Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorChejne Janna, Farid
dc.contributor.advisorTamayo Londoño, Andrea
dc.contributor.authorOrtiz Cardona, Michell
dc.date.accessioned2024-01-26T18:30:20Z
dc.date.available2024-01-26T18:30:20Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85467
dc.descriptionIlustraciones
dc.description.abstractAnaerobic digestion is a natural process by which microorganisms degrade organic matter. This occurs in the absence of oxygen and its products are biogas (CH4, CO2 and traces of other gases) and an aqueous phase of suspended solids. The functioning of these systems is strongly linked to the stability of the medium in which the microorganisms coexist, for which the addition of carbonaceous materials such as biochar has been investigated. Biochar is the product of the thermochemical conversion of biomass in the absence of oxygen. Its addition to anaerobic digestion allows increasing the buffering capacity of the medium, as well as decreasing the concentration of inhibitors and working as a support for biofilm formation. In the development of this work, it is intended to evaluate the possible improvements in the yield, quality and stability of biogas obtained using biochar in anaerobic digestion. The biochar was obtained by slow pyrolysis from palm kernel shell and pruning residues, then it was used in laboratory-scale PBM assays and in pilot-scale digestion tests in a UASB system. CH4 quantification was performed using the manometric and volumetric methods, in addition to adjusting the PMB results according to certain kinetic models. A 30% yield of palm kernel shell biochar was obtained at 550°C, in addition its microporous structure and its CIC of 2.37 meq/100g were determined, ideal qualities for its addition in anaerobic digestion tests. In the PBM tests, an increase of between 44% - 53% of the volume of CH4 per gram of SV was obtained in cellulose digestion (positive control) and 12.6% for food waste. In the kinetic study, adjustments with R2 higher than 0.99 were obtained. In the UASB tests, an 80% increase in volatile solids (VS) removal per day was obtained, while the daily production of CH4 (l CH4/d) increased by 67.4%. The percentage of CH4 in biogas increased by 14% after the implementation of biochar, reaching a maximum peak of 95% of the fuel. Finally, the positive effects of the addition of palm kernel shell biochar on the anaerobic digestion of cellulose and food waste are identified, both in laboratory scale PBM assays and in pilot scale UASB systems.
dc.description.abstractLa digestión anaerobia es un proceso natural mediante el cual los microrganismos degradan la materia orgánica, esto ocurre en ausencia de oxígeno y sus productos son el biogás (CH4, CO2 y trazas de otros gases) y una fase acuosa de sólidos suspendido. El funcionamiento de estos sistemas se encuentra fuertemente ligado a la estabilidad del medio en que coexisten los microrganismos, para esto se ha investigado la adición de materiales carbonosos tales como el biochar. El biochar es el producto de la conversión termoquímica de la biomasa en ausencia de oxígeno, su adición a la digestión anaerobia permite incrementar la capacidad buffer del medio, además de que disminuye la concentración de inhibidores y funciona como soporte para la formación de biopelículas. En el desarrollo de este trabajo se evaluaron las posibles mejoras en el rendimiento, la calidad y la estabilidad del biogás obtenidas por el uso del biochar en la digestión anaerobia. El biochar fue obtenido mediante pirólisis lenta a partir de cuesco de palma y residuos de poda, luego fue usado en ensayos de PBM a escala de laboratorio y en pruebas de digestión a escala piloto en un sistema UASB. La cuantificación del CH4 se realizó con los métodos manométrico y volumétrico, además del ajuste de los resultados de PMB según modelos cinéticos determinados. Se obtuvo un rendimiento del 30% de biochar de cuesco de palma a 550°C, además se determinó su estructura microporosa y su CIC de 2,37 meq/100g, cualidades idóneas para su adición en las pruebas de digestión anaerobia. En las pruebas PBM se obtuvo un aumento de entre 44% - 53% del volumen de CH4 por gramo de sólidos volátiles (SV) en la digestión de celulosa (control positivo) y de 12,6% para residuos de restaurante. En el estudio cinético se obtuvieron ajustes con R2 superiores a 0,99. En las pruebas UASB se observó un aumento de la remoción de SV por día del 80%, mientras que la producción diaria de CH4 (l CH4/d) incrementó en 67,4%. El porcentaje de CH4 en el biogás aumentó un 14% tras la implementación del biochar, teniendo un pico máximo de 95% del combustible. Finalmente se identifican los efectos positivos de la adición de biochar de cuesco de palma en la digestión anaerobia de celulosa y residuos de restaurante, tanto en ensayos PBM a escala de laboratorio como en sistemas UASB a escala piloto. (texto tomado de la fuente)
dc.description.sponsorshipProyecto financiado por el ministerio de ciencia, tecnología e innovación en la convocatoria 890 de 2020, contrato 2022-0666
dc.format.extent66 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleAdición de biochar a la digestión anaerobia para una adecuada valorización de biomasa residual
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería Química
dc.contributor.researchgroupTermodinámica Aplicada y Energías Alternativas
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Química
dc.description.researchareaAprovechamiento de biomasa residual
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedLaReferencia
dc.relation.referencesJ. Rodríguez, J. Maldonado, A. Cajiao, and J. Ortiz, “Tratamiento De Lixiviados En Filtros Anaerobios De Flujo Asendente De Dos Fases,” Revista Ambiental Agua, Aire Y Suelo, vol. 7, no. 1, 2016, doi: 10.24054/19009178.v1.n1.2016.3262.
dc.relation.referencesH. I. Abdel-Shafy and M. S. M. Mansour, “Solid waste issue: Sources, composition, disposal, recycling, and valorization,” Egyptian Journal of Petroleum, vol. 27, no. 4, pp. 1275–1290, 2018, doi: 10.1016/j.ejpe.2018.07.003.
dc.relation.referencesAlcaldía de Medellín, “Plan de Gestión Integral de Residuos Sólidos,” no. 57, p. 20, 2019.
dc.relation.referencesCorporación Ruta N, “OBSERVATORIO CT + i: Informe 1. Área de oportunidad Waste-to-Energy – Residuos Sólidos Urbanos,” 2016.
dc.relation.referencesCIDET, “Disponibilidad de biomasa residual y su potencial en colombia • CIDET.” Accessed: Oct. 10, 2020. [Online]. Available: https://cidet.org.co/disponibilidad-de-biomasa-residual-y-su-potencial-en-colombia/
dc.relation.referencesDFM (Directorio Forestal Maderero), “¿Qué es el carbono biogénico? - Forestal Maderero.” Accessed: Nov. 12, 2020. [Online]. Available: https://www.forestalmaderero.com/articulos/item/que-es-el-carbono-biogenico.html
dc.relation.referencesS. O. Masebinu, E. T. Akinlabi, E. Muzenda, and A. O. Aboyade, “A review of biochar properties and their roles in mitigating challenges with anaerobic digestion,” Renewable and Sustainable Energy Reviews, vol. 103, no. January, pp. 291–307, 2019, doi: 10.1016/j.rser.2018.12.048.
dc.relation.referencesN. Hagemann, K. Spokas, H. P. Schmidt, R. Kägi, M. A. Böhler, and T. D. Bucheli, “Activated carbon, biochar and charcoal: Linkages and synergies across pyrogenic carbon’s ABCs,” Water (Switzerland), vol. 10, no. 2, pp. 1–19, 2018, doi: 10.3390/w10020182.
dc.relation.referencesJ. Lehmann, “Terra preta nova - Where to from here?,” Amazonian Dark Earths: Wim Sombroek’s Vision, pp. 473–486, 2009, doi: 10.1007/978-1-4020-9031-8_28.
dc.relation.referencesH. Groot, K. Fernholz, M. Frank, J. Howe, J. Bowyer, and S. Bratkovich, “Biochar 101: An Introduction to an Ancient Product Offering Modern Opportunities,” Dovetail Partners INC, vol. 9, no. 1, pp. 1–6, 2016.
dc.relation.referencesD. Mckey and S. Rostain, “Farming Technology in Amazonia,” Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures, no. March 2016, 2015, doi: 10.1007/978-94-007-3934-5.
dc.relation.referencesJ. Lehmann and S. Joseph, Biochar for Environmental Management. 2009.
dc.relation.referencesB. Glaser, J. Lehmann, and W. Zech, “Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - A review,” Biology and Fertility of Soils, vol. 35, no. 4, pp. 219–230, 2002, doi: 10.1007/s00374-002-0466-4.
dc.relation.referencesM. Ogawa and Y. Okimori, “Pioneering works in biochar research, Japan,” Australian Journal of Soil Research, vol. 48, no. 6–7, pp. 489–500, 2010, doi: 10.1071/SR10006.
dc.relation.referencesIBI, “FAQs - International BIochar Initiative.” Accessed: Nov. 01, 2021. [Online]. Available: https://biochar-international.org/faqs/#1521824701674-1093ca88-fd85
dc.relation.referencesEBC, “Guidelines for a Sustainable Production of Biochar,” European Biochar Foundation, no. September, pp. 1–22, 2012, doi: 10.13140/RG.2.1.4658.7043.
dc.relation.referencesF. Verheijen, S. Jeffery, A. C. Bastos, M. Van Der Velde, and I. Diafas, Biochar Application to Soils: A Critical Scientific Review of Effects on Soil Properties, Processes and Functions, vol. 8, no. 4. 2010. doi: 10.2788/472.
dc.relation.referencesM. Keiluweit, P. S. Nico, M. G. Johnson, and M. KLEBER, “Dynamic Molecular Structure of Plant Biomass-derived Black Carbon(Biochar)- Supporting Information -,” Environ. Sci. Technol., vol. 44, no. 4, pp. 1247–1253, 2010.
dc.relation.referencesS. Shackley, S. Sohi, P. Brownsort, and S. Carter, “An assessment of the benefits and issues associated with the application of biochar to soil—a report commissioned by the United Kingdom Department for,” UK Biochar Research Center, pp. 1–132, 2010.
dc.relation.referencesS. P. Sohi, E. Krull, E. Lopez-Capel, and R. Bol, “A review of biochar and its use and function in soil,” Advances in Agronomy, vol. 105, no. 1, pp. 47–82, 2010, doi: 10.1016/S0065-2113(10)05002-9.
dc.relation.referencesFood and Agriculture Organization of the United Nations (FAO), “Industrial charcoal making,” FAO FORESTRY PAPER, vol. 63, 1985.
dc.relation.referencesFood and Agriculture Organization of the United Nations (FAO), “Simple technologies for charcoal making,” FAO FORESTRY PAPER, vol. 41, 1987.
dc.relation.referencesJ. J. Schanz and R. H. Parry, “THE ACTIVATED CARBON INDUSTRY,” Industrial & Engineering Chemistry, vol. 54, no. 12, pp. 24–28, Dec. 1962, doi: 10.1021/ie50636a005.
dc.relation.referencesH. Marsh and F. Rodríguez-Reinoso, Activated Carbon. Elsevier Ltd, 2006. doi: 10.1016/B978-0-08-044463-5.X5013-4.
dc.relation.referencesJ. Lehmann and S. Joseph, Biochar for environmental management: science, technology and implementation. Taylor & Francis, 2015.
dc.relation.referencesEUROCARB, “¿Qué es el carbón activado?,” https://www.eurocarb.com/es/productos/que-es-el-carbon-activado/. [Online]. Available: https://www.eurocarb.com/es/productos/que-es-el-carbon-activado/
dc.relation.referencesFSC, “Riesgos para la integridad en las cadenas de suministro de carbón vegetal.” [Online]. Available: https://fsc.org/es/newscentre/integrity-and-disputes/riesgos-para-la-integridad-en-las-cadenas-de-suministro-de-carbon
dc.relation.referencesBiogreen, “Biochar – turn waste into value,” https://www.biogreen-energy.com/biochar-carbon-negative. [Online]. Available: https://www.biogreen-energy.com/biochar-carbon-negative
dc.relation.referencesE. Goldberg, Black carbon in the environment: properties and distribution. John Wiley & Sons Ltd, 1985.
dc.relation.referencesM. A. Díez, R. Alvarez, and C. Barriocanal, “Coal for metallurgical coke production: Predictions of coke quality and future requirements for cokemaking,” International Journal of Coal Geology, vol. 50, no. 1–4, pp. 389–412, 2002, doi: 10.1016/S0166-5162(02)00123-4.
dc.relation.referencesS. Meyer, B. Glaser, and P. Quicker, “Technical, economical, and climate-related aspects of biochar production technologies: A literature review,” Environmental Science and Technology, vol. 45, no. 22, pp. 9473–9483, 2011, doi: 10.1021/es201792c.
dc.relation.referencesK. Weber and P. Quicker, “Properties of biochar,” Fuel, vol. 217, no. September 2017, pp. 240–261, 2018, doi: 10.1016/j.fuel.2017.12.054.
dc.relation.referencesA. V. Bridgwater, “The production of biofuels and renewable chemicals by fast pyrolysis of biomass,” International Journal of Global Energy Issues, vol. 27, no. 2, pp. 160–203, 2007, doi: 10.1504/IJGEI.2007.013654.
dc.relation.referencesIEA_Bioenergy, “IEA Bioenergy Task 34 Pyrolysis,” IEA Bioenergy Agreement Task 34 Newsletter — PyNe, vol. 27, no. June 2010, pp. 1–32, 2010.
dc.relation.referencesP. Basu, Biomass Gasification, Pyrolysis, and Torrefaction Practical Design and Theory, Second Edi. Dalhousee University and Greenfield Research Incorporated, 2013.
dc.relation.referencesJ. Lehmann and S. Joseph, Biochar for Environmental Management. Routledge, 2015. doi: 10.4324/9780203762264.
dc.relation.referencesJ. A. Garcia-Nunez et al., “Historical Developments of Pyrolysis Reactors: A Review,” Energy and Fuels, vol. 31, no. 6, pp. 5751–5775, 2017, doi: 10.1021/acs.energyfuels.7b00641.
dc.relation.referencesH. Nsamba, S. Hale, G. Cornelissen, and R. Bachmann, “Sustainable technologies for smallscale biochar production-a review,” J Sustain Bioenergy Syst, no. 5, pp. 10–31, 2015.
dc.relation.referencesS. Rincón, A. Gómez, and W. Klose, Gasificación de biomasa residual de procesamiento industrial. Kassel: Kassel University Press, 2011.
dc.relation.referencesL. Zhao and X. Cao, “Heterogeneity of biochar properties as a function of feedstock sources and production temperatures,” Journal of hazardous Materials, vol. 257, pp. 1–9, 2013, doi: 10.1016/j.jhazmat.2013.04.015.
dc.relation.referencesL. Leng and H. Huang, “An overview of the effect of pyrolysis process parameters on biochar stability,” Bioresource Technology, no. September, 2018, doi: 10.1016/j.biortech.2018.09.030.
dc.relation.referencesM. Ahmad et al., “Biochar as a sorbent for contaminant management in soil and water: A review,” Chemosphere, vol. 99, pp. 19–33, 2014, doi: 10.1016/j.chemosphere.2013.10.071.
dc.relation.referencesJ. Wang and S. Wang, “Preparation, modification and environmental application of biochar: A review,” Journal of Cleaner Production, vol. 227, pp. 1002–1022, 2019, doi: 10.1016/j.jclepro.2019.04.282.
dc.relation.referencesO. Rivas Solano, M. Faith Vargas, and R. Guillén Watson, “Biodigestores: factores químicos, físicos y biológicos relacionados con su productividad,” Tecnología en Marcha, vol. 23, no. 1, pp. 39–46, 2010.
dc.relation.referencesS. R. Suárez, “Tecnologías de biodigestión aplicadas al turismo,” 2015, doi: 10.1017/CBO9781107415324.004.
dc.relation.referencesC. Sosa, “Parámetros de control y monitoreo del proceso en digestores anaerobios de pequeña escala y diferentes tecnologías,” 2015.
dc.relation.referencesK. D. D. A. Frigo, A. Feiden, N. B. Galant, F. Santos, A. G. Mari, and E. P. Frigo, “Biodigestores: Seus Modelos E Aplicações,” Acta Iguazu, vol. 4, no. 1, pp. 57–65, 2015.
dc.relation.referencesE. R. Brusi and M. Navaz, “Informe técnico para la construcción de sistemas de tratamiento y aprovechamiento de residuos del café,” Ingeniería Sin Fronteras, p. 60, 2017.
dc.relation.referencesJ. Liu and N. D’ozouville, “Contaminación Del Agua En Puerto Ayora: Investigación Interdisciplinaria Aplicada Utilizando Escherichia Coli Como Una Bacteria Indicador,” Informe Galapagos 2011-2012, no. June, pp. 76–83, 2013.
dc.relation.referencesM. Pecchi and M. Baratieri, “Coupling anaerobic digestion with gasification, pyrolysis or hydrothermal carbonization: A review,” Renewable and Sustainable Energy Reviews, vol. 105, no. July 2018, pp. 462–475, 2019, doi: 10.1016/j.rser.2019.02.003.
dc.relation.referencesA. Grimalt-Alemany, I. V. Skiadas, and H. N. Gavala, “Syngas biomethanation: state-of-the-art review and perspectives,” Biofuels, Bioproducts and Biorefining, vol. 12, no. 1, pp. 139–158, 2018, doi: 10.1002/bbb.1826.
dc.relation.referencesS. Yang, Z. Chen, and Q. Wen, “Impacts of biochar on anaerobic digestion of swine manure: Methanogenesis and antibiotic resistance genes dissemination,” Bioresource Technology, vol. 324, no. November 2020, p. 124679, 2021, doi: 10.1016/j.biortech.2021.124679.
dc.relation.referencesK. Giovanni, M. Tirado, N. A. Restrepo Vélez, V. M. Toro, and V. S. Restrepo, “Determinación a Escala Laboratorio De La Relación Sustrato/Inóculo En La Biodigestión De Residuos Orgánicos De La Universidad Eafit”.
dc.relation.referencesY. Cui, F. Mao, J. Zhang, Y. He, Y. W. Tong, and Y. Peng, “Biochar enhanced high-solid mesophilic anaerobic digestion of food waste: Cell viability and methanogenic pathways,” Chemosphere, vol. 272, p. 129863, 2021, doi: 10.1016/j.chemosphere.2021.129863.
dc.relation.referencesJ. T. E. Lee et al., “Biochar utilisation in the anaerobic digestion of food waste for the creation of a circular economy via biogas upgrading and digestate treatment,” Bioresource Technology, vol. 333, no. April, p. 125190, 2021, doi: 10.1016/j.biortech.2021.125190.
dc.relation.referencesH. Escalante Hernández, J. Orduz Prada, H. Zapata Lesmes, M. Cardona Ruiz, and M. Duarte Ortega, “Atlas del potencial energético de la biomasa residual en Colombia,” Bucaramanga, 2011.
dc.relation.referencesP. Kazimierski et al., “Pyrolysis of pruning residues from various types of orchards and pretreatment for energetic use of biochar,” Materials, vol. 14, no. 11, 2021, doi: 10.3390/ma14112969.
dc.relation.referencesQ. Jia and A. C. Lua, “Effects of pyrolysis conditions on the physical characteristics of oil-palm-shell activated carbons used in aqueous phase phenol adsorption,” Journal of Analytical and Applied Pyrolysis, vol. 83, no. 2, pp. 175–179, 2008, doi: 10.1016/j.jaap.2008.08.001.
dc.relation.referencesA. G. Ocampo, “Methods for the cation exchange capacity of saline-sodic soils,” Acta Agronómica, vol. 47, no. 1, pp. 16–22, 1997.
dc.relation.referencesO. Y. C. Martínez, N. F. G. Caballero, and J. M. Acevedo, “Validación Demanda Química De Oxígeno (Dqo),” pp. 1–4, 2007.
dc.relation.referencesI. Angelidaki et al., “Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays,” Water Science and Technology, vol. 59, no. 5, pp. 927–934, 2009, doi: 10.2166/wst.2009.040.
dc.relation.referencesJ. Cai, P. He, Y. Wang, L. Shao, and F. Lü, “Effects and optimization of the use of biochar in anaerobic digestion of food wastes,” Waste Management and Research, vol. 34, no. 5, pp. 409–416, 2016, doi: 10.1177/0734242X16634196.
dc.relation.referencesS. D. Hafner and S. Astals, “Systematic error in manometric measurement of biochemical methane potential: Sources and solutions,” Waste Management, vol. 91, pp. 147–155, 2019, doi: 10.1016/j.wasman.2019.05.001.
dc.relation.referencesF. Raposo, M. A. De La Rubia, V. Fernández-Cegrí, and R. Borja, “Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures,” Renewable and Sustainable Energy Reviews, vol. 16, no. 1, pp. 861–877, 2012, doi: 10.1016/j.rser.2011.09.008.
dc.relation.referencesL. M. Cárdenas Cleves, B. A. Parra Orobio, P. Torres Lozada, and C. H. Vásquez Franco, “Perspectivas del ensayo de Potencial Bioquímico de Metano - PBM para el control del proceso de digestión anaerobia de residuos,” Revista ION, vol. 29, no. 1, pp. 95–108, 2016, doi: 10.18273/revion.v29n1-2016008.
dc.relation.referencesV. Ortiz, “Puesta a punto de una metodología para la determinación de la actividad metanogénica específica de un fango anaerobio mediante el sistema OxiTop®. Influencia de las principales variables experimentales,” Universidad Politécnica de Valencia, 2011. doi: 10.1026/0942-5403/a000126.
dc.relation.referencesC. Holliger et al., “Towards a standardization of biomethane potential tests,” Water Science and Technology, vol. 74, no. 11, pp. 2515–2522, 2016, doi: 10.2166/wst.2016.336.
dc.relation.referencesC. Amodeo et al., “How Different are manometric, gravimetric, and automated volumetric BMP results?,” Water (Switzerland), vol. 12, no. 6, 2020, doi: 10.3390/w12061839.
dc.relation.referencesM. Bolaños and L. Sandoval, “Evaluación De La Influencia De Métodos Volumétricos Y Manométricos Sobre La Escuela De Ingeniería De Recursos Naturales Y Del Ambiente-Eidenar Ingeniería Sanitaria Y Ambiental,” Universidad del Valle, 2022.
dc.relation.referencesV. Rivera-Salvador, J. S. Aranda-Barradas, T. Espinosa-Solares, F. Robles-Martínez, and J. U. Toledo, “the Anaerobic Digestion Model Iwa-Adm1: a Review of Its Evolution,” Ingeniería Agrícola y Biosistemas, vol. 1, no. 2, pp. 109–117, 2015, doi: 10.5154/r.inagbi.2010.01.001.
dc.relation.referencesP. Morales, “Evaluación experimental del potencial de producción de biogás a partir de aguas residuales procedentes del Camal Metropolitano de Quito,” Escuela Politécnica Nacional, 2018.
dc.relation.referencesR. Borja, M. M. Durán, and A. Martin, “Influence of the support on the kinetics of anaerobic purification of slaughterhouse wastewater,” Bioresource Technology, vol. 44, no. 1, pp. 57–60, 1993, doi: 10.1016/0960-8524(93)90208-S.
dc.relation.referencesL. del P. Castro-Molano, H. Escalante-Hernández, O. J. Gómez-Serrato, and D. P. Jiménez-Piñeros, “Análisis del potencial metanogénico y energético de las aguas residuales de una planta de sacrificio bovino mediante digestión anaeróbica,” DYNA (Colombia), vol. 83, no. 199, pp. 41–49, 2016, doi: 10.15446/dyna.v83n199.56796.
dc.relation.referencesB. Deepanraj, V. Sivasubramanian, and S. Jayaraj, “Kinetic study on the effect of temperature on biogas production using a lab scale batch reactor,” Ecotoxicology and Environmental Safety, vol. 121, pp. 100–104, 2015, doi: 10.1016/j.ecoenv.2015.04.051.
dc.relation.referencesJ. Fiestas, A. Martin, and R. Borjas, “Influence of Immobilization Supports on the Kinetic Constants of Anaerobic Purification of Olive Mill Wastewater,” Bioloical Wastes, no. 133, pp. 131–142, Jan. 1990, doi: 10.1016/0961-9534(93)90023-W.
dc.relation.referencesX. Pan et al., “Methane production from formate, acetate and H2/CO2; focusing on kinetics and microbial characterization,” Bioresource Technology, vol. 218, pp. 796–806, 2016, doi: 10.1016/j.biortech.2016.07.032.
dc.relation.referencesF. Zegers, “ARRANQUE Y OPERACIÓN DE SISTEMAS DE FLUJO ASCEN- DENTE CON MANTO DE L.ODO -U ASB- Manuol del Curso.” Universidad del valle, , CORPORACIÓN AUTÓNOMA REGIONAL DEL CAUCA y UNIVERSIDAD AGRÍCOLA DE WAGENINGEN, Santiago de Cali, p. 269, 1987.
dc.relation.referencesC. Lohri, “TI TR ATION METHODOLOGY ACCORDI NG TO K APP FOR MONITO RING OF AN AERO BIC DI GESTION : VF A , alkalinit y and A / TI C-ratio,” Analysis, pp. 7–10, 2008.
dc.relation.referencesM. F. Cordoba-Ramirez, “Evaluación del efecto de la torrefacción y la pirólisis lenta en el desarrollo de porosidad de carbones activados especiales obtenidos a partir de biomasa lignocelulósica,” Universidad Nacional de Colombia, 2023.
dc.relation.referencesW. Suliman, J. B. Harsh, N. I. Abu-Lail, A. M. Fortuna, I. Dallmeyer, and M. Garcia-Perez, “Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties,” Biomass and Bioenergy, vol. 84, pp. 37–48, 2016, doi: 10.1016/j.biombioe.2015.11.010.
dc.relation.referencesN. A. Qambrani, M. M. Rahman, S. Won, S. Shim, and C. Ra, “Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review,” Renewable and Sustainable Energy Reviews, vol. 79, no. May, pp. 255–273, 2017, doi: 10.1016/j.rser.2017.05.057.
dc.relation.referencesY. Shen, S. Forrester, J. Koval, and M. Urgun-Demirtas, “Yearlong semi-continuous operation of thermophilic two-stage anaerobic digesters amended with biochar for enhanced biomethane production,” Journal of Cleaner Production, vol. 167, pp. 863–874, 2017, doi: 10.1016/j.jclepro.2017.05.135.
dc.relation.referencesB. Rittmann and P. McCarty, Environmental Biotechnology: Principles and Applications, McGraw-Hil. NewYork: McGraw-Hill Education: New York, Chicago, San Francisco, Athens, London, Madrid, Mexico City, Milan, New Delhi, Singapore, Sydney, Toronto, 2001.
dc.relation.referencesJ. D. Browne and J. D. Murphy, “The impact of increasing organic loading in two phase digestion of food waste,” Renewable Energy, vol. 71, pp. 69–76, 2014, doi: 10.1016/j.renene.2014.05.026.
dc.relation.referencesH. C. Moon and I. S. Song, “Enzymatic hydrolysis of foodwaste and methane production using UASB bioreactor,” International Journal of Green Energy, vol. 8, no. 3, pp. 361–371, 2011, doi: 10.1080/15435075.2011.557845.
dc.relation.referencesH. S. Shin, S. K. Han, Y. C. Song, and C. Y. Lee, “Performance of UASB reactor treating leachate from acidogenic fermenter in the two-phase anaerobic digestion of food waste,” Water Research, vol. 35, no. 14, pp. 3441–3447, 2001, doi: 10.1016/S0043-1354(01)00041-0.
dc.relation.referencesY. Shen, S. Forrester, J. Koval, and M. Urgun-Demirtas, “Yearlong semi-continuous operation of thermophilic two-stage anaerobic digesters amended with biochar for enhanced biomethane production,” Journal of Cleaner Production, vol. 167, pp. 863–874, 2017, doi: 10.1016/j.jclepro.2017.05.135.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalPBM
dc.subject.proposalUASB
dc.subject.proposalSlow pyrolysis
dc.subject.proposalbiochar
dc.subject.proposalpalm kernel shell
dc.subject.proposalpruning residues
dc.subject.proposalBMP
dc.subject.proposalUASB
dc.subject.proposalPirólisis lenta
dc.subject.proposalDigestión anaerobia
dc.subject.proposalBiochar
dc.subject.proposalCuesco de palma
dc.subject.proposalResiduos de poda
dc.subject.proposalAnaerobic digestion
dc.title.translatedAddition of biochar to anaerobic digestion for an adequate valorization of residual biomass
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleEsquema híbrido de poligeneración (Termoquímico - Biológico) para la sustitución de fósiles a partir de residuos orgánicos
oaire.fundernameMinisterio de ciencia, tecnología e innovación
dc.description.curricularareaÁrea curricular de Ingeniería Química e Ingeniería de Petróleos
dc.contributor.orcid0000-0003-0251-8068
dc.subject.wikidataBiochar
dc.subject.wikidataDigestión anaeróbica


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-CompartirIgual 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito