Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorGómez García, Miguel Ángel
dc.contributor.advisorDobrosz-Gómez, Izabela
dc.contributor.authorHerrera Ruiz, Juan Federico
dc.date.accessioned2024-01-30T14:29:07Z
dc.date.available2024-01-30T14:29:07Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85509
dc.descriptiongraficas, tablas
dc.description.abstractCerca del 70% de los procesos reactivos industriales involucran sistemas gas-líquido o líquido-líquido. Una de las principales aplicaciones de los sistemas reactivos gas-líquido corresponde a reacciones de sulfonación para la producción de surfactantes aniónicos en reactores de película descendente (o FFR por su acrónimo en inglés). De hecho, la demanda mundial de surfactantes se vio impulsada por la pandemia alcanzando valores cercanos a los 20 millones de toneladas y se espera que sus ventas aumenten de 42 mil millones de USD en 2019 a 53 mil millones en 2025. Por lo anterior, resulta importante contar con herramientas de modelado y simulación para el diseño y/o operación de estos sistemas reactivos. Las reacciones de sulfonación involucran el contacto de una fase orgánica líquida con una corriente de SO3 diluido en gas inerte. El SO3 debe migrar hacia la fase líquida donde se lleva a cabo la reacción. Entre las características del proceso se encuentran: alta velocidad de reacción, alta exotermicidad y grandes cambios en las condiciones hidrodinámicas. El diseño y operación de los reactores en los que se llevan a cabo estos procesos requieren de un correcto modelamiento de los fenómenos de transferencia de masa. Tradicionalmente, los sistemas reactivos gas-líquido se han modelado usando correlaciones empíricas para la transferencia de masa. Sin embargo, en general, estas expresiones carecen de robustez a la hora de predecir la transferencia de masa multicomponente y/o al introducir cambios en el sistema. En este trabajo de tesis de Maestría en Ingeniería Química se estudia el modelamiento y la simulación de un reactor industrial de película descendente usando el formalismo de Maxwell-Stefan para transferencia de masa multicomponente (tanto en la fase gaseosa como a la fase líquida). En particular, se estudió la producción del ácido tridecil-bencensulfónico (TDBS) a escala industrial. Así, en el primer capítulo se presentan las características principales de los sistemas reactivos bifásicos, su importancia económica y las herramientas disponibles para su descripción (v.g., correlaciones de transferencia de masa para sistemas gas-líquido); prestando especial atención a las reacciones de sulfonación. En el segundo capítulo se presentan generalidades del equilibrio termodinámico entre fases que se da en el reactor. En el tercer capítulo se presentan distintas herramientas para el análisis de la transferencia de masa de este tipo de reactores a partir de los resultados de un modelo unidimensional típico, analizando el comportamiento de la matriz del factor termodinámico, los coeficientes de transferencia en una aproximación pseudo-binaria y considerados como matrices multicomponentes, así como el número de Hatta. En el cuarto capítulo se presenta el modelo bidimensional del reactor, el cual presenta alta precisión y exactitud respecto a los datos de planta (alrededor del 0.3% para la temperatura de salida de la fase líquida y cerca del 2% para la concentración de TDBS), pero tiene un costo computacional elevado. En este capítulo se analizan las mismas variables de transporte que en el modelo unidimensional, pero a partir de los resultados del modelo bidimensional. Finalmente, en el último capítulo se presentan las conclusiones y perspectivas de la tesis (Texto tomado de la fuente)
dc.description.abstractAbout 70% of industrial reactive processes involve gas-liquid or liquid-liquid systems. One of the main applications of gas-liquid reactive systems corresponds to sulfonation reactions for the production of anionic surfactants in falling film reactors (FFR). In fact, the demand for surfactants was boosted by the pandemic reaching values close to 20 million tons and its sales are expected to increase from USD 42 billion in 2019 to USD 53 billion in 2025. Therefore, it is important to have modeling and simulation tools for the design and/or operation of these reactive systems. Sulfonation reactions involve contacting a liquid organic phase with a stream of SO3 diluted in inert gas. SO3 must migrate to the liquid phase where the reaction takes place. Among the characteristics of the process are high reaction rate, high exothermicity and large changes in hydrodynamic conditions. The design and operation of the reactors in which these processes are carried out require a correct modeling of the mass transfer phenomena. Traditionally, reactive gas-liquid systems have been modeled using empirical correlations for mass transfer. However, in general, these expressions lack robustness when it comes to predict multicomponent mass transfer and/or when introducing changes in the system. In this Master's thesis in Chemical Engineering, the modeling and simulation of an industrial falling film reactor is studied using the Maxwell-Stefan formalism for multicomponent mass transfer (both in the gas phase and in the liquid phase). In particular, the production of tridecyl-benzenesulfonic acid (TDBS) on an industrial scale was studied. Thus, the first chapter presents the main characteristics of two-phase reactive systems, their economic importance and the tools available for their description (e.g., mass transfer correlations for gas-liquid systems); paying special attention to sulfonation reactions. In the second chapter, generalities of the thermodynamic equilibrium between phases that occur in the reactor are presented. In the third chapter, different tools are presented for the analysis of the mass transfer of this type of reactors based on the results of a typical one-dimensional model, analyzing the behavior of the thermodynamic factor matrix, the transfer coefficients in a pseudo approximation. -binary and considered as multicomponent matrices, as well as the Hatta number. In the fourth chapter, the two-dimensional model of the reactor is presented, which presents high precision and accuracy with respect to the plant data (around 0.3% for the outlet temperature of the liquid phase and near 2% for the TDBS concentration), but it has a high computational cost. In this chapter, the same transport variables are analyzed as in the one-dimensional model but based on the results of the two-dimensional model. Finally, in the last chapter the conclusions and perspectives of the thesis are presented.
dc.format.extentxxiv, 152 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc660 - Ingeniería química
dc.titleModelado de un reactor industrial de película descendente usando el formalismo de Maxwell-Stefan
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Química
dc.contributor.researchgroupGrupo de Investigación en Procesos Reactivos Intensificados con Separación y Materiales Avanzados (Prisma)
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Química
dc.description.researchareaAnálisis y Diseño de Reactores Químicos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería y Arquitectura
dc.publisher.placeManizales, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizales
dc.relation.referencesAckermann, G. (1937). W/irme/ibertragung und molekulare Stofftibertragung im gleichen Feld bei groBen Temperatur-und Partialdruckdifferenzen. VDI-Forschungsheft, 382
dc.relation.referencesAlcaldía de Medellín. (Abril 2019). Recuperado de Medellín Digital: https://empresarismo.medellindigital.gov.co/images/inteligencia_mercados/PDF/Fabricaci n-de-jabones-y-detergentes-preparados-para-limpiar-y-pulir.pdf
dc.relation.referencesAllied Market Research. (Junio 2022). Allied Market Research. Surfactants Market. Recuperado de: https://www.alliedmarketresearch.com/surfactant-market
dc.relation.referencesAmerican Chemistry Council. (26 de Mayo de 2022). The Business of Chemistry by the Numbers. Obtenido de https://www.americanchemistry.com/chemistry-in-america/data-industry statistics/the-business-of-chemistry-by-the-numbers
dc.relation.referencesAndrigo, P., Caimi, A., d'Oro, P. C., Fait, A., Roberti, L., Tampieri, M., y Tartari, V. (1992). Phenol acetone process: cumene oxidation kinetics and industrial plant simulation. Chemical Engineering Science, 47(9-11), 2511-2516. DOI https://doi.org/10.1016/0009- 2509(92)87085-5
dc.relation.referencesBattisti, R., Machado, R. A., y Marangoni, C. (2020). A background review on falling film distillation in wetted-wall columns: from fundamentals towards intensified technologies. Chemical Engineering and Processing-Process Intensification, 150, 107873. DOI: https://doi.org/10.1016/j.cep.2020.107873
dc.relation.referencesBaynazarov, I. Z., Lavrenteva, Y. S., Akhmetov, I. V., y Gubaydullin, I. M. (2018, December). Mathematical model of process of production of phenol and acetone from cumene hydroperoxide. In Journal of Physics: Conference Series (Vol. 1096, No. 1, p. 012197). IOP Publishing. DOI: https://doi.org/10.1088/1742-6596/1096/1/012197
dc.relation.referencesBeck, U., y Löser, E. (2000). Chlorinated benzenes and other nucleus‐chlorinated aromatic hydrocarbons. Ullmann's Encyclopedia of Industrial Chemistry. DOI: https://doi.org/10.1002/14356007.o06_o03
dc.relation.referencesBingzhen, C., Xiaorong, H., Jinsong, Z., y Tong, Q. (2010). Modeling, simulation and analysis of the liquid-phase catalytic oxidation of toluene. Chemical Engineering Journal, 158(2), 220-224. DOI: https://doi.org/10.3390/catal10060623
dc.relation.referencesBravo, J. L., Rocha, J. A., y Fair, J. R. (1985). Mass transfer in gauze packings. Hydrocarbon processing (International ed.), 64(1), 91-95.
dc.relation.referencesChandrasekharan, K., y Calderbank, P. H. (1981). Further observations on the scale-up of aerated mixing vessels. Chemical Engineering Science, 36(5), 818-823. DOI: https://doi.org/10.1016/0009-2509(81)85033-6
dc.relation.referencesCheng, H., y Sabatini, D. A. (2001). Reverse-micellar extraction for micellar-solubilized contaminant and surfactant removal. Separation and Purification Technology, 24(3), 437-449. DOI: https://doi.org/10.1021/es002057r
dc.relation.referencesDe Paiva, J. L., y Kachan, G. C. (2004). Absorption of nitrogen oxides in aqueous solutions in a structured packing pilot column. Chemical Engineering and Processing: Process Intensification, 43(7), 941-948. DOI: https://doi.org/10.1016/j.cep.2003.08.005
dc.relation.referencesDepartamento Nacional de Estadística DANE, 2021. Recuperado de https://www.dane.gov.co/index.php/estadisticas-por-tema/industria/encuesta-anual-manufacturera-enam
dc.relation.referencesDoraiswamy, L., y Üner, D. (2014). Chemical Reactor Engineering: Beyond the Fundamentals. Boca Ratón: Taylor y Francis Group. DOI: https://doi.org/10.1201/b14951
dc.relation.referencesGilliland, E. R., y Sherwood, T. K. (1934). Diffusion of vapors into air streams. Industrial and Engineering Chemistry, 26(5), 516-52. DOI: https://doi.org/10.1021/ie50293a010
dc.relation.referencesGutierrez-Gonzalez, J., Mans-Teixido, C., y Costa-Lopez, J. (1988). Improved mathematical model for a falling film sulfonation reactor. Industrial & Engineering Chemistry Research, 27(9), 1701-1707.DOI: https://doi.org/10.1021/ie00081a023
dc.relation.referencesHenriques de Brito, M., Von Stockar, U., y Bomio, P. (1992). Predicting the liquid phase mass transfer coefficient kL for the Sulzer structured packing Mellapak. In Institution of Chemical Engineers Symposium Series (Vol. 128, No. BOOK_CHAP, pp. B137-B144).
dc.relation.referencesKiss, A. A., Bildea, C. S., y Grievink, J. (2010). Dynamic modeling and process optimization of an industrial sulfuric acid plant. Chemical Engineering Journal, 158(2), 241-249. DOI: https://doi.org/10.1016/j.cej.2010.01.023
dc.relation.referencesKume, G., Gallotti, M., y Nunes, G. (2008). Review on anionic/cationic surfactant mixtures. Journal of Surfactants and Detergents, 11(1), 1-11. DOI: https://doi.org/10.1007/s11743-007-1047-1
dc.relation.referencesLeiva, C., Flores, V., y Aguilar, C. (2020). A Computer Simulator Model for Generating Sulphuric Acid and Improve the Operational Results, Using Operational Data from a Chemical Plant. Journal of Sensors, 2020. DOI: https://doi.org/10.1155/2020/8873039
dc.relation.referencesLoutet, K. G., Mahecha-Botero, A., Boyd, T., Buchi, S., Reid, D., y Brereton, C. M. (2011). Experimental measurements and mass transfer/reaction modeling for an industrial NOx absorption process. Industrial & Engineering Chemistry Research, 50(4), 2192-2203. DOI: https://doi.org/10.1021/ie100436p
dc.relation.referencesMarkos̆, J., Pisu, M., y Morbidelli, M. (1998). Modeling of gas-liquid reactors. Isothermal semibatch and continuous stirred tank reactors. Computers & Chemical Engineering, 22(4-5), 627-640. DOI: https://doi.org/10.1016/S0098-1354(97)00222-6
dc.relation.referencesMcCready, M. J., y Hanratty, T. J. (1984). A comparison of turbulent mass transfer at gas-liquid and solid-liquid interfaces. In Gas transfer at water surfaces (283-292). Springer, Dordrecht. DOI: https://doi.org/10.1007/978-94-017-1660-4_26
dc.relation.referencesMotarjemi, M., y Jameson, G. J. (1978). Mass transfer from very small bubbles—the optimum bubble size for aeration. Chemical Engineering Science, 33(11), 1415-1423. DOI: https://doi.org/10.1016/0009-2509(78)85190-2
dc.relation.referencesNakama, Y. (2017). Surfactants. Cosmetic science and technology, 231-244. DOI: http://dx.doi.org/10.1016/B978-0-12-802005-0.00015-X
dc.relation.referencesNawrocki, P. A., Xu, Z. P., y Chuang, K. T. (1991). Mass transfer in structured corrugated packing. The Canadian Journal of Chemical Engineering, 69(6), 1336-1343. DOI: https://doi.org/10.1002/cjce.5450690614
dc.relation.referencesPohorecki, R., Bałdyga, J., Moniuk, W., Krzysztoforski, A., y Wójcik, Z. (1992). Liquid-phase oxidation of cyclohexane—modeling and industrial scale process simulation. Chemical engineering Science,47(9-11), 2559-2564. DOI: https://doi.org/10.1016/0009-2509(92)87093-6
dc.relation.referencesPrecedence Research. (2023) Precedence Research, Surfactants Market. Retrieved from https://www.precedenceresearch.com/surfactants-market
dc.relation.referencesRoberts, D. W. (1998). Sulfonation technology for anionic surfactant manufacture. Organic Process Research y Development, 2(3), 194-202. DOI: https://doi.org/10.1021/op9700439
dc.relation.referencesRubio, M. (2007). Análisis y propuesto quetas de mejoramiento para el proceso de generación de residuos en la producción de ácidos sulfónicos. Trabajo de Grado. Universidad Nacional de Colombia – Sede Manizales, Manizales, Colombia.
dc.relation.referencesRusso, V., Milicia, A., Di Serio, M., y Tesser, R. (2019). Falling film reactor modelling for sulfonation reactions. Chemical Engineering Journal, 377, 120464. DOI: https://doi.org/10.1016/j.cej.2018.11.162
dc.relation.referencesSherwood, T. K., Pigford, R. L., y Wilke, C. R. (1975). Mass Transfer. Michigan: McGraw-Hill.
dc.relation.referencesSridhar, T., y Potter, O. E. (1980). Gas holdup and bubble diameters in pressurized gas-liquid stirred vessels. Industrial & Engineering Chemistry Fundamentals, 19(1), 21-26. DOI: https://doi.org/10.1021/i160073a004
dc.relation.referencesSteeman, J. W. M., Kaarsemaker, S., y Hoftyzer, P. J. (1961). E1. A pilot plant study of the oxidation of cyclohexane with air under pressure. Chemical Engineering Science, 14(1), 139-149. DOI: https://doi.org/10.1016/0009-2509(61)85066-5
dc.relation.referencesTaechangam, P., Scamehorn, J. F., Osuwan, S., y Rirksomboon, T. (2009). Effect of nonionic surfactant molecular structure on cloud point extraction of phenol from wastewater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 347(1-3), 200-209. DOI: https://doi.org/10.1016/j.colsurfa.2009.04.005
dc.relation.referencesTalens-Alesson, F. I. (1999). The modelling of falling film chemical reactors. Chemical Engineering Science, 54(12), 1871-1881. DOI: https://doi.org/10.1016/S0009-2509(98)00497-7
dc.relation.referencesTejeda-Iglesias, M., Szuba, J., Koniuch, R., y Ricardez-Sandoval, L. (2018). Optimization and Modeling of an Industrial-Scale Sulfuric Acid Plant under Uncertainty. Industrial y Engineering Chemistry Research, 57(24), 8253-8266. DOI: https://doi.org/10.1021/acs.iecr.8b00785
dc.relation.referencesWang, G. Q., Yuan, X. G., y Yu, K. T. (2005). Review of mass-transfer correlations for packed columns. Industrial & Engineering Chemistry Research, 44(23), 8715-8729. DOI: https://doi.org/10.1021/ie050017w
dc.relation.referencesWelch, V. A., y Fallon, K. J. (2000). Ethylbenzene. Ullmann's Encyclopedia of Industrial Chemistry. DOI: https://doi.org/10.1002/14356007.a10_035.pub2
dc.relation.referencesBelfiore, L. A., y Gómez‐García, M. Á. (2018). Transport Phenomena for Chemical Reactor Design. Kirk‐Othmer Encyclopedia of Chemical Technology, 1-65. DOI: https://doi.org/10.1002/0471238961.tranbelf.a01.pub2
dc.relation.referencesConstantinescu, D., & Gmehling, J. (2016). Further development of modified UNIFAC (Dortmund): revision and extension 6. Journal of Chemical & Engineering Data, 61(8), 2738-2748. DOI: https://doi.org/10.1021/acs.jced.6b00136
dc.relation.referencesDDB Consortium (2023). Parameters of the Modified UNIFAC (Dortmund) Model. Consultado el 16 de septiembre de 2023. Recuperado de Published Parameters UNIFAC(Do) - DDBST GmbH
dc.relation.referencesGmehling, J., Lohmann, J., Jakob, A., Li, J., y Joh, R. (1998). A modified UNIFAC (Dortmund) model. 3. Revision and extension. Industrial & Engineering Chemistry Research. 37(12), 4876-4882. DOI: https://doi.org/10.1021/ie980347z
dc.relation.referencesGómez-García, M. Á., Fontalvo Alzate, J., y García Cárdenas, J. A. (2011). Difusión y reacción en medios porosos. Manizales: Universidad Nacional de Colombia.
dc.relation.referencesØyen, S. B., Jakobsen, H. A., Haug-Warberg, T., y Solsvik, J. (2022). Mass transfer modeling and sensitivity study of low-temperature Fischer-Tropsch synthesis.Chemical Engineering Science,259, 117774. DOI: https://doi.org/10.1016/j.ces.2022.117774
dc.relation.referencesØyen, S. B., Jakobsen, H. A., Haug-Warberg, T., y Solsvik, J. (2021). Interface Mass Transfer in Reactive Bubbly Flow: A Rigorous Phase Equilibrium-Based Approach. Industrial & Engineering Chemistry Research, 60(48), 17705-17732. DOI: https://doi.org/10.1021/acs.iecr.1c03131
dc.relation.referencesSandler, S. (2016). Chemical, biochemical and engineering thermodynamics. Hoboken, NJ: John Wiley y Sons, Inc. DOI: https://doi.org/10.1021/ed055pa388.1
dc.relation.referencesAckermann, G. (1937). W/irme/ibertragung und molekulare Stofftibertragung im gleichen Feld bei groBen Temperatur-und Partialdruckdifferenzen. VDI-Forschungsheft, 382.
dc.relation.referencesBird, R., Stewart, W. and Lightfoot, E. (2002) Transport Phenomena. 2nd Edition, John Wiley and Sons, New York. DOI: https://doi.org/10.1115/1.1424298
dc.relation.referencesBlom, J. (1970). Experimental determination of the turbulent Prandtl number in a developing temperature boundary layer. In International Heat Transfer Conference 4 (Vol. 7). Begel House Inc. DOI: https://doi.org/10.1016/0017-9310(83)90046-7
dc.relation.referencesBrodkey, R. S., y Hershey, H. C. (2003). Transport Phenomena: a unified approach. Brodkey Publishing
dc.relation.referencesCussler, E. L. (2009). Diffusion: mass transfer in fluid systems. Cambridge University Press.
dc.relation.referencesDoraiswamy, L. K. (2001). Organic synthesis engineering. Oxford: Oxford University Press.
dc.relation.referencesDoraiswamy, L., y Üner, D. (2014). Chemical Reactor Engineering: Beyond the Fundamentals. Boca Ratón: Taylor y Francis Group. DOI: https://doi.org/10.1201/b14951
dc.relation.referencesFroment, G. F. (2010). Chemical reactor analysis and design. 3rd edition. Nueva York: Wiley.DOI: https://doi.org/10.1002/9783527823376
dc.relation.referencesHatta, S. (1932). On the Absorption Velocity of Gases by Liquids-II: Theoretical Considerations of Gas Absorption Due to Chemical Reaction. Technol. Rep. Tohoku Imp. Univ., 10,613-622.
dc.relation.referencesKierzkowska-Pawlak, H. (2012). Determination of kinetics in gas-liquid reaction systems. An overview. Ecological Chemistry and Engineering, 19(2), 175-196. DOI: https://doi.org/10.2478/v10216-011-0014-y
dc.relation.referencesMandel, J. (2012).The statistical analysis of experimental data. Courier Corporation.
dc.relation.referencesMann, R., Knysh, P., y Allan, J. C. (1982). Exothermic gas absorption with complex reaction: sulfonation and discoloration in the absorption of sulfur trioxide in dodecylbenzene. Chemical Reaction Engineering-Boston, Chapter 35 (441-456).
dc.relation.referencesChapra, S. C., y Canale, R. P. (2011).Numerical methods for engineers (Vol. 1221). New York: Mcgraw-Hill. DOI: https://doi.org/10.1016/b978-0-12-420228-3.00021-x
dc.relation.referencesDabir, B., Riazi, M. R., y Davoudirad, H. R. (1996). Modelling of falling film reactors. Chemical Engineering Science, 51(11), 2553-2558. DOI: https://doi.org/10.1016/0009-2509(96)00113-3
dc.relation.referencesDavis, E. J., Van Ouwerkerk, M., y Venkatesh, S. (1979). An analysis of the falling film gas-liquid reactor. Chemical Engineering Science, 34(4), 539-550. DOI: https://doi.org/10.1016/0009-2509(79)85099-X
dc.relation.referencesIvanchina, E., Ivashkina, E., Dolganova, I., Dolganov, I., Solopova, A., y Pasyukova, M. (2020). Linear Alkylbenzenes Sulfonation: Design of Film Reactor and its Influence on the Formation of Deactivating components. Journal of Surfactants and Detergents, 23(6), 1007-1015. DOI: https://doi.org/10.1002/jsde.12458
dc.relation.referencesJacobsen, R. L. (1970). E.E.U.U Patent No. 3531518.
dc.relation.referencesJohnson, G. R., y Crynes, B. L. (1974). Modeling of a thin-film sulfur trioxide sulfonation reactor. Industrial y Engineering Chemistry Process Design and Development, 13(1), 6-14. DOI: https://doi.org/10.1021/i260049a002
dc.relation.referencesKnaggs, E. A. (1965). E.E.U.U Patent No. 3169142.
dc.relation.referencesLamourelle, A. P., y Sandall, O. C. (1972). Gas absorption into a turbulent liquid. Chemical Engineering Science, 27(5), 1035-1043. DOI: https://doi.org/10.1016/0009-2509(72)80018-6
dc.relation.referencesMcCready, M. J., y Hanratty, T. J. (1984). A comparison of turbulent mass transfer at gas-liquid and solid-liquid interfaces. In Gas transfer at water surfaces (pp. 283-292). Springer, Dordrecht.
dc.relation.referencesPant, K. K., y Srivastava, V. K. (2007). Modeling of sulphonation of tridecylbenzene in a falling film reactor. Mathematical and Computer Modelling, 46(9-10), 1332-1344. DOI: https://doi.org/10.1016/j.mcm.2007.01.007
dc.relation.referencesPoling, B., Prausnitz, J., y O'Connell, J. (2000). The Properties of Gases and Liquids. California: McGraw-Hill Education. DOI: https://doi.org/10.1021/ja0048634
dc.relation.referencesTalens-Alesson, F. I. (1999). The modelling of falling film chemical reactors. Chemical engineering Science, 54(12), 1871-1881. DOI: https://doi.org/10.1016/S0009-2509(98)00497-7
dc.relation.referencesTorres Ortega, J. A. (2012). Sulfonation/Sulfation Processing Technology for Anionic Surfactant Manufacture. In Z. N. Naveed, Advances in Chemical Engineering. InTechOpen. DOI: https://doi.org/10.5772/32077
dc.relation.referencesVan Driest, E. R. (1956). On turbulent flow near a wall. Journal of the Aeronautical Sciences, 23(11), 1007-1011. DOI: https://doi.org/10.2514/8.3713
dc.relation.referencesYaws, C. (2015). The Yaws Handbook of Physical Properties. Nueva York: Elsevier. DOI: https://doi.org/10.1016/b978-0-12-800834-8.00001-3
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalModelo de Maxwell-Stefan
dc.subject.proposalTransferencia de masa multicomponente
dc.subject.proposalReactor de película descendente
dc.subject.proposalReacciones de sulfonación
dc.subject.proposalfalling film reactor
dc.subject.proposalMulticomponent mass transfer
dc.subject.proposalMaxwell-Stefan model
dc.subject.proposalSulfonation reactions
dc.title.translatedModeling of an industrial falling film reactor using the Maxwell-Stefan formalism
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentBibliotecarios
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaQuímica Y Procesos.Sede Manizales


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-CompartirIgual 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito