Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorLópez Álvarez, Diana Carolina
dc.contributor.advisorRojas Triviño, Edwison Alberto
dc.contributor.authorMartínez López, Luisa María
dc.date.accessioned2024-01-30T20:58:37Z
dc.date.available2024-01-30T20:58:37Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85544
dc.descriptionIlustraciones, tablas, gráficas
dc.description.abstractEl Poliestireno expandido (EPS) es un polímero sintético de uso común en diferentes industrias, principalmente en las de embalaje y construcción. Debido a su composición química a base de cadenas largas de hidrocarburos, el EPS posee una estabilidad molecular que le permite permanecer inmodificable por cientos de años lo que genera un impacto negativo sobre el medio ambiente, ya que no es un sustrato nutritivo para ningún microorganismo o se desconocía para cuál. En la actualidad, se ha reportado que larvas de coleópteros de la familia Tenebrionidae pueden biodegradarlo gracias a enzimas producidas por su microbiota intestinal. Considerando lo anterior, el objetivo de esta investigación fue caracterizar la microbiota intestinal de larvas de Zophobas morio como aproximación al uso potencial para la biodegradación del Poliestireno (PS), empleando metabarcoding. Para esto se realizó secuenciación Illumina Miseq de la región V3-4 del gen 16s del ARNr de larvas de Z. morio alimentadas con dos tipos de dietas, EPS y Avena. Adicionalmente, a través de la plataforma de secuenciación Hiseq2500 se obtuvo el metagenoma completo de una de las muestras alimentadas con EPS. Con los resultados de la secuenciación se analizó la composición taxonómica, abundancia relativa de las bacterias y finalmente se realizó un análisis metabólico del microbioma obtenido de las larvas alimentadas con EPS. El análisis metagenómico permitió identificar que el género Spiroplasma presentó una abundancia relativa de 61,6 %, seguido de Pantoea (19,3%), Enterobacter (5%) y Pseudarthrobacter (4,7%). Otros géneros presentes fueron Kluyvera georgiana, Enterococcus sp., Bacillus sp., Clostridium sp., y Romboutsia sp. Se asume a estos géneros como los microorganismos más promisorios que influyen en la biodegradación del EPS. Los resultados obtenidos podrían ser incluidos en trabajos futuros donde se analice la actividad biológica y de biodegradación de microorganismos pertenecientes a los géneros encontrados. (Texto tomadode la fuente)
dc.description.abstractExpanded Polystyrene (EPS) is a synthetic polymer commonly used in different industries, mainly in packaging and construction. Due to its chemical composition based on long hydrocarbon chains, EPS has a molecular stability that allows it to remain unchanged for hundreds of years, which generates a negative impact on the environment, since it is not a nutritious substrate for any microorganism, or it was unknown for which one. Currently, it has been reported that beetle larvae of the Tenebrionidae family can biodegrade it thanks to enzymes produced by their intestinal microbiota. Considering the above, the objective of this research was to characterize the intestinal microbiota of Zophobas morio larvae as an approach to the potential use for the biodegradation of Polystyrene, using metabarcoding. For this, the Illumina Miseq sequence of the V3-4 region of the 16s rRNA gene of Z. morio larvae fed with two types of diets, PE and Oats, was performed. Additionally, through the Hiseq2500 sequencing platform, the complete metagenome of one of the samples fed with EPS was obtained. With the results of the sequencing, the taxonomic composition, the relative abundance of the bacteria was analyzed and finally a metabolic analysis of the microbiome obtained from the larvae fed with EPS was carried out. The metagenomic analysis allowed us to identify that the genus Spiroplasma presented a relative abundance of 61.6%, followed by Pantoea (19.3%), Enterobacter (5%) and Pseudarthrobacter (4.7%). Other genera present were Kluyvera georgiana, Enterococcus sp., Bacillus sp., Clostridium sp., and Romboutsia sp. These genera are assumed to be the most promising microorganisms that influence the biodegradation of EPS. The results obtained could be included in future works where the biological activity and biodegradation of microorganisms belonging to the found genera are analyzed. Keywords: Polystyrene, EPS, metagenomics, metabarcoding, biodegradation, Coleoptera.
dc.description.sponsorshipConvocatoria de la Universidad Nacional de Colombia sede Palmira por medio de la plataforma Hermes.
dc.format.extentxv, 75 + anexos
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales
dc.titleEstudio del microbioma intestinal de Zophobas morio (Coleóptera: Tenebrionidae) como aproximación al uso potencial para la biodegradación del poliestireno.
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programPalmira - Ingeniería y Administración - Maestría en Ingeniería - Ingeniería Ambiental
dc.description.notescontiene material didáctico, ilustraciones y tablas
dc.contributor.researchgroupGrupo de Investigación en Diversidad Biológica
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Ambiental
dc.description.methodsExtracción de ADN total. Secuenciación masiva empleando amplificaciones y genomas completos. Análisis bioinformáticos. Composición taxonómica y abundancia relativa de bacterias. Análisis metabólico del microbioma obtenido del Metagenoma del tracto digestivo de larvas de Z. morio alimentadas con poliestireno expandido. Control de calidad de las secuencias y remoción de artefactos. Extracción de características. Anotación de características. Filtrado de proteínas, Agrupando AA, Identificación de proteínas, Agrupación de ARNr, Identificación de ARNr, Generación de perfiles.
dc.description.researchareaCiencias omicas y Bioinformatica
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería y Administración
dc.publisher.placePalmira, Valle del Cauca, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmira
dc.relation.referencesAhmed, T., Shahid, M., Azeem, F., Rasul, I., Shah, A. A., Noman, M., Hameed, A., Manzoor, N., Manzoor, I., & Muhammad, S. (2018). Biodegradation of plastics: current scenario and future prospects for environmental safety. Environmental Science and Pollution Research, 25(8), 7287–7298. https://doi.org/10.1007/s11356-018-1234-9
dc.relation.referencesAlexeeva, I., Elliott, E. J., Rollins, S., Gasparich, G. E., Lazar, J., & Rohwer, R. G. (2006). Absence of Spiroplasma or other bacterial 16S rRNA genes in brain tissue of hamsters with scrapie. Journal of Clinical Microbiology, 44(1), 91–97. https://doi.org/10.1128/JCM.44.1.91-97.2006
dc.relation.referencesArgüello, H., Cortez-Romero, C., Rojas-Martínez, R. I., Segura-León, O. L., Herrera-Haro, J. G., Salazar-Ortiz, J., & Gallegos-Sanchez, J. (2014). Polimorfismos de la proteína 15 morfogénica ósea (BMP15) y su relación con el tipo de parto en la oveja pelibuey. Agrociencia, 48(1), 53–69.
dc.relation.referencesBae, J., Cho, H. woo, Jung, H., Park, J., Yun, S., Ha, S., Lee, Y., & Kim, T. J. (2021). Changes in Intestinal Microbiota Due to the Expanded Polystyrene Diet of Mealworms (Tenebrio molitor). Indian Journal of Microbiology, 61(2), 130–136. https://doi.org/10.1007/s12088-021-00922-w
dc.relation.referencesBenson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2013). GenBank. Nucleic Acids Research, 41(D1), 36–42. https://doi.org/10.1093/nar/gks1195
dc.relation.referencesBhardwaj, H., Gupta, R., & Tiwari, A. (2012). Communities of Microbial Enzymes Associated with Biodegradation of Plastics. Journal of Polymers and the Environment, 21(2), 575–579. doi:10.1007/s10924-012-0456-z
dc.relation.referencesBornscheuer, U. T. (2002). Bornscheuer 2002. 26, 73–81.
dc.relation.referencesBrandon, A. M., Gao, S. H., Tian, R., Ning, D., Yang, S. S., Zhou, J., Wu, W. M., & Criddle, C. S. (2018). Biodegradation of Polyethylene and Plastic Mixtures in Mealworms (Larvae of Tenebrio molitor) and Effects on the Gut Microbiome. Environmental Science and Technology, 52(11), 6526–6533. https://doi.org/10.1021/acs.est.8b02301
dc.relation.referencesBennet, John; Dolin Raphael; Blaser Martin. (2014). Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases. Churchill Livingstone. ISBN 978-1-455-74801-3.
dc.relation.referencesBuchfink, B., Xie, C., & Huson, D. H. (2014). Fast and sensitive protein alignment using DIAMOND. Nature Methods, 12(1), 59–60. https://doi.org/10.1038/nmeth.3176
dc.relation.referencesCalderoli, P. (2016). Análisis de las poblaciones de microorganismos fijadores de nitrógeno del suelo aplicando procedimientos metagenómicos. Universidad Nacional de La Plata. Argentina.
dc.relation.referencesCao, Y., & Wang, B. (2009). Biodegradation of silk biomaterials. International Journal of Molecular Sciences, 10(4), 1514–1524. https://doi.org/10.3390/ijms10041514
dc.relation.referencesCole, J. R. (2003). The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Research, 31(1), 442–443. doi:10.1093/nar/gkg039
dc.relation.referencesCox, M. P., Peterson, D. A., & Biggs, P. J. (2010). SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics, 11. https://doi.org/10.1186/1471-2105-11-485
dc.relation.referencesDanso, D., Chow, J., & Streita, W. R. (2019). Plastics: Environmental and biotechnological perspectives on microbial degradation. Applied and Environmental Microbiology, 85(19). https://doi.org/10.1128/AEM.01095-19
dc.relation.referencesDaviran Yance, P. (2017). Biodegradación de la Espuma de Poliestireno por la larva del Tenebrio molitor para la producción de Abono, 2017. Universidad César Vallejo.
dc.relation.referencesEdgar, R. C. (2013). UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10(10), 996–998. https://doi.org/10.1038/nmeth.2604
dc.relation.referencesFarmer, J. J. (2015). Kluyvera . Bergey’s Manual of Systematics of Archaea and Bacteria, 1–18. https://doi.org/10.1002/9781118960608.gbm01151
dc.relation.referencesFesseha, H., & Abebe, F. (2019). Degradation of Plastic Materials Using Microorganisms: A Review. Public Health – Open Journal, 4(2), 57–63. https://doi.org/10.17140/phoj-4-136
dc.relation.referencesFuente-Salcido, Norma. (2015). Las Bacteriocinas de Bacillus thuringiensis y la Proteómica como una Herramienta para su Análisis. Fronteras En Microbiologia Aplicada, October, 154–174. México.
dc.relation.referencesGhosh, S. K., Pal, S., & Ray, S. (2013). Study of microbes having potentiality for biodegradation of plastics. Environmental Science and Pollution Research International, 20(7), 4339–4355. https://doi.org/10.1007/s11356-013-1706-x
dc.relation.referencesGilbert, J. A., & Dupont, C. L. (2011). Microbial metagenomics: Beyond the genome. Annual Review of Marine Science, 3, 347–371. https://doi.org/10.1146/annurev-marine-120709-142811
dc.relation.referencesGoitisolo, I., Eguiazábal, J. I., & Nazábal, J. (2008). Effects of reprocessing on the structure and properties of polyamide 6 nanocomposites. Polymer Degradation and Stability, 93(10), 1747–1752. https://doi.org/10.1016/j.polymdegradstab.2008.07.030
dc.relation.referencesGómez Serrato, J. G. (2016). Diagnóstico del impacto del plastico (botellas) sobre el medio ambiente: Un estado del arte [en linea]. Universidad Santo Tomas, 81. http://hdl.handle.net/11634/10047
dc.relation.referencesHaider, T. P., Völker, C., Kramm, J., Landfester, K., & Wurm, F. R. (2019). Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angewandte Chemie - International Edition, 58(1), 50–62. https://doi.org/10.1002/anie.201805766
dc.relation.referencesHenry, M., & Fouladkhah, A. (2019). Outbreak history, biofilm formation, and preventive measures for control of cronobacter sakazakii in infant formula and infant care settings. Microorganisms, 7(3). https://doi.org/10.3390/microorganisms7030077
dc.relation.referencesHou, L., & Majumder, E. L. W. (2021). Potential for and distribution of enzymatic biodegradation of polystyrene by environmental microorganisms. Materials, 14(3), 1–20. https://doi.org/10.3390/ma14030503
dc.relation.referencesHuse, S. M., Huber, J. A., Morrison, H. G., Sogin, M. L., & Welch, D. M. (2007). Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biology, 8(7), 1–9. https://doi.org/10.1186/gb-2007-8-7-r143
dc.relation.referencesImre, B., & Pukánszky, B. (2013). Compatibilization in bio-based and biodegradable polymer blends. European Polymer Journal, 49(6), 1215–1233. https://doi.org/10.1016/j.eurpolymj.2013.01.019
dc.relation.referencesJakubowicz, I., Yarahmadi, N., & Arthurson, V. (2011). Kinetics of abiotic and biotic degradability of low-density polyethylene containing prodegradant additives and its effect on the growth of microbial communities. Polymer Degradation and Stability, 96(5), 919–928. https://doi.org/10.1016/j.polymdegradstab.2011.01.031
dc.relation.referencesJensen, L. J., Julien, P., Kuhn, M., von Mering, C., Muller, J., Doerks, T., & Bork, P. (2008). eggNOG: Automated construction and annotation of orthologous groups of genes. Nucleic Acids Research, 36(SUPPL. 1), 250–254. https://doi.org/10.1093/nar/gkm796
dc.relation.referencesJiang, S., Su, T., Zhao, J., & Wang, Z. (2021). Biodegradation of polystyrene by tenebrio molitor, galleria mellonella, and zophobas atratus larvae and comparison of their degradation effects. Polymers, 13(20). https://doi.org/10.3390/polym13203539
dc.relation.referencesJung, J., Heo, A., Woo Park, Y., Ji Kim, Y., Koh, H., & Park, W. (2014). Gut microbiota of tenebrio molitor and their response to environmental change. Journal of Microbiology and Biotechnology, 24(7), 888–897. https://doi.org/10.4014/jmb.1405.05016
dc.relation.referencesK. Meng, T., Y.Y. Beng, D., S. Mohd Kassim, A., H. A. Razak, A., & A. Mohd Fauzi, N. (2019). Optimization of Polystyrene Biodegradation using Response Surface Methodology (RSM) Measured by Simple Colorimetric Method. International Journal of Engineering & Technology, 7(4.14), 216. https://doi.org/10.14419/ijet.v7i4.14.27567
dc.relation.referencesKale, S. K., Deshmukh, A. G., Dudhare, M. S., & Patil, V. B. (2015). Microbial degradation of plastic: a review Swapnil. Journal of Biochemical Technology, 6(2), 952–961.
dc.relation.referencesKanehisa-The KEGG database - PubMed-2002. (n.d.).
dc.relation.referencesKent, W. J. (2002). BLAT —The BLAST -Like Alignment Tool. Genome Research, 12(4), 656–664. https://doi.org/10.1101/gr.229202
dc.relation.referencesKotova, I. B., Taktarova, Y. V., Tsavkelova, E. A., Egorova, M. A., Bubnov, I. A., Malakhova, D. V., Shirinkina, L. I., Sokolova, T. G., & Bonch-Osmolovskaya, E. A. (2021). Microbial Degradation of Plastics and Approaches to Make it More Efficient. Microbiology (Russian Federation), 90(6), 671–701. https://doi.org/10.1134/S0026261721060084
dc.relation.referencesLorenz P, Eck J.. Metagenomics and industrial applications. (2005). Nature Reviews Microbiology 3(6):510-6. DOI:10.1038/nrmicro1161
dc.relation.referencesLove MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8. PMID: 25516281; PMCID: PMC4302049.
dc.relation.referencesLovley DR. (2003). Cleaning up with genomics: applying molecular biology to bioremediation. Nat Rev Microbiol. Oct;1(1):35-44. doi: 10.1038/nrmicro731. PMID: 15040178.
dc.relation.referencesLucas, N., Bienaime, C., Belloy, C., Queneudec, M., Silvestre, F., & Nava-Saucedo, J. E. (2008). Polymer biodegradation: Mechanisms and estimation techniques - A review. Chemosphere, 73(4), 429–442. https://doi.org/10.1016/j.chemosphere.2008.06.064
dc.relation.referencesMagrane, M., & Consortium, U. P. (2011). UniProt Knowledgebase: A hub of integrated protein data. Database, 2011, 1–13. https://doi.org/10.1093/database/bar009
dc.relation.referencesMarkowitz, V. M., Ivanova, N. N., Szeto, E., Palaniappan, K., Chu, K., Dalevi, D., Chen, I. M. A., Grechkin, Y., Dubchak, I., Anderson, I., Lykidis, A., Mavromatis, K., Hugenholtz, P., & Kyrpides, N. C. (2008). IMG/M: A data management and analysis system for metagenomes. Nucleic Acids Research, 36(SUPPL. 1), 534–538. https://doi.org/10.1093/nar/gkm869
dc.relation.referencesMarrero-Coto, J., Díaz-Valdivia, A., & Coto-Pérez, O. (2010). Mecanismos moleculares de resistencia a metales pesados en las bacterias y sus aplicaciones en la biorremediación. Revista CENIC Ciencias Biológicas, 41(1), 67–78.
dc.relation.referencesMoore, C. J. (2008). Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environmental Research, 108(2), 131–139. https://doi.org/10.1016/j.envres.2008.07.025
dc.relation.referencesNomura, N., Shigeno-Akutsu, Y., Nakajima-Kambe, T., & Nakahara, T. (1998). Cloning and sequence analysis of a polyurethane esterase of Comamonas acidovorans TB-35. Journal of Fermentation and Bioengineering, 86(4), 339–345. https://doi.org/10.1016/S0922-338X(99)89001-1
dc.relation.referencesNukmal, N., Umar, S., Amanda, S. P., & Kanedi, M. (2018). Effect of styrofoam waste feeds on the growth, development and fecundity of mealworms (Tenebrio molitor). OnLine Journal of Biological Sciences, 18(1), 24–28. https://doi.org/10.3844/ojbsci.2018.24.28
dc.relation.referencesOpenMP, A. (2011). OpenMP Application Program Interface, v. 3.1. OpenMP Architecture Review Board, July. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:OpenMP+Application+Program+Interface#1
dc.relation.referencesOverbeek, R., Begley, T., Butler, R. M., Choudhuri, J. V., Chuang, H. Y., Cohoon, M., de Crécy-Lagard, V., Diaz, N., Disz, T., Edwards, R., Fonstein, M., Frank, E. D., Gerdes, S., Glass, E. M., Goesmann, A., Hanson, A., Iwata-Reuyl, D., Jensen, R., Jamshidi, N., … Vonstein, V. (2005). The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Research, 33(17), 5691–5702. https://doi.org/10.1093/nar/gki866
dc.relation.referencesPeña-Pascagaza, P. M., López-Ramírez, N. A., & Ballen-Segura, M. A. (2020). Tenebrio molitor and its gut bacteria growth in polystyrene (PS) presence as the sole source carbon. Universitas Scientiarum, 25(1), 37–53. https://doi.org/10.11144/JAVERIANA.SC25-1.TMAI
dc.relation.referencesPeng, B. Y., Li, Y., Fan, R., Chen, Z., Chen, J., Brandon, A. M., Criddle, C. S., Zhang, Y., & Wu, W. M. (2020). Biodegradation of low-density polyethylene and polystyrene in superworms, larvae of Zophobas atratus (Coleoptera: Tenebrionidae): Broad and limited extent depolymerization. Environmental Pollution, 266, 115206. https://doi.org/10.1016/j.envpol.2020.115206
dc.relation.referencesPérez, M. D., Martínez, C. R., & Zhurbenko, R. (2010). Aspectos fundamentales sobre el género enterococcus como patógeno de elevada importancia en la actualidad. Revista Cubana de Higiene y Epidemiologia, 48(2), 147–161.
dc.relation.referencesPosada, B. (2012). La degradación de los plásticos. In Revista Universidad EAFIT (Vol. 30, Issue 94, pp. 67–86). http://publicaciones.eafit.edu.co/index.php/revista-universidad-eafit/article/view/1408
dc.relation.referencesPremraj, R., & Doble, M. (2005). Biodegradation of polymers. Indian Journal of Biotechnology, 4(2), 186–193. https://doi.org/10.17516/1997-1389-2015-8-2-113-130
dc.relation.referencesPriyanka, N., & Archana, T. (2011). Biodegradability of Polythene and Plastic By The Help of Microorganism: A Way for Brighter Future. Journal of Environmental & Analytical Toxicology, 01(02), 1–4. https://doi.org/10.4172/2161-0525.1000111
dc.relation.referencesPruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J., & Glöckner, F. O. (2007). SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research, 35(21), 7188–7196. https://doi.org/10.1093/nar/gkm864
dc.relation.referencesPrzemieniecki, S. W., Kosewska, A., Ciesielski, S., & Kosewska, O. (2020). Changes in the gut microbiome and enzymatic profile of Tenebrio molitor larvae biodegrading cellulose, polyethylene and polystyrene waste. Environmental Pollution, 256, 113265. https://doi.org/10.1016/j.envpol.2019.113265
dc.relation.referencesRamis, X., Cadenato, A., Salla, J. M., Morancho, J. M., Vallés, A., Contat, L., & Ribes, A. (2004). Thermal degradation of polypropylene/starch-based materials with enhanced biodegradability. Polymer Degradation and Stability, 86(3), 483–491. https://doi.org/10.1016/j.polymdegradstab.2004.05.021
dc.relation.referencesRamos, J; Pino, J; Angeles, Sergio; García, A. 2008. Utilización potencial de la excreta del gusano amarillo de las harinas como abono orgánico. Instituto de Biología UNAM. Ap. Postal 70-153, C.P. 04510 México D.F
dc.relation.referencesRognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: A versatile open source tool for metagenomics. PeerJ, 2016(10), 1–22. https://doi.org/10.7717/peerj.2584
dc.relation.referencesRujnić-Sokele, M., & Pilipović, A. (2017). Challenges and opportunities of biodegradable plastics: A mini review. Waste Management and Research, 35(2), 132–140. https://doi.org/10.1177/0734242X16683272
dc.relation.referencesSCHULTE, Rainer. (2006). EL MANEJO DE ZOPHOBAS MORIO (COLEOPTERA: TENEBRIONIDAE) EN CLIMAS TROPICALES HUMEDOS. Folia Amazónica. 8. 47. 10.24841/fa.v8i2.321.
dc.relation.referencesSHAMAN: un sitio web fácil de usar para el análisis metataxonómico desde lecturas sin procesar hasta análisis estadístico Volant S, Lechat P, Woringer P, Motreff L, Campagne P, Malabat C, Kennedy S, Ghozlane A; BMC Bioinformatics 2020 10 de agosto; 21 (1): 345.
dc.relation.referencesShelomi, M., Lin, S. S., & Liu, L. Y. (2019). Transcriptome and microbiome of coconut rhinoceros beetle (Oryctes rhinoceros) larvae. BMC Genomics, 20(1), 1–13. https://doi.org/10.1186/s12864-019-6352-3
dc.relation.referencesShimao, M. (2001). Biodegradation of plastics Masayuki Shimao. Current Opinion in Biotechnology, 12, 242–247.
dc.relation.referencesSivan, A. (2011). New perspectives in plastic biodegradation. Current Opinion in Biotechnology, 22(3), 422–426. https://doi.org/10.1016/j.copbio.2011.01.013
dc.relation.referencesSkariyachan, S., Taskeen, N., Kishore, A. P., Krishna, B. V., & Naidu, G. (2021). Novel consortia of enterobacter and pseudomonas formulated from cow dung exhibited enhanced biodegradation of polyethylene and polypropylene. Journal of Environmental Management, 284(January), 112030. https://doi.org/10.1016/j.jenvman.2021.112030
dc.relation.referencesSorek, R., Zhu, Y., Creevey, C. J., Francino, M. P., Bork, P., & Rubin, E. M. (2007). Genome-wide experimental determination of barriers to horizontal gene transfer. Science, 318(5855), 1449–1452. https://doi.org/10.1126/science.1147112
dc.relation.referencesSun, J., Prabhu, A., Aroney, S. T. N., & Rinke, C. (2022). Insights into plastic biodegradation: community composition and functional capabilities of the superworm (Zophobas morio) microbiome in styrofoam feeding trials. Microbial Genomics, 8(6), 1–19. https://doi.org/10.1099/mgen.0.000842
dc.relation.referencesTang, Z.-L., Kuo, T.-A., & Liu, H.-H. (2017). The Study of the Microbes Degraded Polystyrene. Advances in Technology Innovation, 2(1), 13–17.
dc.relation.referencesTéllez, A. (2012). La complejidad de la problemática ambiental de los residuos plásticos : una aproximación al análisis narrativo de política pública en Bogotá. In 2012.
dc.relation.referencesThomas, T., Gilbert, J. & Meyer, F. (2012). Metagenomics - a guide from sampling to data analysis. Microb Informatics Exp 2, 3. https://doi.org/10.1186/2042-5783-2-3
dc.relation.referencesTipney, H. J., Leach, S. M., Feng, W., Spritz, R., Williams, T., & Hunter, L. (2009). Leveraging existing biological knowledge in the identification of candidate genes for facial dysmorphology. BMC Bioinformatics, 10 Suppl 2, 1–10. https://doi.org/10.1186/1471-2105-10-S1-S12
dc.relation.referencesUrbanek, A. K., Rymowicz, W., & Mirończuk, A. M. (2018). Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Applied Microbiology and Biotechnology, 102(18), 7669–7678. https://doi.org/10.1007/s00253-018-9195-y
dc.relation.referencesVillarreal-Delgado, M. F., Villa-Rodríguez, E. D., Cira-Chávez, L. A., Estrada-Alvarado, M. I., Parra-Cota, F. I., & De los Santos-Villalobos, S. (2018). El género Bacillus como agente de control biológico y sus implicaciones en la bioseguridad agrícola. Revista Mexicana de Fitopatología, Mexican Journal of Phytopathology, 36(1), 95–130. https://doi.org/10.18781/r.mex.fit.1706-5
dc.relation.referencesWatson, S.W., Bock, E., Valois, F.W. et al. (1986). Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. Arch. Microbiol. 144, 1–7. https://doi.org/10.1007/BF00454947
dc.relation.referencesWhite, J. R., Nagarajan, N., & Pop, M. (2009). Statistical Methods for Detecting Differentially Abundant Features in Clinical Metagenomic Samples. PLoS Computational Biology, 5(4). https://doi.org/10.1371/journal.pcbi.1000352
dc.relation.referencesWilke, A., Harrison, T., Wilkening, J., Field, D., Glass, E. M., Kyrpides, N., Mavrommatis, K., & Meyer, F. (2012). The M5nr: A novel non-redundant database containing protein sequences and annotations from multiple sources and associated tools. BMC Bioinformatics, 13(1). https://doi.org/10.1186/1471-2105-13-141
dc.relation.referencesWooley, J. C., Godzik, A., & Friedberg, I. (2010). A primer on metagenomics. PLoS Computational Biology, 6(2). https://doi.org/10.1371/journal.pcbi.1000667
dc.relation.referencesYang, S. S., Brandon, A. M., Xing, D. F., Yang, J., Pang, J. W., Criddle, C. S., Ren, N. Q., & Wu, W. M. (2018). Progresses in Polystyrene Biodegradation and Prospects for Solutions to Plastic Waste Pollution. IOP Conference Series: Earth and Environmental Science, 150(1). https://doi.org/10.1088/1755-1315/150/1/012005
dc.relation.referencesYang, S. S., Ding, M. Q., Zhang, Z. R., Ding, J., Bai, S. W., Cao, G. L., Zhao, L., Pang, J. W., Xing, D. F., Ren, N. Q., & Wu, W. M. (2021). Confirmation of biodegradation of low-density polyethylene in dark- versus yellow- mealworms (larvae of Tenebrio obscurus versus Tenebrio molitor) via. gut microbe-independent depolymerization. Science of the Total Environment, 789, 147915. https://doi.org/10.1016/j.scitotenv.2021.147915
dc.relation.referencesYang, S. S., Wu, W. M., Brandon, A. M., Fan, H. Q., Receveur, J. P., Li, Y., Wang, Z. Y., Fan, R., McClellan, R. L., Gao, S. H., Ning, D., Phillips, D. H., Peng, B. Y., Wang, H., Cai, S. Y., Li, P., Cai, W. W., Ding, L. Y., Yang, J., … Criddle, C. S. (2018). Ubiquity of polystyrene digestion and biodegradation within yellow mealworms, larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Chemosphere, 212, 262–271. https://doi.org/10.1016/j.chemosphere.2018.08.078
dc.relation.referencesYang, Y., Wang, J., & Xia, M. (2020). Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Science of the Total Environment, 708, 135233. https://doi.org/10.1016/j.scitotenv.2019.135233
dc.relation.referencesYang, Y., Yang, J., Wu, W. M., Zhao, J., Song, Y., Gao, L., Yang, R., & Jiang, L. (2015). Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 1. Chemical and Physical Characterization and Isotopic Tests. Environmental Science and Technology, 49(20), 12080–12086. https://doi.org/10.1021/acs.est.5b02661
dc.relation.referencesZiganshina, E. E., Mohammed, W. S., Shagimardanova, E. I., Vankov, P. Y., Gogoleva, N. E., & Ziganshin, A. M. (2018). Fungal, bacterial, and archaeal diversity in the digestive tract of several beetle larvae (coleoptera). BioMed Research International, 2018. https://doi.org/10.1155/2018/6765438
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocMicrobiomas
dc.subject.agrovocMicrobiomes
dc.subject.agrovocDiversidad microbiana
dc.subject.agrovocMicrobial diversity
dc.subject.agrovocActividad enzimática
dc.subject.agrovocEnzyme activity
dc.subject.agrovocTenebrionidae
dc.subject.proposalEPS
dc.subject.proposalMetabarcoding
dc.subject.proposalPoliestireno
dc.subject.proposalMetagenómica
dc.subject.proposalBiodegradación
dc.subject.proposalColeópteros
dc.subject.proposalEPS
dc.subject.proposalMetabarcoding
dc.subject.proposalColeoptera
dc.subject.proposalMetagenomics
dc.subject.proposalBiodegradation
dc.subject.proposalPolystyrene
dc.title.translatedStudy of the intestinal microbiome of Zophobas morio (Coleoptera: Tenebrionidae) as an approach to the potential use for the biodegradation of polystyrene.
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleEstudio del microbioma intestinal de Zophobas morio (Coleóptera: Tenebrionidae) como aproximación al uso potencial para la biodegradación del poliestireno
oaire.fundernameUniversidad Nacional de Colombia
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dc.description.curricularareaIngeniería.Sede Palmira


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito