Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorArdila Vargas, Angel Miguel
dc.contributor.authorPerez Ayala, Yineth Melissa
dc.date.accessioned2024-01-30T15:59:26Z
dc.date.available2024-01-30T15:59:26Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85519
dc.descriptionilustración, fotografías, diagramas
dc.description.abstractThe main objective of this project was to fabricate copper nanowires (CuNWs) thin films with good optical and electrical properties, i.e., conductive, and transparent electrodes. For this purpose, different procedures were assessed to obtain Cu nanowires by a hydrothermal method, where tests of optimum reducing agents’ concentrations were done. The synthesis was carried out using copper (II) chloride dihydrate (CuCl2· 2H2O) as copper precursor and Octadecylamine (ODA) as surfactant. In this first phase of the project, the results obtained by using ascorbic acid as a reducing agent were compared with those obtained with glucose, where the latter produced the best nanowires. After the hydrothermal procedure CuNWs were obtained together with other unwanted nanostructures. Therefore, a suitable purification method was researched. The nanowires were kept in hexane and thin films were fabricated by the spin coating method. Thin films were characterized using the following techniques: scanning electron microscopy (SEM), UV-VIS spectrophotometry studies, IR, and sheet resistance measurement. The above with the intention of studying the optoelectrical and morphological properties of the Cu nanowire thin films as a function of the synthesis conditions. The results included transmittance spectrum between 28 and 80 % at λ = 550 nm. Also, Rs values were found to be 4.61, 8.76 and 1183 Ω/□. Moreover, reduction methods were investigated and PEDOT:PSS films were used to improve thin films properties. This work was conducted with the aim of fabricating conductive and transparent electrodes that can be used as substitutes of indium tin oxide (ITO) electrodes.
dc.description.abstractEl objetivo principal en este proyecto fue fabricar películas delgadas de nanohilos de cobre (Cu) que presentaran buenas propiedades ópticas y eléctricas, es decir, películas conductivas y transparentes. Para ello se probaron diferentes procedimientos para la obtención de los nanohilos de Cu mediante síntesis hidrotérmica, procurando establecer la óptima concentración de agentes de reducción usando ácido ascórbido y glucosa. Además, la síntesis se realizó usando cloruro de cobre (II) dihidratado (CuCl2・ 2H2O) como precursor del cobre y Octadecilamina (ODA) como surfactante. En primer lugar se determinó que el uso de glucosa permitía obtener mejores nanohilos. Así mismo, el método hidrotérmico fue usado en la síntesis y se obtuvieron tanto nanohilos como nanopartículas, por lo que un método de purificación se usó para la separación de los nanohilos. Las películas delgadas fabricadas por Spin Coating se caracterizaron usando las siguientes técnicas: microscopía electrónica de barrido (MEB), espectrofotometría UV-VIS, IR, medición de la resistencia y de la resistencia de hoja. Con esto se determinaron las propiedades optoeléctricas y morfológicas de las películas delgadas de nanohilos de Cu. Se encontraron espectros de transmitancia de entre 28 y 80% y resistencia de hoja de 4.61, 8.76 y 1183 Ω/□. Métodos de reducción fueron estudiados para mejorar la conductividad de las películas así como uso de PEDOT:PSS para mejorar sus propiedades. Todo lo anterior se hizo con el ánimo de fabricar electrodos conductivos y transparentes que puedan ser usados como sustituto de los electrodos de ITO (óxido de indio y estaño). (Texto tomado de la fuente)
dc.format.extentxvi, 78 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc530 - Física::535 - Luz y radiación relacionada
dc.subject.ddc530 - Física::539 - Física moderna
dc.subject.ddc540 - Química y ciencias afines::541 - Química física
dc.titleFabricación de películas delgadas conductoras y transparentes a partir de nanohilos de cobre
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Física
dc.contributor.educationalvalidatorCarriazo Baños, Jose Gregorio
dc.contributor.researchgroupGrupo de física aplicada
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Física
dc.description.researchareaFísica aplicada
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesJ.-Y. Lee, S. T. Connor, Y. Cui y P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano letters, vol. 8, n.o 2, págs. 689-692, 2008.
dc.relation.referencesT. Pedersen, Facts about indium, ago. de 2018. dirección: https://www.livescience. com/37352-indium.html.
dc.relation.referencesCopper nanowires for flexible displays and solar cells, jun. de 2016. dirección: https: //cordis.europa.eu/article/id/169520- copper- nanowires- for- flexibledisplays- and-solar-cells.
dc.relation.referencesA. R. Rathmell, S. M. Bergin, Y.-L. Hua, Z.-Y. Li y B. J. Wiley, “The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films,” Advanced materials, vol. 22, n.o 32, págs. 3558-3563, 2010.
dc.relation.referencesJ. R. Rumble, “CRC Handbook of Chemistry and Physics,” CRC Press/Taylor Francis, n.o 103rd Edition, 2022.
dc.relation.referencesL. Lian, X. Xi, D. Dong y G. He, “Highly conductive silver nanowire transparent electrode by selective welding for organic light emitting diode,” Organic Electronics, vol. 60, págs. 9-15, 2018.
dc.relation.referencesS.-H. Feng y G.-H. Li, “Chapter 4 - Hydrothermal and Solvothermal Syntheses,” en Modern Inorganic Synthetic Chemistry (Second Edition), R. Xu e Y. Xu, eds., Second Edition, Amsterdam: Elsevier, 2017, págs. 73-104, isbn: 978-0-444-63591-4. doi: https://doi.org/10.1016/B978- 0- 444- 63591- 4.00004- 5. dirección: https: //www.sciencedirect.com/science/article/pii/B9780444635914000045.
dc.relation.referencesS. Zhao, F. Han, J. Li et al., “Advancements in copper nanowires: synthesis, purification, assemblies, surface modification, and applications,” Small, vol. 14, n.o 26, pág. 1 800 047, 2018.
dc.relation.referencesL. Yang, Z. Zhou, J. Song y X. Chen, “Anisotropic nanomaterials for shape-dependent physicochemical and biomedical applications,” Chemical Society Reviews, vol. 48, n.o 19, págs. 5140-5176, 2019.
dc.relation.referencesS. Ding e Y. Tian, “Recent progress of solution-processed Cu nanowires transparent electrodes and their applications,” RSC advances, vol. 9, n.o 46, págs. 26 961-26 980, 2019.
dc.relation.referencesA. Hashidzume y A. Harada, Encyclopedia of Polymeric Nanomaterials. Berlin Heidelberg: Springer, 2015, págs. 1238-1241.
dc.relation.referencesS. Ranjan, N. Dasgupta y E. Lichtfouse, Nanoscience in Food and Agriculture. Switzerland: Springer, 2017, vol. 4.
dc.relation.referencesN. R. Tummala, “SDS surfactants on carbon nanotubes: aggregate morphology,” ACS nano, vol. 3, n.o 3, págs. 595-602, 2009.
dc.relation.referencesN. L. Alpert, W. E. Keiser y H. A. Szymański, Ir, theory and practice of infrared spectroscopy, Second. Plenum Publ., 1973.
dc.relation.referencesC. A. Rius, Espectroscopía de infrarrojo y espectroscopía de masas -PPT, sep. de 2007. dirección: https://slideplayer.es/slide/1453984/.
dc.relation.referencesG. Gonzáles, “Principios de microscopía electrónica de barrido y microanálisis por Rayos X,” en E. Noguez, ed. México: Facultad de Química, UNAM, 2006, pág. 60.70, isbn: 970-32-4011-9. dirección: https://www.google.com/url?sa=i&url=http% 3A % 2F % 2Flibrosoa . unam . mx % 2Fbitstream % 2Fhandle % 2F123456789 % 2F3250 % 2Fprincipios.pdf%3Fsequence%3D1%26isAllowed%3Dy&psig=AOvVaw25p9qjWiyIKah4VrXxw5rw& ust=1700013195377000&source=images&cd=vfe&opi=89978449&ved=0CAUQjB1qFwoTCPiE9OawwoIDFQAAAAAdAAAAABB8
dc.relation.referencesB. Inkson, “2 - Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization,” en Materials Characterization Using Nondestructive Evaluation (NDE) Methods, G. Hübschen, I. Altpeter, R. Tschuncky y H.-G. Herrmann, eds., Woodhead Publishing, 2016, págs. 17-43, isbn: 978-0-08- 100040-3. doi: https://doi.org/10.1016/B978-0-08-100040-3.00002-X. dirección: https://www.sciencedirect.com/science/article/pii/B978008100040300002X.
dc.relation.referencesG. Artioli, “X-ray Diffraction (XRD),” en Encyclopedia of Geoarchaeology, A. S. Gilbert, ed. Dordrecht: Springer Netherlands, 2017, págs. 1019-1025, isbn: 978-1-4020- 4409-0. doi: 10.1007/978-1-4020-4409-0_29. dirección: https://doi.org/10. 1007/978-1-4020-4409-0_29.
dc.relation.referencesSpectrophotometry, [Online; accessed 2023-08-12], feb. de 2023.
dc.relation.referencesM. M. Ghorbani y R. Taherian, “12 - Methods of Measuring Electrical Properties of Material**Hereby from Keithley Co. and Dr. Michael B. Heaney is appreciated due to valuable content used in this chapter.,” en Electrical Conductivity in Polymer- Based Composites, ép. Plastics Design Library, R. Taherian y A. Kausar, eds., William Andrew Publishing, 2019, págs. 365-394, isbn: 978-0-12-812541-0. doi: https : / / doi . org / 10 . 1016 / B978 - 0 - 12 - 812541 - 0 . 00012 - 4. dirección: https : / / www . sciencedirect.com/science/article/pii/B9780128125410000124.
dc.relation.referencesS. Ye, I. E. Stewart, Z. Chen, B. Li, A. R. Rathmell y B. J. Wiley, “How copper nanowires grow and how to control their properties,” Accounts of chemical research, vol. 49, n.o 3, págs. 442-451, 2016.
dc.relation.referencesT. B. A. Senior, “Note on the extinction efficiency,” Appl. Opt., vol. 22, n.o 12, págs. 1796-1797, jun. de 1983. doi: 10.1364/AO.22.001796. dirección: https://opg.optica.org/ao/ abstract.cfm?URI=ao-22-12-1796.
dc.relation.referencesG. Huang, C.-H. Lu y H.-H. Yang, “Magnetic nanomaterials for magnetic bioanalysis,” en Novel nanomaterials for biomedical, environmental and energy applications, Elsevier, 2019, págs. 89-109.
dc.relation.referencesS. Nandy y K. H. Chae, “17 - Chemical synthesis of ferrite thin films,” en Ferrite Nanostructured Magnetic Materials, ép. Woodhead Publishing Series in Electronic and Optical Materials, J. Pal Singh, K. H. Chae, R. C. Srivastava y O. F. Caltun, eds., Woodhead Publishing, 2023, págs. 309-334, isbn: 978-0-12-823717-5. doi: https:// doi . org / 10 . 1016 / B978 - 0 - 12 - 823717 - 5 . 00021 - 8. dirección: https : / / www . sciencedirect.com/science/article/pii/B9780128237175000218.
dc.relation.referencesW. Commons, File:Cu-pourbaix-diagram.svg, https : / / commons . wikimedia . org / wiki/File:Cu-pourbaix-diagram.svg, [Accessed: 14-08-2023], 2007.
dc.relation.referencesS. HwanáKo et al., “A dual-scale metal nanowire network transparent conductor for highly efficient and flexible organic light emitting diodes,” Nanoscale, vol. 9, n.o 5, págs. 1978-1985, 2017.
dc.relation.referencesD. Lee, H. Lee, Y. Ahn e Y. Lee, “High-performance flexible transparent conductive film based on graphene/AgNW/graphene sandwich structure,” Carbon, vol. 81, págs. 439-446, 2015.
dc.relation.referencesS. Sharma, S. Shriwastava, S. Kumar, K. Bhatt y C. C. Tripathi, “Alternative transparent conducting electrode materials for flexible optoelectronic devices,” Opto-Electronics Review, vol. 26, n.o 3, págs. 223-235, 2018.
dc.relation.referencesS. H. Kim, W. I. Choi, K. H. Kim, D. J. Yang, S. Heo y D.-J. Yun, “Nanoscale chemical and electrical stabilities of graphene-covered silver nanowire networks for transparent conducting electrodes,” Scientific reports, vol. 6, n.o 1, págs. 1-12, 2016.
dc.relation.referencesM. Zhang, S. Fang, A. A. Zakhidov et al., “Strong, transparent, multifunctional, carbon nanotube sheets,” science, vol. 309, n.o 5738, págs. 1215-1219, 2005.
dc.relation.referencesR. V. Salvatierra, C. E. Cava, L. S. Roman y A. J. Zarbin, “ITO-free and flexible organic photovoltaic device based on high transparent and conductive polyaniline/carbon nanotube thin films,” Advanced Functional Materials, vol. 23, n.o 12, págs. 1490-1499, 2013.
dc.relation.referencesS. Bae, H. Kim, Y. Lee et al., “Roll-to-roll production of 30-inch graphene films for transparent electrodes,” Nature nanotechnology, vol. 5, n.o 8, págs. 574-578, 2010.
dc.relation.referencesP. Blake, P. D. Brimicombe, R. R. Nair et al., “Graphene-based liquid crystal device,” Nano letters, vol. 8, n.o 6, págs. 1704-1708, 2008.
dc.relation.referencesR. Das y H. S. Das, “Merits and demerits of transparent conducting magnetron sputtered ZnO: Al, ITO and SnO2: F thin films for solar cell applications,” Journal of The Institution of Engineers (India): Series D, vol. 98, n.o 1, págs. 85-90, 2017.
dc.relation.referencesS. Yu, W. Zhang, L. Li, D. Xu, H. Dong e Y. Jin, “Optimization of SnO2/Ag/SnO2 tri-layer films as transparent composite electrode with high figure of merit,” Thin Solid Films, vol. 552, págs. 150-154, 2014.
dc.relation.referencesS. Ding, J. Jiu, Y. Tian, T. Sugahara, S. Nagao y K. Suganuma, “Fast fabrication of copper nanowire transparent electrodes by a high intensity pulsed light sintering technique in air,” Phys. Chem. Chem. Phys., vol. 17, págs. 31 110-31 116, 46 2015. doi: 10.1039/C5CP04582G. dirección: http://dx.doi.org/10.1039/C5CP04582G.
dc.relation.referencesY. Zhao, X. Zhou, W. Huang, J. Kang y G. He, “High-performance copper nanowire electrode for efficient flexible organic light-emitting diode,” Organic Electronics, vol. 113, pág. 106 690, 2023, issn: 1566-1199. doi: https : / / doi . org / 10 . 1016 / j.orgel.2022.106690. dirección: https://www.sciencedirect.com/science/ article/pii/S1566119922002622
dc.relation.referencesZ. Wang, Y. Han, L. Yan et al., “High Power Conversion Efficiency of 13.61% for 1 cm2 Flexible Polymer Solar Cells Based on Patternable and Mass-Producible Gravure- Printed Silver Nanowire Electrodes,” Advanced Functional Materials, vol. 31, n.o 4, pág. 2 007 276, 2021. doi: https : / / doi . org / 10 . 1002 / adfm . 202007276. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.202007276. dirección: https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.202007276.
dc.relation.referencesY. Wang, P. Liu, B. Zeng, L. Liu y J. Yang, “Facile synthesis of ultralong and thin copper nanowires and its application to high-performance flexible transparent conductive electrodes,” Nanoscale research letters, vol. 13, n.o 1, págs. 1-10, 2018.
dc.relation.referencesH. Zhang, S. Wang, Y. Tian et al., “High-efficiency extraction synthesis for highpurity copper nanowires and their applications in flexible transparent electrodes,” Nano Materials Science, vol. 2, n.o 2, págs. 164-171, 2020.
dc.relation.referencesH.-C. Chu, Y.-C. Chang, Y. Lin et al., “Spray-deposited large-area copper nanowire transparent conductive electrodes and their uses for touch screen applications,” ACS applied materials & interfaces, vol. 8, n.o 20, págs. 13 009-13 017, 2016.
dc.relation.referencesC. Kang, S. Yang, M. Tan et al., “Purification of copper nanowires to prepare flexible transparent conductive films with high performance,” ACS Applied Nano Materials, vol. 1, n.o 7, págs. 3155-3163, 2018
dc.relation.referencesA. Kasry, M. A. Kuroda, G. J. Martyna, G. S. Tulevski y A. A. Bol, “Chemical doping of large-area stacked graphene films for use as transparent, conducting electrodes,” ACS nano, vol. 4, n.o 7, págs. 3839-3844, 2010.
dc.relation.referencesS. L. Hellstrom, M. Vosgueritchian, R. M. Stoltenberg et al., “Strong and stable doping of carbon nanotubes and graphene by MoO x for transparent electrodes,” Nano letters, vol. 12, n.o 7, págs. 3574-3580, 2012.
dc.relation.referencesT. M. Higgins y J. N. Coleman, “Avoiding resistance limitations in high-performance transparent supercapacitor electrodes based on large-area, high-conductivity PEDOT: PSS films,” ACS applied materials & interfaces, vol. 7, n.o 30, págs. 16 495-16 506, 2015.
dc.relation.referencesI.-K. Suh, H. Ohta e Y. Waseda, “High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction,” Journal of Materials Science, vol. 23, págs. 757-760, 1988.
dc.relation.referencesN. Calos, J. Forrester y G. Schaffer, “A crystallographic contribution to the mechanism of a mechanically induced solid state reaction,” Journal of Solid State Chemistry, vol. 122, n.o 2, págs. 273-280, 199
dc.relation.referencesA. Kirfel y K. Eichhorn, “Accurate structure analysis with synchrotron radiation. The electron density in Al2O3 and Cu2O,” Acta Crystallographica Section A: Foundations of Crystallography, vol. 46, n.o 4, págs. 271-284, 1990
dc.relation.referencesS. Matsuyama, Y. Takizawa, S. Kinugasa, K. Tanabe y T. Tamura, Spectral Database for Organic Compounds SDBS, https://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_ index.cgi, Accessed: 2023-07-3.
dc.relation.referencesTHE FINGERPRINT REGION OF AN INFRA-RED SPECTRUM, https://www. chemguide.co.uk/analysis/ir/fingerprint.html, Accessed: 2023-07-20.
dc.relation.referencesQ.-m. LIU, D.-b. ZHOU, Y. YAMAMOTO, R. ICHINO y M. OKIDO, “Preparation of Cu nanoparticles with NaBH4 by aqueous reduction method,” Transactions of Nonferrous Metals Society of China, vol. 22, n.o 1, págs. 117-123, 2012.
dc.relation.referencesR. Betancourt-Galindo, P. Reyes-Rodriguez, B. Puente-Urbina et al., “Synthesis of copper nanoparticles by thermal decomposition and their antimicrobial properties,” Journal of Nanomaterials, vol. 2014, págs. 10-10, 2014.
dc.relation.referencesM. Salavati-Niasari, F. Davar y N. Mir, “Synthesis and characterization of metallic copper nanoparticles via thermal decomposition,” Polyhedron, vol. 27, n.o 17, págs. 3514-3518, 2008.
dc.relation.referencesK. Mikami, Y. Kido, Y. Akaishi, A. Quitain y T. Kida, “Synthesis of Cu2O/CuO nanocrystals and their application to H2S sensing,” Sensors, vol. 19, n.o 1, pág. 211, 2019.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalNanohilos de cobre
dc.subject.proposalElectrodo transparente
dc.subject.proposalSíntesis hidrotérmica
dc.subject.proposalConductividad
dc.subject.proposalPelícula delgada
dc.subject.proposalCopper nanowires
dc.subject.proposalTransparent electrodes
dc.subject.proposalHydrothermal synthesis
dc.subject.proposalConductivity
dc.subject.proposalThin films
dc.title.translatedFabrication of copper nanowires based transparent and conductive thin films
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores
dc.subject.wikidatananowire
dc.subject.wikidatananohilo
dc.subject.wikidatareducing agent
dc.subject.wikidataagente reductor
dc.subject.wikidatananostructure
dc.subject.wikidatananoestructura


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito