Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorGuerrero Pabon, Mario Francisco
dc.contributor.authorMoreno Tristancho, Angelica Natali
dc.date.accessioned2024-01-29T19:25:16Z
dc.date.available2024-01-29T19:25:16Z
dc.date.issued2023-12
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85491
dc.descriptionilustraciones (principalmente a color), diagramas
dc.description.abstractLa combinación de terapias es una estrategia efectiva en el ámbito clínico, ya que mejora la respuesta farmacológica y reduce el riesgo de efectos secundarios. Se investigó el efecto antiagregante de los polifenoles ácido cafeico (AC) y ácido clorogénico (ACG) de Solanum tuberosum, junto con ácido acetilsalicílico (ASA), en plasma rico en plaquetas. Los resultados mostraron efectos dependientes de la concentración de AC y ACG, así como de ASA. Se observó una interacción sinérgica con AC y una disminución en la efectividad antiagregante con ACG. Se necesitan estudios adicionales para determinar las concentraciones óptimas y posibles efectos sinérgicos de estos compuestos combinados con ASA. La combinación de terapias es una estrategia efectiva en el ámbito clínico, ya que mejora la respuesta farmacológica y reduce el riesgo de efectos secundarios. Se investigó el efecto antiagregante de los polifenoles ácido cafeico (AC) y ácido clorogénico (ACG) de Solanum tuberosum, junto con ácido acetilsalicílico (ASA), en plasma rico en plaquetas. Los resultados mostraron efectos dependientes de la concentración de AC y ACG, así como de ASA. Se observó una interacción sinérgica con AC y una disminución en la efectividad antiagregante con ACG. Se necesitan estudios adicionales para determinar las concentraciones óptimas y posibles efectos sinérgicos de estos compuestos combinados con ASA. (Texto tomado de la fuente)
dc.description.abstractCombination therapy is a therapeutic strategy that can be highly effective in the clinical setting, since drugs used in association can improve the pharmacological response and, at the same time, make it possible to reduce doses and the risk of possible side effects (Yang et al., 2014). Considering this approach, it is appropriate to investigate or explore new therapeutic options that contribute to decrease the impact of thrombotic diseases on public health. Therapies based on natural sources could offer active metabolites that, when interacting synergistically, provide new possibilities for combination therapies at the pharmacological level. In this study, the antiaggregation effect of the polyphenols previously identified in Solanum tuberosum, caffeic acid and chlorogenic acid, in the absence and in combination with increasing concentrations of acetylsalicylic acid (ASA), was analyzed against the agonist arachidonic acid (AA), in platelet-rich plasma from healthy volunteers, using the Born spectrophotometric technique, which is based on the kinetics of platelet aggregation analyzed by turbidimetry (Born, 1962). The aggregometer allowed observing the changes in light transmission in the blood plasma after incubation with the test reagents and the platelet aggregation-inducing agent arachidonic acid (AA), so that the increase in the percentage of platelet aggregation was evident by the increase in light transmission through the cell, due to the platelets aggregating and settling at the bottom of the vessel. Considering that caffeic acid and chlorogenic acid are active metabolites with antiplatelet aggregation activity present in Solanum tuberosum, in this work we proposed to study the possible interactions that they exert when combined with the reference drug, acetylsalicylic acid, one of the most widely used agents in clinical practice. The objective was to determine whether they could exert coadjuvant effects as antiaggregants, which could eventually be useful in the therapy or prevention of atherothrombotic disorders. The results, under the experimental conditions set in this work, showed concentration- dependent effects of caffeic acid and chlorogenic acid, with effective concentrations 50 (IC50) of 1x10-3 and 3,4x10-4 M, respectively, while with ASA, in the range of concentrations tested, an antiaggregant effect was observed that decreases with increasing concentration (from 5,5x10-5 to 1,6x10-3M), which is consistent with its mechanism of action, antiaggregant at low concentrations and proaggregant at higher concentrations. When examining the interaction of caffeic acid (in the concentration range 1.5 - 3.0x10-4 M) with ASA (5.5x10-6M), an increase in the antiaggregation effect was observed that decreased with concentration, while the interaction of chlorogenic acid (in the range 2.26x10-4 - 5.6x10-3 M) with ASA (5.5x10-6M) did not show an increase in the antiaggregation effect, but rather a dose-dependent decrease. In conclusion, concentration-dependent antiaggregation effects are confirmed with the polyphenolic compounds caffeic acid and chlorogenic acid, a dose-dependent decreasing antiaggregation effect of ASA, and an interaction suggesting synergistic effect with caffeic acid; however, the sample size and concentration range need to be expanded to identify the appropriate range of concentrations of these compounds that exert possible synergistic effects when combined with ASA.
dc.format.extent80 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéutica
dc.titleEvaluación de las interacciones de metabolitos polifenólicos obtenidos de Solanum tuberosum sobre la actividad antiagregante plaquetario del ácido acetil salicílico
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Farmacología
dc.contributor.researchgroupGrupo de Investigaciones en Farmacología Molecular (Farmol)
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Farmacología
dc.description.researchareaFarmacología experimental Cardiovascular
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAlan D Michelson. (2013). Platelets (Alan D Michelson, Marco Cattaneo, Adrew relinger, & Peter Newman, Eds.; 3rd ed., Vol. 3)
dc.relation.referencesBadimon, L., & Vilahur, G. (2013). Antiagregación plaquetaria Mecanismos de acción de los diferentes agentes antiplaquetarios. In Rev Esp Cardiol Supl (Vol. 13). https://www.revespcardiol.org/?ref=1917747156
dc.relation.referencesBermejo, E. (2017). Plaquetas. Hematología, 10-18. http://www.sah.org.ar/revista/numeros/vol21/extra/06-Vol%2021-extra.pdf
dc.relation.referencesBuitrago, D. (2012). Estudio de los mecanismos antihipertensivos y antiagregantes plaquetarios de los metabolitos secundarios obtenidos de Solanum tuberosum. [Tesis doctoral]. Bogotá, D. C.: Universidad Nacional de Colombia. Borda,D.C. (2020). Evaluación del efecto sobre la agregación plaquetaria de una dieta enriquecida en cáscara de papa. [Tesis maestrpia]. Bogotá, D. C.: Universidad Nacional de Colombia.
dc.relation.referencesBuitrago, D., Puebla, P., & Guerrero, M. (2019). Antiplatelet activity of metabolites isolated from Solanum tuberosum. Latin American Journal of Pharmacy, 38(8), 1575-1581.
dc.relation.referencesBuitrago, D., Ramos, G., Rincón, J., & Guerrero, M. (2007). Actividad antiagregante del extracto etanólico de Solanum tuberosum en plaquetas humanas. Vitae, 14(1), 49- 54. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121- 40042007000100007
dc.relation.referencesChen, Y., Yuan, Y., & Li, W. (2018). Sorting machineries: How platelet-dense granules differ from α-granules. In Bioscience Reports (Vol. 38, Issue 5). Portland Press Ltd. https://doi.org/10.1042/BSR20180458
dc.relation.referencesChou, T. C. (2010). Drug combination studies and their synergy quantification using the chou-talalay method. In Cancer Research (Vol. 70, Issue 2, pp. 440–446). https://doi.org/10.1158/0008-5472.CAN-09-1947
dc.relation.referencesde Alencar Silva, A., Pereira-de-Morais, L., Rodrigues da Silva, R. E., de Menezes Dantas, D., Brito Milfont, C. G., Gomes, M. F., Araújo, I. M., Kerntopf, M. R., Alencar de Menezes, I. R., & Barbosa, R. (2020). Pharmacological screening of the phenolic compound caffeic acid using rat aorta, uterus and ileum smooth muscle. Chemico- Biological Interactions, 332. https://doi.org/10.1016/j.cbi.2020.109269
dc.relation.referencesFAO,. (2008.). RESEÑA DE FIN DE AÑO AÑO INTERNACIONAL DE LA PAPA 2008. Roma, Italia . https://www.fao.org/3/i0500s/i0500s.pdf
dc.relation.referencesDi Veroli, G. Y., Fornari, C., Wang, D., Mollard, S., Bramhall, J. L., Richards, F. M., & Jodrell, D. I. (2016). Combenefit: An interactive platform for the analysis and visualization of drug combinations. Bioinformatics, 32(18), 2866–2868. https://doi.org/10.1093/bioinformatics/btw230
dc.relation.referencesENVIRONMENT DIRECTORATE JOINT MEETING OF THE CHEMICALS COMMITTEE AND THE WORKING PARTY ON CHEMICALS, PESTICIDES AND BIOTECHNOLOGY Cancels & replaces the same document of 21 December 2020 REVISED CONSENSUS DOCUMENT ON COMPOSITIONAL CONSIDERATIONS FOR NEW VARIETIES OF POTATO (Solanum tuberosum): Key Food and Feed Nutrients, Toxicants, Allergens, Anti-nutrients and Other Plant Metabolites Series on the Safety of Novel Foods and Feeds No. 33 JT03470054 OFDE. (2021)
dc.relation.referencesFernando, G. L., & Frade, R. (2008). Manual de trombosis y terapia antitrombótica (V. J. Aldrete, Ed.; Vol. 1).
dc.relation.referencesFuentes, E., Caballero, J., Alarcón, M., Rojas, A., & Palomo, I. (2014). Chlorogenic acid inhibits human platelet activation and thrombus formation. PLoS ONE, 9(3). https://doi.org/10.1371/journal.pone.0090699
dc.relation.referencesGhoshal, K., & Bhattacharyya, M. (2014). Overview of platelet physiology: Its hemostatic and nonhemostatic role in disease pathogenesis. In The Scientific World Journal (Vol. 2014). ScientificWorld Ltd. https://doi.org/10.1155/2014/781857
dc.relation.referencesGoodman, & Gilman. (2012). Las bases farmacológicas de la terapéutica (L. Bruton, B. Chabner, & Bjorn Knollman, Eds.; 12th ed.)
dc.relation.referencesGremmel, T., Frelinger, A. L., & Michelson, A. D. (2016). Platelet physiology. In Seminars in Thrombosis and Hemostasis (Vol. 42, Issue 3, pp. 191–204). Thieme Medical Publishers, Inc. https://doi.org/10.1055/s-0035-1564835
dc.relation.referencesGuadalupe Sánchez-Arias, A., Bobadilla-Serrano, M. E., Dimas-Altamirano, B., Gómez- Ortega, M., & González-González, G. (n.d.). Enfermedad cardiovascular: primera causa de morbilidad en un hospital de tercer nivel Heart diseases: the leading cause of morbidity in a third-level hospital. www.medigraphic.com/revmexcardiolwww.medigraphic.org.mx
dc.relation.referencesJm, C. (2017.). Fisiología de la hemostasia. Introducción general Normal haemostasis. Introduction. (Vol. 21. 4–6). https://www.sah.org.ar/revistasah/numeros/vol21/extra/04-Vol%2021-extra.pdf
dc.relation.referencesLi, Y., Shi, W., Li, Y., Zhou, Y., Hu, X., Song, C., Ma, H., Wang, C., & Li, Y. (2008). Neuroprotective effects of chlorogenic acid against apoptosis of PC12 cells induced by methylmercury. Environmental Toxicology and Pharmacology, 26(1), 13–21. https://doi.org/10.1016/j.etap.2007.12.008
dc.relation.referencesHarrison, P. (2005). Platelet function analysis. Blood Reviews, 19(2), 111–123. https://doi.org/10.1016/j.blre.2004.05.002
dc.relation.referencesLim, T. K., & Lim, T. K. (2016). Solanum tuberosum. Edible Medicinal and Non-Medicinal Plants, 12–93. https://doi.org/10.1007/978-3-319-26065-5_2
dc.relation.referencesLinden, M., Frelinger, A., Barnard, M., Przyklenk, K., Furman, M., & Michelson, A. (2004). Application of flow cytometry to platelet disorders. Seminars in Thrombosis and Hemostasis, 30(5), 501-511. https://doi.org/10.1055/s-2004-835671 Machlus, K. R., & Italiano, J. E. (2013). The incredible journey: From megakaryocyte development to platelet formation. In Journal of Cell Biology (Vol. 201, Issue 6, pp. 785–796). https://doi.org/10.1083/jcb.201304054
dc.relation.referencesLinden, M., Frelinger, A., Barnard, M., Przyklenk, K., Furman, M., & Michelson, A. (2004). Application of flow cytometry to platelet disorders. Seminars in Thrombosis and Hemostasis, 30(5), 501-511. https://doi.org/10.1055/s-2004-835671 Machlus, K. R., & Italiano, J. E. (2013). The incredible journey: From megakaryocyte development to platelet formation. In Journal of Cell Biology (Vol. 201, Issue 6, pp. 785–796). https://doi.org/10.1083/jcb.201304054
dc.relation.referencesMinisterio de Salud. (1993). Resolución 8430 del 4 de octubre de 1993. [Por la cual se establecen las normas científicas, técnicas y administrativas para la investigación en salud]. Bogotá, D. C., Colombia. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/RESOLUCI ON-8430-DE-1993.PDF
dc.relation.referencesMiao, M., & Xiang, L. (2020). Pharmacological action and potential targets of chlorogenic acid. In Advances in Pharmacology (Vol. 87, pp. 71–88). Academic Press Inc. https://doi.org/10.1016/bs.apha.2019.12.002
dc.relation.referencesPark, J. B. (2015). Potential Effects of Chlorogenic Acids on Platelet Activation. In Coffee in Health and Disease Prevention (pp. 709–717). Elsevier Inc. https://doi.org/10.1016/B978-0-12-409517-5.00079-6
dc.relation.referencesPavlíková, N. (2023). Caffeic Acid and Diseases—Mechanisms of Action. In International Journal of Molecular Sciences (Vol. 24, Issue 1). MDPI. https://doi.org/10.3390/ijms24010588
dc.relation.referencesRubenstein, D. A., & Yin, W. (2018). Platelet-activation mechanisms and vascular remodeling. Comprehensive Physiology, 8(3), 1117–1156. https://doi.org/10.1002/cphy.c170049
dc.relation.referencesSolla, I., Bembibre, L., & Freire, J. (2011). Manejo del Síndrome coronario agudo en Urgencias de Atención Primaria. Cadernos de Atención Primaria, 18(1), 49-55. https://www.agamfec.com/wp/wp-content/uploads/2014/07/18_1_actua_1.pdf
dc.relation.referencesTang, J., Wennerberg, K., & Aittokallio, T. (2015). What is synergy? The Saariselk� agreement revisited. In Frontiers in Pharmacology (Vol. 6, Issue SEP). Frontiers Media S.A. https://doi.org/10.3389/fphar.2015.00181
dc.relation.referencesTom, E. N. L., Girard-Thernier, C., & Demougeot, C. (2016). The Janus face of chlorogenic acid on vascular reactivity: A study on rat isolated vessels. Phytomedicine, 23(10), 1037–1042. https://doi.org/10.1016/j.phymed.2016.06.012
dc.relation.referencesTyszka-Czochara, M., Bukowska-Strakova, K., Kocemba-Pilarczyk, K. A., & Majka, M. (2018). Caffeic acid targets AMPK signaling and regulates tricarboxylic acid cycle anaplerosis while metformin downregulates HIF-1α-induced glycolytic enzymes in human cervical squamous cell carcinoma lines. Nutrients, 10(7). https://doi.org/10.3390/nu10070841
dc.relation.referencesUlrich-Merzenich, G. S. (2014). Combination screening of synthetic drugs and plant derived natural products-Potential and challenges for drug development. In Synergy (Vol. 1, Issue 1, pp. 59–69). Elsevier GmbH. https://doi.org/10.1016/j.synres.2014.07.011
dc.relation.referencesVan der Meijden, P. E. J., & Heemskerk, J. W. M. (2019). Platelet biology and functions: new concepts and clinical perspectives. In Nature Reviews Cardiology (Vol. 16, Issue 3, pp. 166–179). Nature Publishing Group. https://doi.org/10.1038/s41569-018-0110- 0
dc.relation.referencesVan der Meijden, P. E. J., & Heemskerk, J. W. M. (2019). Platelet biology and functions: new concepts and clinical perspectives. In Nature Reviews Cardiology (Vol. 16, Issue 3, pp. 166–179). Nature Publishing Group. https://doi.org/10.1038/s41569-018-0110- 0
dc.relation.referencesYang, Y., Zhang, Z., Li, S., Ye, X., Li, X., & He, K. (2014). Synergy effects of herb extracts: Pharmacokinetics and pharmacodynamic basis. In Fitoterapia (Vol. 92, pp. 133–147). https://doi.org/10.1016/j.fitote.2013.10.010
dc.relation.referencesYeung, J., Li, W., & Holinstat, M. (2018). Platelet signaling and disease: Targeted therapy for thrombosis and other related diseases. Pharmacological Reviews, 70(3), 526–548. https://doi.org/10.1124/pr.117.014530
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsSolanum tuberosum
dc.subject.decsÁcido clorogénico
dc.subject.decsChlorogenic acid
dc.subject.decsInhibidores de agregación plaquetaria
dc.subject.decsPlatelet aggregation inhibitors
dc.subject.decsAspirina
dc.subject.decsAspirin
dc.subject.decsInteracciones farmacológicas
dc.subject.decsDrug interactions
dc.subject.decsTerapia trombolítica-Efectos adversos
dc.subject.decsThrombolytic therapy -Adverse effects
dc.subject.decsÁcidos cafeicos
dc.subject.decsCaffeic acids
dc.subject.proposalSolanum tuberosum
dc.subject.proposalantiagregante plaquetario
dc.subject.proposalsinergia
dc.subject.proposalácido clorogénico
dc.subject.proposalácido cafeico
dc.subject.proposalácido acetilsalicílico
dc.subject.proposalplatelet antiaggregant
dc.subject.proposalsynergy
dc.subject.proposalchlorogenic acid
dc.subject.proposalcaffeic acid
dc.subject.proposalacetylsalicylic acid
dc.title.translatedEvaluation of the interactions of polyphenolic metabolites obtained from Solanum tuberosum on the antiplatelet activity of acetylsalicylic
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito