombia, Ideam. Bogotá, D. C., Colombia
dc.relation.referencesReed, C. C., Hood, S. M., Cluck, D. R., & Smith, S. L. (2023). Fuels change quickly after California drought and bark beetle outbreaks with implications for potential fire behavior and emissions. Fire Ecology, 19(1). https://doi.org/10.1186/s42408-023-00175-6
dc.relation.referencesResco de Dios, V., Fellows, A. W., Nolan, R. H., Boer, M. M., Bradstock, R. A., Domingo, F., & Goulden, M. L. (2015). A semi-mechanistic model for predicting the moisture content of fine litter. Agricultural and Forest Meteorology, 203, 64–73. https://doi.org/10.1016/j.agrformet.2015.01.002
dc.relation.referencesRiaño, D., Chuvieco, E., Salas, J., Palacios-Orueta, A., & Bastarrika, A. (2002). Generation of fuel type maps from Landsat TM images and ancillary data in Mediterranean ecosystems. Canadian Journal of Forest Research, 32(8), 1301–1315. https://doi.org/10.1139/x02-052
dc.relation.referencesRicotta, C. (2005). A note on functional diversity measures. Basic and Applied Ecology, 6, 479–486. https://doi.org/10.1016/j.baae.2005.02.008
dc.relation.referencesRistok, C., Weinhold, A., Ciobanu, M., Poeschl, Y., Roscher, C., Vergara, F., & Eisenhauer, N. (2020). Plant diversity effects on herbivory are mediated by soil biodiversity and plant chemistry. iDiv, 1–18.
dc.relation.referencesRiutta, T., Slade, E. M., Morecroft, M. D., Bebber, D. P., & Malhi, Y. (2014). Living on the edge: Quantifying the structure of a fragmented forest landscape in England. Landscape Ecology, 29(6), 949–961. https://doi.org/10.1007/s10980-014-0025-z
dc.relation.referencesRobinne, F. N., Bladon, K. D., Miller, C., Parisien, M. A., Mathieu, J., & Flannigan, M. D. (2017). A spatial evaluation of global wildfire-water risks to human and natural systems. Science of the Total Environment, 610–611, 1193–1206. https://doi.org/10.1016/j.scitotenv.2017.08.112
dc.relation.referencesRomero-Ruiz, M., Etter, A., Sarmiento, A., & Tansey, K. (2010). Spatial and temporal variability of fires in relation to ecosystems, land tenure and rainfall in savannas of northern South America. Global Change Biology, 16(7), 2013–2023. https://doi.org/10.1111/j.1365-2486.2009.02081.x
dc.relation.referencesRomero-ruiz, M. H., Flantua, S. G. A., Tansey, K., & Berrio, J. C. (2011). Landscape transformations in savannas of northern South America : Land use / cover changes since 1987 in the Llanos Orientales of Colombia. Applied Geography, 32(2), 766–776. https://doi.org/10.1016/j.apgeog.2011.08.010
dc.relation.referencesRomero, C. (2014). Bark structure and functional ecology. Bark: Use, Management, and Commerce in Africa, 17(1967), 5–25.
dc.relation.referencesRykiel, E. (1985). Towards a definition of ecological disturbance. Australian Journal of Ecology, 10, 361–365.
dc.relation.referencesSalazar, N., Meza, M. C., Espelta, J. M., & Armenteras, D. (2020). Post-fire responses of Quercus humboldtii mediated by some functional traits in the forests of the tropical Andes. Global Ecology and Conservation, 22. https://doi.org/10.1016/j.gecco.2020.e01021
dc.relation.referencesSalgado-Negret, B. (2007). Definición de tipos funcionales de especies arbóreas y caracterización de su respuesta a diferentes intensidades de perturbación en un bosque muy húmedo tropical Mesoamericano. Centro Agronómico Tropical de Investigación y Enseñanza - CATIE.
dc.relation.referencesSalgado, B. (2015). La Ecología Funcional de la biodiversidad: estudio, manejo y conservación como aproximación al protocolos y aplicaciones (B. S. Negret (ed.); Editorial).
dc.relation.referencesSilva CVJ, Aragão LEOC, Barlow J, et al (2018) Drought-induced Amazonian wildfires instigate a decadal-scale disruption of forest carbon dynamics. Philos Trans R Soc B Biol Sci 373:20180043. https://doi.org/10.1098/rstb.2018.0043
dc.relation.referencesScott, J. H., & Reinhardt, E. D. (2001). Assessing crown fire potential by linking models of surface and crown fire behavior. In USDA Forest Service - Research Paper RMRS-RP (Issues 29 RMRS-RP). https://doi.org/10.2737/RMRS-RP-29
dc.relation.referencesScott, J. H., & Burgan, R. E. (2005). Standard fire behavior fuel models: A comprehensive set for use with Rothermel’s surface fire spread model. USDA Forest Service - General Technical Report RMRS-GTR, 153 RMRS-GTR, 1–76. https://doi.org/10.2737/RMRS-GTR-153
dc.relation.referencesShlisky, A., Waugh, J., Gonzalez, P., Gonzalez, M., Manta, M., Santoso, H., Alvarado, E., Ainuddin, A., Rodríguez-trejo, D. A., & Swaty, R. (2005). Fire , ecosystems and people : Threats and strategies for global biodiversity Introduction : Fire is a Global Conservation Issue. The George Wright Forum, 22 (4), 78–87.
dc.relation.referencesSilva, C. V. J., Aragão, L. E. O. C., Barlow, J., Espirito-Santo, F., Young, P. J., Anderson, L. O., Berenguer, E., Brasil, I., Brown, I. F., Castro, B., Farias, R., Ferreira, J., França, F., Graça, P. M. L. A., Kirsten, L., Lopes, A. P., Salimon, C., Scaranello, M. A., Seixas, M., … Xaud, H. A. M. (2017). Drought-induced Amazonian wildfires instigate a decadal-scale disruption of forest carbon dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1760). https://doi.org/10.1098/rstb.2017.0043
dc.relation.referencesSikkink, P. G., & Keane, R. E. (2012). Predicting Fire Severity Using Surface Fuels and Moisture. http://www.fs.fed.us/rm/publications
dc.relation.referencesSilvério, D. V., Brando, P. M., Balch, J. K., Putz, F. E., Nepstad, D. C., Oliveira-Santos, C., & Bustamante, M. M. C. (2013). Testing the Amazon savannization hypothesis: Fire effects on invasion of a neotropical forest by native cerrado and exotic pasture grasses. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1619). https://doi.org/10.1098/rstb.2012.0427
dc.relation.referencesSlijepcevic, A., Anderson, W. R., Matthews, S., & Anderson, D. H. (2015). Evaluating models to predict daily fine fuel moisture content in eucalypt forest. Forest Ecology and Management, 335, 261–269. https://doi.org/10.1016/j.foreco.2014.09.040
dc.relation.referencesSocolar JB, Gilroy JJ, Kunin WE, Edwards DP (2016) How Should Beta-Diversity Inform Biodiversity Conservation? Trends Ecol Evol 31:67–80. https://doi.org/10.1016/j.tree.2015.11.005
dc.relation.referencesStevens-Rumann, C. S., Kemp, K. B., Higuera, P. E., Harvey, B. J., Rother, M. T., Donato, D. C., Morgan, P., & Veblen, T. T. (2017). Evidence for declining forest resilience to wildfires under climate change. Ecology Letters, 21(2), 243–252. https://doi.org/10.1111/ele.12889
dc.relation.referencesStreit, H., Menezes, L. S., Pillar, V. D., & Overbeck, G. E. (2022). Intraspecific trait variation of grassland species in response to grazing depends on resource acquisition strategy. Journal of Vegetation Science, 33(3), 1–12. https://doi.org/10.1111/jvs.13129
dc.relation.referencesSuding, K., Lavorel, S., Chapin, F. S., Cornelissen, J. H. C., Díaz, S., Garnier, E., Goldberg, D. E., Hooper, D., Jackson, S., & Navas, M. (2008). Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Global Change Biology, 14(May), 1125–1140. https://doi.org/10.1111/j.1365-2486.2008.01557.x
dc.relation.referencesSullivan, A. L., Surawski, N. C., Crawford, D., Hurley, R. J., Volkova, L., Weston, C. J., & Meyer, C. P. (2017). Effect of woody debris on the rate of spread of surface fires in forest fuels in a combustion wind tunnel. Forest Ecology and Management, 424(February), 236–245. https://doi.org/10.1016/j.foreco.2017.04.039
dc.relation.referencesSullivan, A. L., Surawski, N. C., Crawford, D., Hurley, R. J., Volkova, L., Weston, C. J., & Meyer, C. P. (2018). Effect of woody debris on the rate of spread of surface fires in forest fuels in a combustion wind tunnel. Forest Ecology and Management, 424, 236–245. https://doi.org/10.1016/j.foreco.2018.04.039
dc.relation.referencesTortorelli, C. M., Krawchuk, M. A., & Kerns, B. K. (2020). Expanding the invasion footprint: Ventenata dubia and relationships to wildfire, environment, and plant communities in the Blue Mountains of the Inland Northwest, USA. Applied Vegetation Science, 23(4), 562–574. https://doi.org/10.1111/avsc.12511
dc.relation.referencesTortorelli, C. M., Kim, J. B., Vaillant, N. M., Riley, K., Dye, A., Nietupski, T. C., Vogler, K. C., Lemons, R., Day, M., Krawchuk, M. A., & Kerns, B. K. (2023). Feeding the fire: Annual grass invasion facilitates modeled fire spread across Inland Northwest forest-mosaic landscapes. Ecosphere, 14(2), 1–19. https://doi.org/10.1002/ecs2.4413
dc.relation.referencesTuo, B., Yan, E. R., Guo, C., Ci, H., Berg, M. P., & Cornelissen, J. H. C. (2021). Influences of the bark economics spectrum and positive termite feedback on bark and xylem decomposition. Ecology, 102(10), 1–11. https://doi.org/10.1002/ecy.3480
dc.relation.referencesTurner, M. G. (2010). Disturbance and landscape dynamics in a changing world. Ecology, 91 (10), 2833–2849. https://doi.org/10.1358/dot.2011.47.2.1576694
dc.relation.referencesVan Leeuwen, T. T., Van Der Werf, G. R., Hoffmann, A. A., Detmers, R. G., Rücker, G., French, N. H. F., Archibald, S., Carvalho, J. A., Cook, G. D., De Groot, W. J., Hély, C., Kasischke, E. S., Kloster, S., McCarty, J. L., Pettinari, M. L., Savadogo, P., Alvarado, E. C., Boschetti, L., Manuri, S., … Trollope, W. S. W. (2014). Biomass burning fuel consumption rates: A field measurement database. Biogeosciences, 11(24), 7305–7329. https://doi.org/10.5194/bg-11-7305-2014
dc.relation.referencesVan Der Werf G (2018) Fire greenhouse gas emissions (in CO2 equivalents) for various fire categories based on the Global Fire Emissions Database (GFED4s). In: Glob. Fire Data. https://www.globalfiredata.org/
dc.relation.referencesVan Gelder HA, Poorter L, Sterck FJ (2006) Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community. New Phytol 171:367–378. https://doi.org/10.1111/j.1469-8137.2006.01757.x
dc.relation.referencesVeldman, J. W., & Putz, F. E. (2011). Grass-dominated vegetation, not species-diverse natural savanna, replaces degraded tropical forests on the southern edge of the Amazon Basin. Biological Conservation, 144(5), 1419–1429. https://doi.org/10.1016/j.biocon.2011.01.011
dc.relation.referencesVetaas OR, Shrestha KB, Sharma LN (2021) Changes in plant species richness after cessation of forest disturbance. Appl Veg Sci 24:1–11. https://doi.org/10.1111/avsc.12545
dc.relation.referencesVerdú, M., & Pausas, J. G. (2007). Fire drives phylogenetic clustering in Mediterranean Basin woody plant communities. Journal of Ecology, 95(6), 1316–1323. https://doi.org/10.1111/j.1365-2745.2007.01300.x
dc.relation.referencesVillar, R., Ruiz-Robleto, J., Quero, J. L., Poorter, H., Valladares, F., & Marañón, T. (2004). Tasas de crecimiento en especies leñosas: aspectos funcionales e implicaciones ecológicas. In Ecología del bosque mediterráneo en un mundo cambiante .
dc.relation.referencesViolle, C., Navas, M., Vile, D., Kazakou, E., & Fortunel, C. (2007). Let the concept of trait be functional ! Oikos, 116(January), 882–892. https://doi.org/10.1111/j.2007.0030-1299.15559.x
dc.relation.referencesWalker, B., Holling, C. S., Carpenter, S. R., & Kinzig, A. (2004). Resilience , Adaptability and Transformability in Social – ecological Systems. Ecology and Society, 9(2), 5.
dc.relation.referencesWelles, S. R., & Funk, J. L. (2021). Patterns of intraspecific trait variation along an aridity gradient suggest both drought escape and drought tolerance strategies in an invasive herb. Annals of Botany, 127(4), 461–471. https://doi.org/10.1093/aob/mcaa173
dc.relation.referencesWhite, P. S., & Jentsch, A. (2001). The Search for Generality in Studies of Disturbance and
dc.relation.referencesWoodward, F., & Cramer, W. (1996). Plant functional types and climatic changes : Introduction. Journal of V, 7, 306–308.
dc.relation.referencesWotton, B. M. (2009). Interpreting and using outputs from the Canadian Forest Fire Danger Rating System in research applications. Environmental and Ecological Statistics, 16(2), 107–131. https://doi.org/10.1007/s10651-007-0084-2
dc.relation.referencesWright, I. J., Reich, P. B., Cornelissen, J. H. C., Falster, D. S., Garnier, E., Hikosaka, K., Lamont, B. B., Lee, W., Oleksyn, J., Osada, N., Poorter, H., Villar, R., Warton, D. I., & Westoby, M. (2005). Assessing the generality of global leaf trait relationships. New Phytologist, 166(2), 485–496. https://doi.org/10.1111/j.1469-8137.2005.01349.x
dc.relation.referencesWright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., & Gulias, J. (2004). The worldwide leaf economics spectrum. Nature, 12, 821–827.
dc.relation.referencesZanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., Miller, R. B., Swenson, N. G., Wiemann, M. C., & Chave, J. (2009). Global wood density database. http://hdl.handle.net/10255/dryad.235.
dc.relation.referencesZhang S, Zang R (2021) Tropical forests are vulnerable in terms of functional redundancy. Biol Conserv 262:109326. https://doi.org/10.1016/j.biocon.2021.109326
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembIncendios forestales
dc.subject.lembForest fires
dc.subject.lembAdaptación (Biología)
dc.subject.lembAdaptation (biology)
dc.subject.lembEstrés (Fisiología)
dc.subject.lembStress (Physiology)
dc.subject.proposalEcología del fuego
dc.subject.proposalFire Ecology
dc.subject.proposalCombustibles forestales
dc.subject.proposalForest fuels
dc.subject.proposalRasgos de plantas
dc.subject.proposalPlant traits
dc.subject.proposalOrinoquía
dc.subject.proposalOrinoco Basin
dc.subject.proposalIncendios forestales
dc.subject.proposalForest fires
dc.subject.proposalForest fuels load
dc.title.translatedForest fire effects on the resilience of lowland tropical forest
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleDegradation of Tropical Forest in Colombia: Impacts of Fire
oaire.awardtitleAdaptación de la vegetación al cambio climático y al fuego en tierras bajas de la Orinoquia
oaire.awardtitleDiseño participativo de estrategias para la reducción de incendios forestales, la conservación de la biodiversidad y el desarrollo regional en paisajes multifuncionales del Vichada
oaire.fundernameUSAID - Asociación para una mayor participación en la investigación (PEER)
oaire.fundernameDepartamento Administrativo de Ciencia, Tecnología e Innovación de Colombia (COLCIENCIAS)
oaire.fundernameSistema General de Regalías - Departamento del Vichada
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.orcidMeza Elizalde, María Contanza [0000000298332980]
dc.contributor.researchgateMeza Elizalde, Maria Constanza [Maria-Constanza-Meza-Elizalde]
dc.subject.wikidataEcología de sistemas
dc.subject.wikidataSystems ecology
dc.subject.wikidataWildfire


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito