Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorLobo Echeverri, Tatiana
dc.contributor.authorOrtiz López, Juan José
dc.date.accessioned2024-01-31T15:04:48Z
dc.date.available2024-01-31T15:04:48Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85554
dc.descriptionIlustraciones
dc.description.abstractEn las últimas décadas el ser humano ha visto la necesidad de mantener un sistema productivo agropecuario en constante crecimiento debido a una población que ya supera los 8000 millones de habitantes. Para este fin, desde la década de los setenta se han utilizado agroquímicos de síntesis, fundamentales para la fertilización de suelos y control de especies no deseadas en monocultivos. Sin embargo, se ha reportado una relación entre la utilización de dichos agentes químicos sintéticos y daños al medio ambiente junto a incidencias en enfermedades del ser humano. Este fenómeno sumado al hecho de que los agroquímicos de síntesis son derivados del petróleo y que para el año 2050 la humanidad espera desvincularse de su uso, plantea una necesidad de buscar alternativas innovadoras y de bajo impacto medio ambiental que permitan mantener un sistema agropecuario productivo y en crecimiento. Para ello, el aprovechamiento de especies con potenciales alelopáticos puede ser una alternativa viable tanto económica como biológicamente para los países megadiversos ya que pueden darles un valor agregado a sus especies reduciendo el impacto ambiental que generan los productos agroquímicos sintéticos. Con lo anteriormente dicho, el presente estudio evaluó el potencial fitotóxico de extractos etanólicos de las especies más abundantes colectadas en 11 parcelas de estudio establecidas en remanentes de bosques andinos en Antioquia, mediante pruebas de fitotoxicidad sobre semillas de lechuga (Lactuca sativa). De este estudio se seleccionaron los extractos provenientes del roble andino colombiano Quercus humboldtii (Fagaceae) debido a su potencial promisorio afectando la germinación de semillas de lechuga (>80%) y la elongación de la radícula a una concentración de 500 mg*L-1. Adicionalmente, al tener muestras de roble colectadas en dos sitios de colección a diferentes altitudes (Belmira y Anorí), se compararon ambos extractos en bioensayos adicionales y por medio de cromatografía liquida (HPLC), para determinar la posible incidencia de los factores ambientales en la actividad y composición del extracto de roble. Aunque no se encontraron diferencias significativas en los bioensayos ni cambios sustanciales en el perfil cromatográfico de los extractos de roble con diferente origen, se seleccionó el extracto proveniente de la muestra colectada en el páramo de Belmira para proseguir el trabajo de laboratorio, por su tendencia a presentar mayores índices de fitotoxicidad y por su disponibilidad. De esta forma se determinó la concentración media inhibitoria (IC50) para dicho extracto etanólico en el ensayo de inhibición de germinación de semillas de lechuga, el cual fue de 198 mg*L-1 mostrando potencial fitotóxico, afectando tanto la inhibición de la germinación como la elongación de radícula. En el fraccionamiento biodirigido inicialmente se obtuvieron 4 fracciones nombradas F1, F2, F3 y F4. Adicionalmente por precipitación se obtuvo un sólido blanco provenientes de la fracción F2 que se denominó, F2-P. Luego de la evaluación de la bioactividad de todas las fracciones, F2 y F3 presentaron el mejor resultado en las pruebas de inhibición de la germinación, pero no se mezclaron pues se observó que ambas fracciones presentaban perfiles químicos diferentes al compararlas por cromatografía de capa fina. La fracción F2 fue finalmente seleccionada para su caracterización por presentar mejor potencial inhibidor de la germinación a diferentes concentraciones y mayor afectación en la elongación de la radícula e hipocótilo de semillas de lechuga. Al fraccionar F2 se obtuvieron 23 fracciones finales, de los cuales las fracciones F2-P, F2-2, F2-3, F2-8, F2-9 y F2-10 fueron analizadas por cromatografía de gases acoplado a espectrometría de masas (GC-MS), detectándose mayoritariamente ácidos grasos, esteroides y triterpenos. Asimismo, se purificaron los compuestos mayoritarios provenientes de fracciones derivadas de F2 (F2-1, F2-4 y F2-6) y por medio de experimentos de resonancia magnética estructural (RMN) se elucidaron las estructuras del alcano Dodecano (C1) y del triterpeno Friedelina (C2) y el esteroide β-Sitosterol (C3). Se sugiere que la presencia de este triterpeno junto con otros y núcleos esteroidales, ácidos grasos e hidrocarburos detectados por GC-MS, tendrían incidencia en el potencial alelopático que presenta el roble andino colombiano sobre la inhibición de la germinación y la inhibición en la elongación de la radícula e hipocótilo de las semillas de lechuga. Estos resultados abren la posibilidad de plantear la estandarización de muestras derivadas del roble andino como potencial producto natural bioherbicida. (texto tomado de la fuente)
dc.description.abstractIn the last decades, human beings have seen the need to maintain a constant growing agricultural production system due to a population that already exceeds 8 billion inhabitants. To achieve this, since the 1970s, synthetic agrochemicals have been used, essentially for soil fertilization and in weed control. However, a link between the use of these synthetic chemical agents and damage to the environment together with incidences of human diseases, has been reported. This phenomenon, added to the fact that synthetic agrochemicals are derived from petroleum, and that by the year 2050 humanity expects to detach from their use, raises the need to seek innovative alternatives with low environmental impact that allow maintaining a productive and sustainable agricultural system. Thus, in megadiverse regions, the use of botanical species with allelopathic potential can be a viable alternative, both economically and biologically, since it adds value to the selected species and reduces the environmental impact generated by synthetic agrochemicals. With the previously mentioned, the present study evaluated the phytotoxic potential of ethanol-soluble extracts of the most abundant species collected in 11 study plots set in remnants of Andean forests in Antioquia, through phytotoxicity tests on lettuce seeds (Lactuca sativa). Extracts from the Colombian Andean oak, Quercus humboldtii were selected for further work due to the promising inhibitory activity of lettuce seed germination XII Caracterización de la naturaleza fitoquímica y actividad alelopática de extractos naturales del roble andino colombiano Quercus humboldtii como potencial bioherbicida (>80%), and radicle and hypocotyl elongation at a concentration of 500 mg*L-1 . In addition, having oak samples collected in two sites with differences in altitude (Belmira and Anori), comparisons were carried out by additional bioassays and by liquid chromatography (HPLC), to determine the possible incidence of environmental factors in the bioactivity and chemical composition. Even though neither significant differences were found in the bioactivity, nor major changes were evidenced in their chromatographic profile, the extract derived from the sample collected in the Belmira paramo was selected for further work, since it presented a slightly tendency to have better phytotoxicity index and was more available. In this way, the half maximum inhibitory concentration (IC50) was determined at 198 mg*L-1 evidencing a phytotoxic potential, affecting the seed germination and radicle elongation. In the bioassay-guided fractionation, 4 initial fractions were obtained, namely F1, F2, F3 and F4. Additionally, 1 white solid was precipitated from fraction F2, labelled as F2-P. After biological evaluation of all fractions, F2 and F3 evidenced the best results in the inhibition of seed germination. These two fractions were not pooled together since its chromatographic profile, followed by TLC (thin layer chromatography), was different. Finally, fraction F2 was selected for chemical characterization due to its better inhibitory potential inhibiting seed germination at different concentrations and a greater affectation in the radicle and hypocotyl elongation of the lettuce seedlings. After fractionating F2, 23 pooled fractions were obtained, from which F2-P, F2-2, F2-3, F2-8, F2-9 and F2-10 were analysed by gas chromatography coupled to mass spectrometry (GC-MS), detecting mainly fatty acids, steroids and triterpenes. Likewise, purification of major compounds was achieved from fractions derived from F2 (F2-1, F2-4 y F2-6), which were elucidated by nuclear magnetic resonance (NMR) experiments as an alcane Dodecane (C1), the triterpene Friedeline (C2) and the steroid β-Sitosterol (C3). The presence of this triterpene, along with others, and steroidal compounds, fatty acids and hidrocarbons detected through GC-MS, could support the allelopathic potential of the Colombian Andean oak in the inhibition of germination and radicle and hypocotyl elongation. These results open the possibility to formulate the standardization of samples derived from the Andean oak as a potential bioherbicidal product.
dc.format.extent106 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc570 - Biología::572 - Bioquímica
dc.titleCaracterización de la naturaleza fitoquímica y actividad alelopática de extractos naturales del roble andino colombiano Quercus humboldtii como potencial bioherbicida
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Química
dc.contributor.researchgroupQuímica de Los Productos Naturales y Los Alimentos
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Química
dc.description.researchareaQuímica de los productos naturales
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedLaReferencia
dc.relation.referencesAbd-ElGawad, A., El Gendy, A. E. N., El-Amier, Y., Gaara, A., Omer, E., Al-Rowaily, S., Assaeed, A., Al-Rashed, S., & Elshamy, A. (2020). Essential oil of Bassia muricata: Chemical characterization, antioxidant activity, and allelopathic effect on the weed Chenopodium murale. Saudi Journal of Biological Sciences, 27(7), 1900–1906. https://doi.org/10.1016/j.sjbs.2020.04.018
dc.relation.referencesAdeyemi, A., Ekunseitan, D., Abiola, S., Dipeolu, A., Egbeyale, T., & Sogunle, M. (2018). Phytochemical Analysis and GC-MS Determination of Lagenaria breviflora R. Fruit. International Journal of Pharmacognosy and Phytochemical Research, 9(07). https://doi.org/10.25258/phyto.v9i07.11178
dc.relation.referencesAlmeida-Bezerra, J. W., da Silva, V. B., da Silva, M. A. P., Rodrigues, F. C., de Brito, E. S., Ribeiro, P. R. V., Meiado, M. V., & Oliveira, A. F. M. de. (2022). Leaf decomposition of Mesosphaerum suaveolens affects the growth of Cactaceae species in the Brazilian Seasonally Dry Tropical Forest. Journal of Arid Environments, 198(December 2021). https://doi.org/10.1016/j.jaridenv.2021.104681
dc.relation.referencesAvelar Amado, P., Fonsêca Castro, A. H., Samúdio Santos Zanuncio, V., Stein, V. C., Brentan da Silva, D., & Alves Rodrigues dos Santos Lima, L. (2020). Assessment of allelopathic, cytotoxic, genotoxic and antigenotoxic potential of Smilax brasiliensis Sprengel leaves. Ecotoxicology and Environmental Safety, 192(July 2019), 110310. https://doi.org/10.1016/j.ecoenv.2020.110310
dc.relation.referencesAvella, A., & Cardenas, L. (2010). Conservación y uso sostenible de los bosques de roble enelcorredor de conservación Guantiva-LaRusia-Iguaque departmaentos de Santander y Boyacá, Colombia. Colombia Forestal, 13(1), 5–26.
dc.relation.referencesAvila, B. S., Mendoza, D. P., Ramírez, A., & Peñuela, G. A. (2022). Occurrence and distribution of persistent organic pollutants (POPs) in the atmosphere of the Andean city of Medellin, Colombia. Chemosphere, 307(52). https://doi.org/10.1016/j.chemosphere.2022.135648
dc.relation.referencesBalah, M. A. (2020). Weed control ability of Egyptian Natural Products against annual, perennial and parasitic weeds. Acta Ecologica Sinica, 40(6), 492–499. https://doi.org/10.1016/J.CHNAES.2020.10.005
dc.relation.referencesBenner, P., Mena, H., & Schneider, R. (2016). Modeling Glyphosate aerial spray drift at the Ecuador-Colombia border. Applied Mathematical Modelling, 40(1), 373–387. https://doi.org/10.1016/j.apm.2015.04.057
dc.relation.referencesBerhanu, Y., Dalle, G., Sintayehu, D. W., Kelboro, G., & Nigussie, A. (2023). Land use/land cover dynamics driven changes in woody species diversity and ecosystem services value in tropical rainforest frontier: A 20-year history. Heliyon, 9(2), 1–16. https://doi.org/10.1016/j.heliyon.2023.e13711
dc.relation.referencesBezner Kerr, R., Madsen, S., Stüber, M., Liebert, J., Enloe, S., Borghino, N., Parros, P., Mutyambai, D. M., Prudhon, M., & Wezel, A. (2021). Can agroecology improve food security and nutrition? A review. Global Food Security, 29(March). https://doi.org/10.1016/j.gfs.2021.100540
dc.relation.referencesBöcker, T., Möhring, N., & Finger, R. (2019). Herbicide free agriculture? A bio-economic modelling application to Swiss wheat production. Agricultural Systems, 173(August 2018), 378–392. https://doi.org/10.1016/j.agsy.2019.03.001
dc.relation.referencesBouafiane, M., Khelil, A., Cimmino, A., & Kemassi, A. (2021). Prediction and evaluation of allelopathic plants species in Algerian Saharan ecosystem. Perspectives in Plant Ecology, Evolution and Systematics, 53(October). https://doi.org/10.1016/j.ppees.2021.125647
dc.relation.referencesBoudebbouz, A., Boudalia, S., Boussadia, M. I., Gueroui, Y., Habila, S., Bousbia, A., & Symeon, G. K. (2022). Pesticide residues levels in raw cow’s milk and health risk assessment across the globe: A systematic review. Environmental Advances, 9(April). https://doi.org/10.1016/j.envadv.2022.100266
dc.relation.referencesBrief, F. A. (2022). Agricultural production statistics 2000–2021. Agricultural Production Statistics 2000–2021. https://doi.org/10.4060/cc3751en
dc.relation.referencesCalle, A., & Holl, K. D. (2019). Riparian forest recovery following a decade of cattle exclusion in the Colombian Andes. Forest Ecology and Management, 452(August). https://doi.org/10.1016/j.foreco.2019.117563
dc.relation.referencesCamacho, A., & Mejía, D. (2017). The health consequences of aerial spraying illicit crops: The case of Colombia. Journal of Health Economics, 54, 147–160. https://doi.org/10.1016/j.jhealeco.2017.04.005
dc.relation.referencesCastola, V., Bighelli, A., Rezzi, S., Melloni, G., Gladiali, S., Desjobert, J. M., & Casanova, J. (2002). Composition and chemical variability of the triterpene fraction of dichloromethane extracts of cork (Quercus suber l.). Industrial Crops and Products, 15(1), 15–22. https://doi.org/10.1016/S0926-6690(01)00091-7
dc.relation.referencesChaïb, S., Pistevos, J. C. A., Bertrand, C., & Bonnard, I. (2021). Allelopathy and allelochemicals from microalgae: An innovative source for bio-herbicidal compounds and biocontrol research. Algal Research, 54(October 2020). https://doi.org/10.1016/j.algal.2021.102213
dc.relation.referencesChandler, R. F. (1979). Review Friedelin a N D Associated Triterpenoids *. Phytochemistry, 18, 711–724.
dc.relation.referencesChen, J., Su, Y., Lin, F., Iqbal, M., Mehmood, K., Zhang, H., & Shi, D. (2021). Effect of paraquat on cytotoxicity involved in oxidative stress and inflammatory reaction: A review of mechanisms and ecological implications. Ecotoxicology and Environmental Safety, 224, 112711. https://doi.org/10.1016/j.ecoenv.2021.112711
dc.relation.referencesChoudhary, C. S., Behera, B., Raza, M. B., Mrunalini, K., Bhoi, T. K., Lal, M. K., Nongmaithem, D., Pradhan, S., Song, B., & Das, T. K. (2023). Mechanisms of allelopathic interactions for sustainable weed management. Rhizosphere, 25(January). https://doi.org/10.1016/j.rhisph.2023.100667
dc.relation.referencesCordeau, S., Triolet, M., Wayman, S., Steinberg, C., & Guillemin, J. P. (2016). Bioherbicides: Dead in the water? A review of the existing products for integrated weed management. Crop Protection, 87, 44–49. https://doi.org/10.1016/j.cropro.2016.04.016
dc.relation.referencesda Silva, U. P., Furlani, G. M., Demuner, A. J., da Silva, O. L. M., & Varejão, E. V. V. (2019). Allelopathic activity and chemical constituents of extracts from roots of Euphorbia heterophylla L. Natural Product Research, 33(18), 2681–2684. https://doi.org/10.1080/14786419.2018.1460829
dc.relation.referencesDíaz-Rojas, L., Galán-Bernal, N., Forero, D. P., Linares, E. L., Marín-Loaiza, J. C., & Osorio, C. (2019). Characterization of odour-active volatiles and sensory analyses of roasted oak (Quercus humboldtii bonpl.) acorns, a coffee substitute. Vitae, 26(1), 44–50. https://doi.org/10.17533/udea.vitae.v26n1a05
dc.relation.referencesDinday, S., & Ghosh, S. (2023). Recent advances in triterpenoid pathway elucidation and engineering. Biotechnology Advances, 68(July). https://doi.org/10.1016/j.biotechadv.2023.108214
dc.relation.referencesE.Conde, M. C. García-Vallejo, E. C. (1999). Waxes composition of reproduction cork from Quercus suber and its variability throughout the industrial processing. Wood Science and Technology, 33.
dc.relation.referencesElham, A., Arken, M., Kalimanjan, G., Arkin, A., & Iminjan, M. (2021). A review of the phytochemical, pharmacological, pharmacokinetic, and toxicological evaluation of Quercus Infectoria galls. Journal of Ethnopharmacology, 273(August 2020). https://doi.org/10.1016/j.jep.2020.113592
dc.relation.referencesElkordy, A. A., Haj-Ahmad, R. R., Awaad, A. S., & Zaki, R. M. (2021). An overview on natural product drug formulations from conventional medicines to nanomedicines: Past, present and future. Journal of Drug Delivery Science and Technology, 63(March). https://doi.org/10.1016/j.jddst.2021.102459
dc.relation.referencesFAO. (2022). Pesticides use, pesticides trade and pesticides indicators - Global, regional and country trends, 1990–2020. FAOSTAT Analytical Briefs, No. 46, 13. https://doi.org/10.4060/cc0918en%0Ahttp://www.fao.org/documents/card/en/c/cc0918en
dc.relation.referencesFernandes, S. Y., de Araújo, D., Pontes, M. S., Santos, J. S., Cardoso, C. A. L., Simionatto, E., Martines, M. A. U., Antunes, D. R., Grillo, R., Arruda, G. J., & Santiago, E. F. (2023). Pre-emergent bioherbicide potential of Schinus terebinthifolia Raddi essential oil nanoemulsion for Urochloa brizantha. Biocatalysis and Agricultural Biotechnology, 47(January). https://doi.org/10.1016/j.bcab.2022.102598
dc.relation.referencesFreitas, L. B. O., Boaventura, M. A. D., Santos, W. L., Stehmann, J. R., Junior, D. D., Lopes, M. T. P., Magalhães, T. F. F., Da Silva, D. L., & De Resende, M. A. (2015). Allelopathic, cytotoxic and antifungic activities of new dihydrophenanthrenes and other constituents of leaves and roots extracts of Banisteriopsis anisandra (Malpighiaceae). Phytochemistry Letters, 12, 9–16. https://doi.org/10.1016/j.phytol.2015.02.006
dc.relation.referencesGandhi, K., Khan, S., Patrikar, M., Markad, A., Kumar, N., Choudhari, A., Sagar, P., & Indurkar, S. (2021). Exposure risk and environmental impacts of glyphosate: Highlights on the toxicity of herbicide co-formulants. Environmental Challenges, 4(March), 100149. https://doi.org/10.1016/j.envc.2021.100149
dc.relation.referencesGarcía-Villalba, R., Espín, J. C., Tomás-Barberán, F. A., & Rocha-Guzmán, N. E. (2017). Comprehensive characterization by LC-DAD-MS/MS of the phenolic composition of seven Quercus leaf teas. Journal of Food Composition and Analysis, 63(June), 38–46. https://doi.org/10.1016/j.jfca.2017.07.034
dc.relation.referencesGonzález, R., Calderón, L., & Cabeza, R. (2008). Cuantificación de sustancias marcadoras de envejecimiento en Quercus humboldtii por Cromatografía Líquida de Alta Eficiencia. Temas Agrarios, 13(2), 56–63. https://doi.org/10.21897/rta.v13i2.670
dc.relation.referencesHamdi, A., Majouli, K., Vander Heyden, Y., Flamini, G., & Marzouk, Z. (2017). Phytotoxic activities of essential oils and hydrosols of Haplophyllum tuberculatum. Industrial Crops and Products, 97, 440–447. https://doi.org/10.1016/j.indcrop.2016.12.053
dc.relation.referencesHelander, M., Saloniemi, I., & Saikkonen, K. (2012). Glyphosate in northern ecosystems. Trends in Plant Science, 17(10), 569–574. https://doi.org/10.1016/j.tplants.2012.05.008
dc.relation.referencesHrabanski, M., & Le Coq, J. F. (2022). Climatisation of agricultural issues in the international agenda through three competing epistemic communities: Climate-smart agriculture, agroecology, and nature-based solutions. Environmental Science and Policy, 127(October 2021), 311–320. https://doi.org/10.1016/j.envsci.2021.10.022
dc.relation.referencesHu, S., Li, S. wen, Yan, Q., Hu, X. peng, Li, L. yun, Zhou, H., Pan, L. xin, Li, J., Shen, C. pu, & Xu, T. (2019). Natural products, extracts and formulations comprehensive therapy for the improvement of motor function in alcoholic liver disease. Pharmacological Research, 150(November). https://doi.org/10.1016/j.phrs.2019.104501
dc.relation.referencesHuang, L. B., Guan, X., Aritsara, A. N. A., Zhu, J. J., Jansen, S., & Cao, K. F. (2023). Lipid concentration and composition in xylem sap of woody angiosperms from a tropical savanna and a seasonal rainforest. Plant Diversity, In press. https://doi.org/10.1016/j.pld.2023.07.001
dc.relation.referencesIngaramo, P., Alarcón, R., Muñoz-de-Toro, M., & Luque, E. H. (2020). Are glyphosate and glyphosate-based herbicides endocrine disruptors that alter female fertility? Molecular and Cellular Endocrinology, 518(July). https://doi.org/10.1016/j.mce.2020.110934
dc.relation.referencesJaber, S. A. (2023). In vitro alpha-amylase and alpha-glucosidase inhibitory activity and in vivo antidiabetic activity of Quercus coccifera (Oak tree) leaves extracts. Saudi Journal of Biological Sciences, 30(7), 0–5. https://doi.org/10.1016/j.sjbs.2023.103688 Jiang, C., Zhou, S., Liu, L., Toshmatov, Z., Huang, L., Shi, K., Zhang, C., & Shao, H. (2021). Evaluation of the phytotoxic effect of the essential oil from Artemisia absinthium. Ecotoxicology and Environmental Safety, 226, 112856. https://doi.org/10.1016/j.ecoenv.2021.112856
dc.relation.referencesKaab, S. B., Rebey, I. B., Hanafi, M., Hammi, K. M., Smaoui, A., Fauconnier, M. L., De Clerck, C., Jijakli, M. H., & Ksouri, R. (2020). Screening of Tunisian plant extracts for herbicidal activity and formulation of a bioherbicide based on Cynara cardunculus. South African Journal of Botany, 128, 67–76. https://doi.org/10.1016/j.sajb.2019.10.018
dc.relation.referencesKass, L., Gomez, A. L., & Altamirano, G. A. (2020). Relationship between agrochemical compounds and mammary gland development and breast cancer. Molecular and Cellular Endocrinology, 508(September 2019), 110789. https://doi.org/10.1016/j.mce.2020.110789
dc.relation.referencesKaur, A., Kaur, S., Singh, H. P., & Batish, D. R. (2022). Alterations in phytotoxicity and allelochemistry in response to intraspecific variation in Parthenium hysterophorus. Ecological Complexity, 50(March), 100999. https://doi.org/10.1016/j.ecocom.2022.100999
dc.relation.referencesKhursheed, A., Rather, M. A., Jain, V., Wani, A. R., Rasool, S., Nazir, R., Malik, N. A., & Majid, S. A. (2022a). Plant based natural products as potential ecofriendly and safer biopesticides: A comprehensive overview of their advantages over conventional pesticides, limitations and regulatory aspects. Microbial Pathogenesis, 173(PA), 105854. https://doi.org/10.1016/j.micpath.2022.105854
dc.relation.referencesLópez-Hidalgo, C., Trigueros, M., Menéndez, M., & Jorrin-Novo, J. V. (2021). Phytochemical composition and variability in Quercus ilex acorn morphotypes as determined by NIRS and MS-based approaches. Food Chemistry, 338(August 2020). https://doi.org/10.1016/j.foodchem.2020.127803
dc.relation.referencesMadani, N. A., & Carpenter, D. O. (2022). Effects of glyphosate and glyphosate-based herbicides like RoundupTM on the mammalian nervous system: A review. Environmental Research, 214(July). https://doi.org/10.1016/j.envres.2022.113933
dc.relation.referencesMallik, A.U. (2008). Allelopathy: Advances, Challenges and Opportunities. In: Zeng, R.S., Mallik, A.U., Luo, S.M. (eds) Allelopathy in Sustainable Agriculture and Forestry. Springer, New York, NY. https://doi.org/10.1007/978-0-387-77337-7_2
dc.relation.referencesManoharan, K. P., Benny, T. K. H., & Yang, D. (2005). Cycloartane type triterpenoids from the rhizomes of Polygonum bistorta. Phytochemistry, 66(19), 2304–2308. https://doi.org/10.1016/j.phytochem.2005.07.008
dc.relation.referencesMartínez-Gil, A. M., del Alamo-Sanza, M., Gutiérrez-Gamboa, G., Moreno-Simunovic, Y., & Nevares, I. (2018). Volatile composition and sensory characteristics of Carménère wines macerating with Colombian (Quercus humboldtii) oak chips compared to wines macerated with American (Q. alba) and European (Q. petraea) oak chips. Food Chemistry, 266(May), 90–100. https://doi.org/10.1016/j.foodchem.2018.05.123
dc.relation.referencesMisra, R. K., Alston, A. M., & Dexter, A. R. (1989). Masa total y cintenido de nutrientes en raices finas de ecosistemas forestales (Pinus patula Schltdl y Cham, Cupressus lusitanica Mill y Quercus humboldtii Bonpl). Soil Till, 103–116.
dc.relation.referencesMominul Islam, A. K. M., Hasan, M., Musha, M. M. H., Uddin, M. K., Juraimi, A. S., & Anwar, M. P. (2018). Exploring 55 tropical medicinal plant species available in Bangladesh for their possible allelopathic potentiality. Annals of Agricultural Sciences, 63(1), 99–107. https://doi.org/10.1016/j.aoas.2018.05.005
dc.relation.referencesMorales, D. (2021). Oak trees (Quercus spp.) as a source of extracts with biological activities: A narrative review. Trends in Food Science and Technology, 109(November 2020), 116–125. https://doi.org/10.1016/j.tifs.2021.01.029
dc.relation.referencesMurillo-Sandoval, P. J., Gjerdseth, E., Correa-Ayram, C., Wrathall, D., Van Den Hoek, J., Dávalos, L. M., & Kennedy, R. (2021). No peace for the forest: Rapid, widespread land changes in the Andes-Amazon region following the Colombian civil war. Global Environmental Change, 69(May). https://doi.org/10.1016/j.gloenvcha.2021.102283
dc.relation.referencesPotosi Gutierrez, A., Villalba Malaver, J. C., & Arboleda Pino, L. Y. (2017). Productos forestales no maderables asociados a bosques de roble Quercus humboldtii Bonpl en La Vega, Cauca. Biotecnoloía En El Sector Agropecuario y Agroindustrial, 15(2), 22. https://doi.org/10.18684/bsaa(15)22-29
dc.relation.referencesRadhakrishnan, R., Alqarawi, A. A., & Abd Allah, E. F. (2018). Bioherbicides: Current knowledge on weed control mechanism. Ecotoxicology and Environmental Safety, 158(November 2017), 131–138. https://doi.org/10.1016/j.ecoenv.2018.04.018
dc.relation.referencesRaj, A., Dubey, A., Malla, M. A., & Kumar, A. (2023). Pesticide pestilence: Global scenario and recent advances in detection and degradation methods. Journal of Environmental Management, 338(April). https://doi.org/10.1016/j.jenvman.2023.117680
dc.relation.referencesReichert Júnior, F. W., Scariot, M. A., Forte, C. T., Pandolfi, L., Dil, J. M., Weirich, S., Carezia, C., Mulinari, J., Mazutti, M. A., Fongaro, G., Galon, L., Treichel, H., & Mossi, A. J. (2019). New perspectives for weeds control using autochthonous fungi with selective bioherbicide potential. Heliyon, 5(5), 0–6. https://doi.org/10.1016/j.heliyon.2019.e01676
dc.relation.referencesRen, X. M., Kuo, Y., & Blumberg, B. (2020). Agrochemicals and obesity. Molecular and Cellular Endocrinology, 515, 110926. https://doi.org/10.1016/j.mce.2020.110926
dc.relation.referencesRiaño, C., Ortiz-Ruiz, M., Pinto-Sánchez, N. R., & Gómez-Ramírez, E. (2020). Effect of glyphosate (Roundup Active®) on liver of tadpoles of the colombian endemic frog Dendropsophus molitor (amphibia: Anura). Chemosphere, 250. https://doi.org/10.1016/j.chemosphere.2020.126287
dc.relation.referencesRodrigues, P. M., Dutra Gomes, J. V., Jamal, C. M., Cunha Neto, Á., Santos, M. L., Fagg, C. W., Fonseca-Bazzo, Y. M., Magalhães, P. de O., de Sales, P. M., & Silveira, D. (2017). Triterpenes from Pouteria ramiflora (Mart.) Radlk. Leaves (Sapotaceae). Food and Chemical Toxicology, 109, 1063–1068. https://doi.org/10.1016/j.fct.2017.05.026
dc.relation.referencesRuiz-Agudelo, C. A., Gutiérrez-Bonilla, F. de P., Cortes-Gómez, A. M., & Suarez, A. (2022). A first approximation to the Colombian Amazon basin remnant natural capital. Policy and development implications. Trees, Forests and People, 10(May). https://doi.org/10.1016/j.tfp.2022.100334
dc.relation.referencesSalazar, G. C. M., Silva, G. D. F., Duarte, L. P., Vieira Filho, S. A., & Lula, I. S. (2000). Two epimeric friedelane triterpenes isolated from Maytenus truncata Reiss: 1H and 13C chemical shift assignments. Magnetic Resonance in Chemistry, 38(11), 977–980. https://doi.org/10.1002/1097-458X(200011)38:11<977::AID-MRC757>3.0.CO;2-9
dc.relation.referencesSantos, M. B., Sillero, L., Gatto, D. A., & Labidi, J. (2022). Bioactive molecules in wood extractives: Methods of extraction and separation, a review. Industrial Crops and Products, 186(April). https://doi.org/10.1016/j.indcrop.2022.115231
dc.relation.referencesSari, S., Barut, B., Özel, A., Kuruüzüm-Uz, A., & Şöhretoğlu, D. (2019). Tyrosinase and α-glucosidase inhibitory potential of compounds isolated from Quercus coccifera bark: In vitro and in silico perspectives. Bioorganic Chemistry, 86(October 2018), 296–304. https://doi.org/10.1016/j.bioorg.2019.02.015
dc.relation.referencesScavo, A., Pandino, G., Restuccia, A., & Mauromicale, G. (2020). Leaf extracts of cultivated cardoon as potential bioherbicide. Scientia Horticulturae, 261(November 2018), 109024. https://doi.org/10.1016/j.scienta.2019.109024
dc.relation.referencesSobrero, M. C., & Ronco, A. (2004). Ensayo de toxicidad aguda con semillas de lechuga Lactuca sativa L. Imta, 55–67.
dc.relation.referencesSocaciu, M. I., Anamaria Semeniuc, C., Andruţa Mureşan, E., Pușcaș, A., Tanislav, A., Ranga, F., Dulf, F., Páll, E., Maria Truță, A., Paşca, C., Severus Dezmirean, D., & Mureşan, V. (2023). Characterization of some Fagaceae kernels nutritional composition for potential use as novel food ingredients. Food Chemistry, 406(November 2022), 0–2. https://doi.org/10.1016/j.foodchem.2022.135053
dc.relation.referencesTian, H., Zhai, W., Sun, K., Zhu, Y., Zhou, H., & Wan, P. (2022). Chemical composition and potential bioactivities of essential oil from Quercus mongolica bark. Arabian Journal of Chemistry, 15(9). https://doi.org/10.1016/j.arabjc.2022.104076
dc.relation.referencesTouati, R., Santos, S. A. O., Rocha, S. M., Belhamel, K., & Silvestre, A. J. D. (2015). The potential of cork from Quercus suber L. grown in Algeria as a source of bioactive lipophilic and phenolic compounds. Industrial Crops and Products, 76, 936–945. https://doi.org/10.1016/j.indcrop.2015.07.074
dc.relation.referencesValbuena, D., Cely-Santos, M., & Obregón, D. (2021). Agrochemical pesticide production, trade, and hazard: Narrowing the information gap in Colombia. Journal of Environmental Management, 286(March). https://doi.org/10.1016/j.jenvman.2021.112141
dc.relation.referencesVan den Berg, L., Behagel, J. H., Verschoor, G., Petersen, P., & Gomes da Silva, M. (2022). Between institutional reform and building popular movements: The political articulation of agroecology in Brazil. Journal of Rural Studies, 89(March 2021), 140–148. https://doi.org/10.1016/j.jrurstud.2021.11.016
dc.relation.referencesVanegas-Cubillos, M., Sylvester, J., Villarino, E., Pérez-Marulanda, L., Ganzenmüller, R., Löhr, K., Bonatti, M., & Castro-Nunez, A. (2022). Forest cover changes and public policy: A literature review for post-conflict Colombia. Land Use Policy, 114(October 2020). https://doi.org/10.1016/j.landusepol.2022.105981
dc.relation.referencesVieira, P. G., de Melo, M. M. R., Şen, A., Simões, M. M. Q., Portugal, I., Pereira, H., & Silva, C. M. (2020). Quercus cerris extracts obtained by distinct separation methods and solvents: Total and friedelin extraction yields, and chemical similarity analysis by multidimensional scaling. Separation and Purification Technology, 232(August 2019). https://doi.org/10.1016/j.seppur.2019.115924
dc.relation.referencesvon der Goltz, J., Dar, A., Fishman, R., Mueller, N. D., Barnwal, P., & McCord, G. C. (2020). Health Impacts of the Green Revolution: Evidence from 600,000 births across the Developing World. Journal of Health Economics, 74, 102373. https://doi.org/10.1016/j.jhealeco.2020.102373
dc.relation.referencesWijewardene, L., Wu, N., Hörmann, G., Messyasz, B., Riis, T., Hölzel, C., Ulrich, U., & Fohrer, N. (2021). Effects of the herbicides metazachlor and flufenacet on phytoplankton communities – A microcosm assay. Ecotoxicology and Environmental Safety, 228. https://doi.org/10.1016/j.ecoenv.2021.113036
dc.relation.referencesXue, H. T., Stanley-Baker, M., Kong, A. W. K., Li, H. L., & Goh, W. W. Bin. (2022). Data considerations for predictive modeling applied to the discovery of bioactive natural products. Drug Discovery Today, 27(8), 2235–2243. https://doi.org/10.1016/j.drudis.2022.05.009
dc.relation.referencesYang, C., Lim, W., & Song, G. (2021). Reproductive toxicity due to herbicide exposure in freshwater organisms. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 248(April), 109103. https://doi.org/10.1016/j.cbpc.2021.109103
dc.relation.referencesYang, Y., Zhang, Y., & Huang, X. (2021). Comparison of δ2H values of leaf wax n-alkanes and n-alkanoic acids in subtropical angiosperms. Palaeogeography, Palaeoclimatology, Palaeoecology, 577(June). https://doi.org/10.1016/j.palaeo.2021.110537
dc.relation.referencesZhang, X., Xu, B., Günther, F., & Gleixner, G. (2021). Seasonal variation of leaf wax n-alkane δ2H values: Differences between Quercus aquifolioides (an evergreen tree) and Stipa bungeana (a perennial grass) from the southeastern Tibetan Plateau. Global and Planetary Change, 207(August)
dc.relation.referencesSedio, B. E.; Spasojevic, M. J.; Myers, J. A.; Wright, S. J.; Person, M. D.; Chandrasekaran, H.; Dwenger, J. H.; Prechi, M. L.; López, C. A.; Allen, D. N.; et al. Chemical Similarity of Co-Occurring Trees Decreases With Precipitation and Temperature in North American Forests. Front. Ecol. Evol. 2021, 9 (May), 1–18. https://doi.org/10.3389/fevo.2021.679638.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocRoble andino colombiano Quercus humboldtii (Fagaceae)
dc.subject.lembExtractos vegetales
dc.subject.proposalAlelopatía
dc.subject.proposalBioherbicida
dc.subject.proposalQuercus humboldtii
dc.subject.proposalFriedelina
dc.subject.proposalTriterpenos
dc.subject.proposalAllelopathy
dc.subject.proposalBioherbicide
dc.subject.proposalQuercus humboldtii
dc.subject.proposalFriedelin
dc.subject.proposalTtriterpenes
dc.title.translatedCharacterization of the phytochemical nature and allelopathic activity of natural extracts of the Colombian Andean oak Quercus humboldtii as a potential bioherbicide
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaÁrea Curricular en Ciencias Naturales
dc.contributor.orcidOrtiz López, Juan José [0000-0001-6316-633X]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito