Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorDurango Restrepo, Diego Luis
dc.contributor.advisorGil González, Jesús Humberto
dc.contributor.authorValencia Cossio, Sebastián
dc.date.accessioned2024-02-05T21:50:21Z
dc.date.available2024-02-05T21:50:21Z
dc.date.issued2023-01-22
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85629
dc.descriptionIlustraciones, fotos
dc.description.abstractLas enfermedades protozoarias causadas por Trypanosoma cruzii y Leishmania panamensis, son de amplio interés debido a los altos índices de contagios y de muertes que generan alrededor del mundo, prevaleciendo en América latina, Asia y África. Por lo tanto, es imperioso buscar nuevos compuestos como alternativa terapéutica que sirvan como nuevas estrategias eficientes, de fácil acceso, baja resistencia y pocos efectos secundarios en el tratamiento de infecciones protozoarias. Las cumarinas y las chalconas son metabolitos secundarios producidos por las plantas, los cuales han demostrado poseer una gran variedad de actividades farmacológicas. Se ha encontrado que poseen propiedades antiinflamatorias, antibacterianas, antitrombóticas, anticancerígenas, antiAlzheimer, antidiabéticas y antivirales etc. Igualmente han demostrado poseer actividad antiprotozoaria, lo cual genera un posicionamiento importante de estas moléculas en la lucha contra estos parásitos. Las cumarinas y chalconas son dos clases importantes de compuestos bioactivos, que han sido ampliamente estudiados en el área de la química medicinal. Estos compuestos se pueden obtener en el laboratorio por medio de síntesis química y han evidenciado de manera individual o mediante la formación de híbridos, que poseen potencial in vitro contra algunos protozoos. La formación de híbridos entre cumarinas y chalconas se podría aducir como una posible alternativa farmacológica en el tratamiento de infecciones parasitarias. La síntesis de híbridos entre estos dos compuestos se realizó haciendo uso de manera sucesiva de las reacciones de Knoevenagel y Claisen-Schmidt, respectivamente, para su posterior análisis in vitro de citotoxicidad en células U937 y de actividad en amastigotes de Trypanosoma cruzii y promastigotes de Leishmania braziliensis. Los compuestos se caracterizaron por métodos espectroscópicos modernos (IR, RMN). Basados en las propiedades farmacológicas de los híbridos, se realizó un análisis cualitativo de estructura-actividad y de parámetros farmacológicos.La mayoría de los hibridos poseen actividad antiparasitaria contra T. cruzi y L. braziliensis, y una baja toxicidad en la línea celular U937. Las sustituciones de carácter O-alquilo y OH- favorecen en buena medida la actividad inhibitoria. La gran mayoría de los hibridos poseen un perfil farmacológico adecuado; el hibrido H25 exhibió resultados similares al Benznidazol, lo cual lo destaca como un compuesto con potencial para el desarrollo farmacológico. (texto tomado de la fuente)
dc.description.abstractProtozoan diseases caused by Trypanosoma cruzii and Leishmania panamensis are of broad interest due to the high rates of infections and deaths they generate around the world, prevailing in Latin America, Asia and Africa. Therefore, it is imperative to search for new compounds as a therapeutic alternative that serve as new efficient strategies, easy access, low resistance and few side effects in the treatment of protozoan infections. Coumarins and chalcones are secondary metabolites produced by plants, which have been shown to have a wide variety of pharmacological activities. It has been found that they have antiinflammatory, antibacterial, antithrombotic, anticancer, antiAlzheimer's, antidiabetic and antiviral properties, etc. They have also been shown to have antiprotozoal activity, which generates an important position for these molecules in the fight against these parasites. Coumarins and chalcones are two important classes of bioactive compounds, which have been widely studied in the area of medicinal chemistry. These compounds can be obtained in the laboratory through chemical synthesis and have shown, individually or through the formation of hybrids, that they have in vitro potential against some protozoa. The formation of hybrids between coumarins and chalcones could be argued as a possible pharmacological alternative in the treatment of parasitic infections. The synthesis of hybrids between these two compounds was carried out successively using the Knoevenagel and Claisen-Schmidt reactions, respectively, for subsequent in vitro analysis of cytotoxicity in U937 cells and activity in Trypanosoma cruzii amastigotes and Leishmania promastigotes. braziliensis. The compounds were characterized by modern spectroscopic methods (IR, NMR). Based on the pharmacological properties of the hybrids, a qualitative analysis of structure-activity and pharmacological parameters was carried out. Most of the hybrids have antiparasitic activity against T. cruzi and L. braziliensis, and low toxicity in the U937 cell line. Substitutions of O-alkyl and OH- character greatly favor the inhibitory activity. The vast majority of hybrids have an adequate pharmacological profile; Hybrid H25 exhibited similar results to Benznidazole, which highlights it as a compound with potential for pharmacological development.
dc.format.extent149 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc540 - Química y ciencias afines
dc.titleSíntesis de híbridos cumarina-chalcona y evaluación de la actividad antiparasitaria in vitro
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Química
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Química
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias Exactas y Naturales
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedLaReferencia
dc.relation.references(1) Organizacion Mundial de la Salud (OMS). Hoja de Ruta Sobre Enfermedades Tropicales Desatendidas 2021-2030. 2021.
dc.relation.references(2) Valero, N. N. H.; Uriarte, M. Environmental and Socioeconomic Risk Factors Associated with Visceral and Cutaneous Leishmaniasis: A Systematic Review. Parasitol. Res. 2020, 119 (2), 365–384. https://doi.org/10.1007/s00436-019-06575-5.
dc.relation.references(3) Abadías-Granado, I.; Diago, A.; Cerro, P. A.; Palma-Ruiz, A. M.; Gilaberte, Y. Cutaneous and Mucocutaneous Leishmaniasis. Actas Dermosifiliogr. 2021, 112 (7), 601–618. https://doi.org/10.1016/j.ad.2021.02.008.
dc.relation.references(4) Organizacion Mundial de la Salud (OMS). Leishmaniasis https://www.who.int/es/news-room/fact-sheets/detail/leishmaniasis (accessed Dec 16, 2021).
dc.relation.references(5) Minsalud de Colombia, F. A. M. P. PLAN ESTRATEGICO LEISHMANIASIS 2018-2022. 2019.
dc.relation.references(6) Ferreras González, A.; García Cuartero, I.; Gato Díez, A.; Ferreras Fernández, P. Infecciones Por Protozoos Hemoflagelados: Leishmaniasis, Enfermedad de Chagas y Tripanosomiasis Africana. Med. - Programa Form. Médica Contin. Acreditado 2014, 11 (54), 3194–3207. https://doi.org/10.1016/S0304-5412(14)70758-9.
dc.relation.references(7) Bern, C. Chagas’ Disease. http://dx.doi.org/10.1056/NEJMra1410150 2015, 373 (5), 456–466. https://doi.org/10.1056/NEJMRA1410150.
dc.relation.references(8) Organización Mundial de Salud. La enfermedad de Chagas (tripanosomiasis americana) https://www.who.int/es/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis) (accessed Dec 16, 2021).
dc.relation.references(9) World Health Organization Geneva. Chagas Disease in Latin America : An Epidemiological Update Based on 2010 Estimates Maladie de Chagas En Amérique Latine : Le Point Épidémiologique Basé Sur Les Estimations de 2010. Wkly. Epidemiol. Rec. 2015, 6, 5–13.
dc.relation.references(10) Herazo, R.; Torres-Torres, F.; Mantilla, C. A. G.; Carillo, L. P.; Cuervo, A.; Camargo, M. A. M.; Moreno, J. F.; Forsyth, C.; Vera, M. J.; Díaz, R. A. C.; Marchiol, A. On-Site Experience of a Project to Increase Access to Diagnosis and Treatment of Chagas Disease in High-Risk Endemic Areas of Colombia. Acta Trop. 2022, 226 (October 2021), 1–8. https://doi.org/10.1016/j.actatropica.2021.106219.
dc.relation.references(11) Trouiller, P.; Olliaro, P.; Torreele, E.; Orbinski, J.; Laing, R.; Ford, N. Drug Development for Neglected Diseases: A Deficient Market and a Public-Health Policy Failure. Lancet 2002, 359 (9324), 2188–2194. https://doi.org/10.1016/S0140-6736(02)09096-7.
dc.relation.references(12) Cardona-Arias, J. A.; Salas-Zapata, W.; Carmona-Fonseca, J. Systematic Review of Qualitative Studies about Malaria in Colombia. Heliyon 2020, 6 (5), e03964. https://doi.org/10.1016/J.HELIYON.2020.E03964.
dc.relation.references(13) Croft, S. L.; Barrett, M. P.; Urbina, J. A. Chemotherapy of Trypanosomiases and Leishmaniasis. Trends Parasitol. 2005, 21 (11), 508–512. https://doi.org/10.1016/J.PT.2005.08.026.
dc.relation.references(14) Aparicio, P.; Rodríguez, E.; Gárate, T.; Molina, R.; Soto, A.; Alvar, J. Terapéutica Antiparasitaria. Enferm. Infecc. Microbiol. Clin. 2003, 21 (10), 579–594.
dc.relation.references(15) Pérez-Molina, J. A.; Díaz-Menéndez, M.; Pérez-Ayala, A.; Ferrere, F.; Monje, B.; Norman, F.; López-Vélez, R. Tratamiento de Las Enfermedades Causadas Por Parásitos. Enferm. Infecc. Microbiol. Clin. 2010, 28 (1), 44–59. https://doi.org/10.1016/J.EIMC.2009.11.003.
dc.relation.references(16) Ahmad, P.; Ahanger, M. A.; Singh, V. P.; Tripathi, D. K.; Alam, P.; Alyemeni, M. N. Plant Metabolites and Regulation under Environmental Stress. Plant Metab. Regul. under Environ. Stress 2018, 1–434. https://doi.org/10.1016/C2016-0-03727-0.
dc.relation.references(17) Sanchez, S.; Demain, A. L. Secondary Metabolites. Compr. Biotechnol. Second Ed. 2011, 1, 155–167. https://doi.org/10.1016/B978-0-08-088504-9.00018-0.
dc.relation.references(18) Bhattacharya, A. High-Temperature Stress and Metabolism of Secondary Metabolites in Plants. Eff. High Temp. Crop Product. Metab. Macro Mol. 2019, 391–484. https://doi.org/10.1016/B978-0-12-817562-0.00005-7.
dc.relation.references(19) Muregi, F. W.; Ishih, A. Next-Generation Antimalarial Drugs: Hybrid Molecules as a New Strategy in Drug Design. Drug Dev. Res. 2010, 71 (1), 20. https://doi.org/10.1002/DDR.20345.
dc.relation.references(20) Cardona-G, W.; Yepes, A. F.; Herrera-R, A. Hybrid Molecules: Promising Compounds for the Development of New Treatments Against Leishmaniasis and Chagas Disease. Curr. Med. Chem. 2018, 25 (30), 3637–3679. https://doi.org/10.2174/0929867325666180309111428.
dc.relation.references(21) Uchil, A.; Murali, T. S.; Nayak, R. Escaping ESKAPE: A Chalcone Perspective. Results Chem. 2021, 3, 100229. https://doi.org/10.1016/J.RECHEM.2021.100229.
dc.relation.references(22) Gao, L.; Wang, F.; Chen, Y.; Li, F.; Han, B.; Liu, D. The Antithrombotic Activity of Natural and Synthetic Coumarins. Fitoterapia 2021, 154, 104947. https://doi.org/10.1016/J.FITOTE.2021.104947.
dc.relation.references(23) Adelusi, T. I.; Du, L.; Chowdhury, A.; Xiaoke, G.; Lu, Q.; Yin, X. Signaling Pathways and Proteins Targeted by Antidiabetic Chalcones. Life Sci. 2021, 284, 118982. https://doi.org/10.1016/J.LFS.2020.118982.
dc.relation.references(24) Dorababu, A. Coumarin-Heterocycle Framework: A Privileged Approach in Promising Anticancer Drug Design. Eur. J. Med. Chem. Reports 2021, 2, 100006. https://doi.org/10.1016/J.EJMCR.2021.100006.
dc.relation.references(25) Yoham, A. L.; Matta, C. M.; Safar, S. B.; Sankaran, M.; Kaplina, A.; Hettiarachchi, S. D.; Veliz, E. A.; Leblanc, R. M.; Vanni, S.; Graham, R. M. Targeted Delivery of Anti-Cancer Chalcone Drugs for Glioblastoma Multiforme Using Carbon Dots as Nanocarrier. J. Am. Coll. Surg. 2020, 231 (4), S180. https://doi.org/10.1016/J.JAMCOLLSURG.2020.07.291.
dc.relation.references(26) Li, Z.; Kong, D.; Liu, Y.; Li, M. Pharmacological Perspectives and Molecular Mechanisms of Coumarin Derivatives against Virus Disease. Genes Dis. 2021. https://doi.org/10.1016/J.GENDIS.2021.03.007.
dc.relation.references(27) AL-Duhaidahawi, D.; AL-Zubaidy, H. F. S.; Al-Khafaji, K.; AL-Ameiry, A. Synthesis, Anti-Inflammatory Effects, Molecular Docking and Molecular Dynamics Studies of 4-Hydroxy Coumarin Derivatives as Inhibitors of COX-II Enzyme. J. Mol. Struct. 2022, 1247, 131377. https://doi.org/10.1016/J.MOLSTRUC.2021.131377.
dc.relation.references(28) Husain, A.; Balushi K, A.; Akhtar, M. J.; Khan, S. A. Coumarin Linked Heterocyclic Hybrids: A Promising Approach to Develop Multi Target Drugs for Alzheimer’s Disease. J. Mol. Struct. 2021, 1241, 130618. https://doi.org/10.1016/J.MOLSTRUC.2021.130618.
dc.relation.references(29) Yadav, N.; Agarwal, D.; Kumar, S.; Dixit, A. K.; Gupta, R. D.; Awasthi, S. K. In Vitro Antiplasmodial Efficacy of Synthetic Coumarin-Triazole Analogs. Eur. J. Med. Chem. 2018, 145, 735–745. https://doi.org/10.1016/J.EJMECH.2018.01.017.
dc.relation.references(30) Aponte, J. C.; Castillo, D.; Estevez, Y.; Gonzalez, G.; Arevalo, J.; Hammond, G. B.; Sauvain, M. In Vitro and in Vivo Anti-Leishmania Activity of Polysubstituted Synthetic Chalcones. Bioorg. Med. Chem. Lett. 2010, 20 (1), 100–103. https://doi.org/10.1016/J.BMCL.2009.11.033.
dc.relation.references(31) Qin, H. L.; Zhang, Z. W.; Lekkala, R.; Alsulami, H.; Rakesh, K. P. Chalcone Hybrids as Privileged Scaffolds in Antimalarial Drug Discovery: A Key Review. Eur. J. Med. Chem. 2020, 193, 112215. https://doi.org/10.1016/J.EJMECH.2020.112215.
dc.relation.references(32) Rodríguez-Hernández, K. D.; Martínez, I.; Agredano-Moreno, L. T.; Jiménez-García, L. F.; Reyes-Chilpa, R.; Espinoza, B. Coumarins Isolated from Calophyllum Brasiliense Produce Ultrastructural Alterations and Affect in Vitro Infectivity of Trypanosoma Cruzi. Phytomedicine 2019, 61, 152827. https://doi.org/10.1016/J.PHYMED.2019.152827.
dc.relation.references(33) Singh, N.; Mishra, B. B.; Bajpai, S.; Singh, R. K.; Tiwari, V. K. Natural Product Based Leads to Fight against Leishmaniasis. Bioorg. Med. Chem. 2014, 22 (1), 18–45. https://doi.org/10.1016/J.BMC.2013.11.048.
dc.relation.references(34) Magill, A. J. Leishmaniasis. Hunter’s Trop. Med. Emerg. Infect. Dis. Ninth Ed. 2013, 739–760. https://doi.org/10.1016/B978-1-4160-4390-4.00099-0.
dc.relation.references(35) Sharma, U.; Singh, S. Immunobiology of Leishmaniasis. IJEB Vol.47(06) [June 2009] 2009, 47, 412–423.
dc.relation.references(36) Gyapong, J. O. An Overview of Neglected Tropical Diseases.; 2016.
dc.relation.references(37) Abadías-Granado, I.; Diago, A.; Cerro, P. A.; Palma-Ruiz, A. M.; Gilaberte, Y. Cutaneous and Mucocutaneous Leishmaniasis. Actas Dermo-Sifiliográficas (English Ed. 2021, 112 (7), 601–618. https://doi.org/10.1016/J.ADENGL.2021.05.011.
dc.relation.references(38) Instituto Nacional de salud; Ministerio de Salud; 2022. Boletin Epidemiológico Semanal 25 https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2022_Boletín_epidemiologico_semana_25.pdf (accessed Feb 27, 2023).
dc.relation.references(39) Peláez, R. G.; Muskus, C. E.; Cuervo, P.; Marín-Villa, M. Expresión Diferencial de Proteínas En Leishmania (Viannia) Panamensis Asociadas Con Mecanismos de Resistencia a Antimoniato de Meglumina. Biomedica 2012, 32 (3), 418–429. https://doi.org/10.7705/BIOMEDICA.V32I3.392.
dc.relation.references(40) Díaz, M. L.; González, C. I. Enfermedad de Chagas Agudo: Transmisión Oral de Trypanosoma Cruzi Como Una Vía de Transmisión Re-Emergente. Rev. la Univ. Ind. Santander. Salud 2014, 46 (2), 177–188.
dc.relation.references(41) Aronson, N.; Herwaldt, B. L.; Libman, M.; Pearson, R.; Lopez-Velez, R.; Weina, P.; Carvalho, E. M.; Ephros, M.; Jeronimo, S.; Magill, A. Diagnosis and Treatment of Leishmaniasis: Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH). Clin. Infect. Dis. 2016, 63 (12), e202–e264. https://doi.org/10.1093/CID/CIW670.
dc.relation.references(42) Vélez Bernal, I. D.; Robledo Restrepo, S. M.; Torres Gutiérrez, C.; Carrillo Bonilla, L. M.; López Carvajal, L.; Muskus López, C. E. Manual de Procedimientos Para El Diagnóstico y Control de La Leishmaniasis En Centroamérica; 2010.
dc.relation.references(43) Coura, J. R.; Dias, J. C. P.; Frasch, A. C. C.; Guhl, F.; Lazzari, J. O.; Lorca, M.; Monroy Escobar, C.; Ponce, C.; Silveira, A. C.; Velazquez, G.; Zingales, B. Control of Chagas Disease. World Heal. Organ. - Tech. Rep. Ser. 2002, No. 905, 1–99. https://doi.org/10.1016/s0035-9203(02)90338-x.
dc.relation.references(44) Angulo, V. M. Enfermedad de Chagas En Santander. Medicas-UIS 1992, 6 (4), 204–206.
dc.relation.references(45) Guhl, F. Estado Actual Del Control de La Enfermedad de Chagas En Colombia. Medicina (B. Aires). 1999, 59 (SUPPL. 2), 103–116.
dc.relation.references(46) Instituto Nacional de Salud. Enfermedad de Chagas En Busca de La Sostenibilidad. Bol. epidemiológico Sem. 2021, Semana 14 (Boletin del 4 al 10 de abril 2021), 7 y 8.
dc.relation.references(47) Ligia Perez, Yesika Rojas, M. R. La Enfermedad De Chagas En El Departamento De Amazonas (Colombia). SSA-ES Tripanosomiasis Updat. 2005, 1 (1), 187–212.
dc.relation.references(48) Cantey, P. T.; Stramer, S. L.; Townsend, R. L.; Kamel, H.; Ofafa, K.; Todd, C. W.; Currier, M.; Hand, S.; Varnado, W.; Dotson, E.; Hall, C.; Jett, P. L.; Montgomery, S. P. CDC - Chagas Disease - Epidemiology & Risk Factors. Transfusion 2019, 52 (9), 1922–1930. https://doi.org/10.1111/J.1537-2995.2012.03581.X/FULL.
dc.relation.references(49) Bern, C.; Montgomery, S. P.; Herwaldt, B. L.; Rassi, A.; Marin-Neto, J. A.; Dantas, R. O.; Maguire, J. H.; Acquatella, H.; Morillo, C.; Kirchhoff, L. V.; Gilman, R. H.; Reyes, P. A.; Salvatella, R.; Moore, A. C. Evaluation and Treatment of Chagas Disease in the United States: A Systematic Review. JAMA 2007, 298 (18), 2171–2181. https://doi.org/10.1001/JAMA.298.18.2171.
dc.relation.references(50) Edwards, M. S.; Stimpert, K. K.; Bialek, S. R.; Montgomery, S. P. Evaluation and Management of Congenital Chagas Disease in the United States. J. Pediatric Infect. Dis. Soc. 2019, 8 (5), 461–469. https://doi.org/10.1093/JPIDS/PIZ018.
dc.relation.references(51) Pan, S.-Y.; Litscher, G.; Gao, S.-H.; Zhou, S.-F.; Yu, Z.-L.; Chen, H.-Q.; Zhang, S.-F.; Tang, M.-K.; Sun, J.-N.; Ko, K.-M. Historical Perspective of Traditional Indigenous Medical Practices: The Current Renaissance and Conservation of Herbal Resources. 2014. https://doi.org/10.1155/2014/525340.
dc.relation.references(52) Jamshidi-Kia, F.; Lorigooini, Z.; Amini-Khoei, H. Medicinal Plants: Past History and Future Perspective. J. Herbmed Pharmacol. 2017, 7 (1), 1–7. https://doi.org/10.15171/JHP.2018.01.
dc.relation.references(53) Kılıç, C. S. Herbal Coumarins in Healthcare. Herb. Biomol. Healthc. Appl. 2022, 363–380. https://doi.org/10.1016/B978-0-323-85852-6.00003-2.
dc.relation.references(54) Li, N.; Guo, T. ting; Zhou, D. Bioactive Sesquiterpene Coumarins From Plants. Stud. Nat. Prod. Chem. 2018, 59, 251–282. https://doi.org/10.1016/B978-0-444-64179-3.00008-6.
dc.relation.references(55) Fitocosmética: Fitoingredientes y otros productos naturales - Jelena L. Nadinic, Arnaldo L. Bandoni, Virginia S. Martino, Graciela E. Ferraro - Google Libros https://books.google.com.co/books?id=9uBDDAAAQBAJ&pg=PT87&dq=cumarinas+y+estructura&hl=es&sa=X&ved=2ahUKEwikmvyG8O30AhV6RDABHXUyA00Q6AF6BAgLEAI#v=onepage&q=cumarinas y estructura&f=false (accessed Dec 18, 2021).
dc.relation.references(56) Sugino, T.; Tanaka, K. Solvent-Free Coumarin Synthesis. Chem. Lett. 2001, No. 2, 110–111. https://doi.org/10.1246/cl.2001.110.
dc.relation.references(57) Vilas-Boas, D. F.; Oliveira, R. R. G.; Gonçalves-Santos, E.; Silva, L. S.; Diniz, L. F.; Mazzeti, A. L.; Brancaglion, G. A.; Carvalho, D. T.; Caldas, S.; Novaes, R. D.; Caldas, I. S. 4-Nitrobenzoylcoumarin Potentiates the Antiparasitic, Anti-Inflammatory and Cardioprotective Effects of Benznidazole in a Murine Model of Acute Trypanosoma Cruzi Infection. Acta Trop. 2022, 228. https://doi.org/10.1016/J.ACTATROPICA.2022.106314.
dc.relation.references(58) Rodríguez-Hernández, K. D.; Martínez, I.; Reyes-Chilpa, R.; Espinoza, B. Mammea Type Coumarins Isolated from Calophyllum Brasiliense Induced Apoptotic Cell Death of Trypanosoma Cruzi through Mitochondrial Dysfunction, ROS Production and Cell Cycle Alterations. Bioorg. Chem. 2020, 100, 103894. https://doi.org/10.1016/J.BIOORG.2020.103894.
dc.relation.references(59) Silva, L. G.; Gomes, K. S.; Costa-Silva, T. A.; Romanelli, M. M.; Tempone, A. G.; Sartorelli, P.; Lago, J. H. G. Calanolides E1 and E2, Two Related Coumarins from Calophyllum Brasiliense Cambess. (Clusiaceae), Displayed in Vitro Activity against Amastigote Forms of Trypanosoma Cruzi and Leishmania Infantum. https://doi.org/10.1080/14786419.2020.1765347 2020, 35 (23), 5373–5377. https://doi.org/10.1080/14786419.2020.1765347.
dc.relation.references(60) Gomes Nascimento Soares, F.; Göethel, G.; Porto Kagami, L.; Machado das Neves, G.; Sauer, E.; Birriel, E.; Varela, J.; Luís Gonçalves, I.; Von Poser, G.; González, M.; Fábio Kawano, D.; Reisdorfer Paula, F.; Borges de Melo, E.; Cristina Garcia, S.; Cerecetto, H.; Lucia Eifler-Lima, V. Novel Coumarins Active against Trypanosoma Cruzi and Toxicity Assessment Using the Animal Model Caenorhabditis Elegans. 2019. https://doi.org/10.1186/s40360-019-0357-z.
dc.relation.references(61) Coelho, G. S.; Andrade, J. S.; Xavier, V. F.; Sales Junior, P. A.; Rodrigues de Araujo, B. C.; Fonseca, K. da S.; Caetano, M. S.; Murta, S. M. F.; Vieira, P. M.; Carneiro, C. M.; Taylor, J. G. Design, Synthesis, Molecular Modelling, and in Vitro Evaluation of Tricyclic Coumarins against Trypanosoma Cruzi. Chem. Biol. Drug Des. 2019, 93 (3), 337–350. https://doi.org/10.1111/CBDD.13420.
dc.relation.references(62) Rosa, I. A.; de Almeida, L.; Alves, K. F.; Marques, M. J.; Fregnan, A. M.; Silva, C. A.; Giacoppo, J. O. S.; Ramalho, T. C.; Carvalho, D. T.; dos Santos, M. H. Synthesis and in Vitro Evaluation of Leishmanicidal Activity of 7-Hydroxy-4-Phenylcoumarin Derivatives. Med. Chem. Res. 2016 261 2016, 26 (1), 131–139. https://doi.org/10.1007/S00044-016-1729-1.
dc.relation.references(63) Costa, R. S.; Souza Filho, O. P.; Dias Júnior, O. C. S.; Silva, J. J.; Le Hyaric, M.; Santos, M. A. V; Velozo, E. S. In Vitro Antileishmanial and Antitrypanosomal Activity of Compounds Isolated from the Roots of Zanthoxylum Tingoassuiba. Rev. Bras. Farmacogn. 2018, 28, 551–558. https://doi.org/10.1016/j.bjp.2018.04.013.
dc.relation.references(64) Freitas, R. F.; Prokopczyk, I. M.; Zottis, A.; Oliva, G.; Andricopulo, A. D.; Trevisan, M. T. S.; Vilegas, W.; Silva, M. G. V.; Montanari, C. A. Discovery of Novel Trypanosoma Cruzi Glyceraldehyde-3-Phosphate Dehydrogenase Inhibitors. Bioorg. Med. Chem. 2009, 17 (6), 2476–2482. https://doi.org/10.1016/J.BMC.2009.01.079.
dc.relation.references(65) Brenzan, M. A.; Nakamura, C. V.; Prado Dias Filho, B.; Ueda-Nakamura, T.; Young, M. C. M.; Aparício Garcia Cortez, D. Antileishmanial Activity of Crude Extract and Coumarin from Calophyllum Brasiliense Leaves against Leishmania Amazonensis. Parasitol. Res. 2007 1013 2007, 101 (3), 715–722. https://doi.org/10.1007/S00436-007-0542-7.
dc.relation.references(66) Donnelly, D. M. X. The Chemistry of Chalcones and Related Compounds : By D. N. Dhar. John Wiley, New York, 1981. 285 Pp. Phytochemistry 1982, 21 (9), 2435. https://doi.org/10.1016/0031-9422(82)85234-5.
dc.relation.references(67) Prashar, H.; Chawla, A.; Sharma, A. K.; Kharb, R. Chalcone as a Versatile Moiety for Diverse Pharmacological Activities. Int. J. Pharm. Sci. Res. 2012, 3 (07), 1913–1927.
dc.relation.references(68) Patil, C. B.; Mahajan, S. K.; Katti, S. A. Chalcone: A Versatile Molecule. J. Pharm. Sci. Res. 2009, 1 (3), 11–22.
dc.relation.references(69) Rodrigues, D. F.; Maniscalco, D. A.; Silva, F. A. J.; Chiari, B. G.; Castelli, M. V.; Isaac, V. L. B.; Cicarelli, R. M. B.; López, S. N. Trypanocidal Activity of Flavokawin B, a Component of Polygonum Ferrugineum Wedd. Planta Med. 2017, 83 (3–04), 239–244. https://doi.org/10.1055/S-0042-112031.
dc.relation.references(70) Borsari, C.; Santarem, N.; Torrado, J.; Olías, A. I.; Corral, M. J.; Baptista, C.; Gul, S.; Wolf, M.; Kuzikov, M.; Ellinger, B.; Witt, G.; Gribbon, P.; Reinshagen, J.; Linciano, P.; Tait, A.; Costantino, L.; Freitas-Junior, L. H.; Moraes, C. B.; Bruno dos Santos, P.; Alcântara, L. M.; Franco, C. H.; Bertolacini, C. D.; Fontana, V.; Tejera Nevado, P.; Clos, J.; Alunda, J. M.; Cordeiro-da-Silva, A.; Ferrari, S.; Costi, M. P. Methoxylated 2’-Hydroxychalcones as Antiparasitic Hit Compounds. Eur. J. Med. Chem. 2017, 126, 1129–1135. https://doi.org/10.1016/J.EJMECH.2016.12.017.
dc.relation.references(71) Sandjo, L. P.; de Moraes, M. H.; Kuete, V.; Kamdoum, B. C.; Ngadjui, B. T.; Steindel, M. Individual and Combined Antiparasitic Effect of Six Plant Metabolites against Leishmania Amazonensis and Trypanosoma Cruzi. Bioorg. Med. Chem. Lett. 2016, 26 (7), 1772–1775. https://doi.org/10.1016/J.BMCL.2016.02.044.
dc.relation.references(72) González, L. A.; Upegui, Y. A.; Rivas, L.; Echeverri, F.; Escobar, G.; Robledo, S. M.; Quiñones, W. Effect of Substituents in the A and B Rings of Chalcones on Antiparasite Activity. Arch. Pharm. (Weinheim). 2020, 353 (12). https://doi.org/10.1002/ARDP.202000157.
dc.relation.references(73) Osman, M. S.; Awad, T. A.; Shantier, S. W.; Garelnabi, E. A.; Osman, W.; Mothana, R. A.; Nasr, F. A.; Elhag, R. I. Identification of Some Chalcone Analogues as Potential Antileishmanial Agents: An Integrated in Vitro and in Silico Evaluation. Arab. J. Chem. 2022, 15 (4), 103717. https://doi.org/10.1016/J.ARABJC.2022.103717.
dc.relation.references(74) Ortalli, M.; Ilari, A.; Colotti, G.; De Ionna, I.; Battista, T.; Bisi, A.; Gobbi, S.; Rampa, A.; Di Martino, R. M. C.; Gentilomi, G. A.; Varani, S.; Belluti, F. Identification of Chalcone-Based Antileishmanial Agents Targeting Trypanothione Reductase. Eur. J. Med. Chem. 2018, 152, 527–541. https://doi.org/10.1016/J.EJMECH.2018.04.057.
dc.relation.references(75) Gomes, M. N.; Alcântara, L. M.; Neves, B. J.; Melo-Filho, C. C.; Freitas-Junior, L. H.; Moraes, C. B.; Ma, R.; Franzblau, S. G.; Muratov, E.; Andrade, C. H. Computer-Aided Discovery of Two Novel Chalcone-like Compounds Active and Selective against Leishmania Infantum. Bioorg. Med. Chem. Lett. 2017, 27 (11), 2459–2464. https://doi.org/10.1016/J.BMCL.2017.04.010.
dc.relation.references(76) Chen, X.; Mukwaya, E.; Wong, M. S.; Zhang, Y. A Systematic Review on Biological Activities of Prenylated Flavonoids. Pharm. Biol. 2014, 52 (5), 655–660. https://doi.org/10.3109/13880209.2013.853809.
dc.relation.references(77) Passalacqua, T. G.; Dutra, L. A.; De Almeida, L.; Velásquez, A. M. A.; Torres Esteves, F. A.; Yamasaki, P. R.; Dos Santos Bastos, M.; Regasini, L. O.; Michels, P. A. M.; Da Silva Bolzani, V.; Graminha, M. A. S. Synthesis and Evaluation of Novel Prenylated Chalcone Derivatives as Anti-Leishmanial and Anti-Trypanosomal Compounds. Bioorg. Med. Chem. Lett. 2015, 25 (16), 3342–3345. https://doi.org/10.1016/J.BMCL.2015.05.072.
dc.relation.references(78) Claudio Viegas-Junior; Eliezer J. Barreiro; Carlos Alberto Manssour Fraga. Molecular Hybridization: A Useful Tool in the Design of New Drug Prototypes. Curr. Med. Chem. 2007, 14 (17), 1829–1852. https://doi.org/10.2174/092986707781058805.
dc.relation.references(79) Lazar, C.; Kluczyk, A.; Kiyota, T.; Konishi, Y. Drug Evolution Concept in Drug Design: 1. Hybridization Method. J. Med. Chem. 2004, 47 (27), 6973–6982. https://doi.org/10.1021/jm049637+.
dc.relation.references(80) Oliveira Pedrosa, M.; Duarte da Cruz, R.; Oliveira Viana, J.; de Moura, R.; Ishiki, H.; Barbosa Filho, J.; Diniz, M.; Scotti, M.; Scotti, L.; Bezerra Mendonca, F. Hybrid Compounds as Direct Multitarget Ligands: A Review. Curr. Top. Med. Chem. 2017, 17 (9), 1044–1079. https://doi.org/10.2174/1568026616666160927160620.
dc.relation.references(81) Newman, D. J.; Cragg, G. M. Natural Products as Sources of New Drugs from 1981 to 2014. J. Nat. Prod. 2016, 79 (3), 629–661. https://doi.org/10.1021/ACS.JNATPROD.5B01055/SUPPL_FILE/NP5B01055_SI_002.DOCX.
dc.relation.references(82) Coa, J. C.; García, E.; Carda, M.; Agut, R.; Vélez, I. D.; Muñoz, J. A.; Yepes, L. M.; Robledo, S. M.; Cardona, W. I. Synthesis, Leishmanicidal, Trypanocidal and Cytotoxic Activities of Quinoline-Chalcone and Quinoline-Chromone Hybrids. Med. Chem. Res. 2017, 26 (7), 1405–1414. https://doi.org/10.1007/S00044-017-1846-5/TABLES/1.
dc.relation.references(83) Ramírez–Prada, J.; Robledo, S. M.; Vélez, I. D.; Crespo, M. del P.; Quiroga, J.; Abonia, R.; Montoya, A.; Svetaz, L.; Zacchino, S.; Insuasty, B. Synthesis of Novel Quinoline–Based 4,5–Dihydro–1H–Pyrazoles as Potential Anticancer, Antifungal, Antibacterial and Antiprotozoal Agents. Eur. J. Med. Chem. 2017, 131, 237–254. https://doi.org/10.1016/J.EJMECH.2017.03.016.
dc.relation.references(84) Khatoon, S.; Aroosh, A.; Islam, A.; Kalsoom, S.; Ahmad, F.; Hameed, S.; Abbasi, S. W.; Yasinzai, M.; Naseer, M. M. Novel Coumarin-Isatin Hybrids as Potent Antileishmanial Agents: Synthesis, in Silico and in Vitro Evaluations. Bioorg. Chem. 2021, 110, 104816. https://doi.org/10.1016/J.BIOORG.2021.104816.
dc.relation.references(85) Aucamp, J.; N’Da, D. D. In Vitro Antileishmanial Efficacy of Antiplasmodial Active Aminoquinoline-Chalcone Hybrids. Exp. Parasitol. 2022, 236–237, 108249. https://doi.org/10.1016/J.EXPPARA.2022.108249.
dc.relation.references(86) Ibrar, A.; Zaib, S.; Jabeen, F.; Iqbal, J.; Saeed, A. Unraveling the Alkaline Phosphatase Inhibition, Anticancer, and Antileishmanial Potential of Coumarin–Triazolothiadiazine Hybrids: Design, Synthesis, and Molecular Docking Analysis. Arch. Pharm. (Weinheim). 2016, 349 (7), 553–565. https://doi.org/10.1002/ARDP.201500392.
dc.relation.references(87) Sangshetti, J. N.; Kalam Khan, F. A.; Kulkarni, A. A.; Patil, R. H.; Pachpinde, A. M.; Lohar, K. S.; Shinde, D. B. Antileishmanial Activity of Novel Indolyl–Coumarin Hybrids: Design, Synthesis, Biological Evaluation, Molecular Docking Study and in Silico ADME Prediction. Bioorg. Med. Chem. Lett. 2016, 26 (3), 829–835. https://doi.org/10.1016/J.BMCL.2015.12.085.
dc.relation.references(88) Rodriguez S., Figueroa R. , Matos M. , Olea-Azar C., Maya J.D., Uriarte E. , Santana L., B. F. Synthesis and Trypanocidal Properties of New Coumarin-Chalcone Derivatives. Med. Chem. (Los. Angeles). 2015, 5 (4). https://doi.org/10.4172/2161-0444.1000260.
dc.relation.references(89) Hu, C. M.; Luo, Y. X.; Wang, W. J.; Li, J. P.; Li, M. Y.; Zhang, Y. F.; Xiao, D.; Lu, L.; Xiong, Z.; Feng, N.; Li, C. Synthesis and Evaluation of Coumarin-Chalcone Derivatives as α-Glucosidase Inhibitors. Front. Chem. 2022, 10. https://doi.org/10.3389/FCHEM.2022.926543/FULL.
dc.relation.references(90) Patel, K.; Karthikeyan, C.; Hari Narayana Moorthy, N. S.; Deora, G. S.; Solomon, V. R.; Lee, H.; Trivedi, P. Design, Synthesis and Biological Evaluation of Some Novel 3-Cinnamoyl-4-Hydroxy-2H-Chromen-2-Ones as Antimalarial Agents. Med. Chem. Res. 2012, 21 (8), 1780–1784. https://doi.org/10.1007/S00044-011-9694-1/METRICS.
dc.relation.references(91) Sun, Y. F.; Cui, Y. P. The Synthesis, Characterization and Properties of Coumarin-Based Chromophores Containing a Chalcone Moiety. Dye. Pigment. 2008, 78 (1), 65–76. https://doi.org/10.1016/J.DYEPIG.2007.10.014.
dc.relation.references(92) Knoevenagel, E. Condensation von Malonsäure Mit Aromatischen Aldehyden Durch Ammoniak Und Amine. Berichte der Dtsch. Chem. Gesellschaft 1898, 31 (3), 2596–2619. https://doi.org/10.1002/CBER.18980310308.
dc.relation.references(93) Isac-García, J.; Dobado, J. A.; Calvo-Flores, F. G.; Martínez-García, H. Green Chemistry Experiments. Exp. Org. Chem. 2016, 417–484. https://doi.org/10.1016/B978-0-12-803893-2.50013-9.
dc.relation.references(94) Tietze, L. F.; Beifuss, U. The Knoevenagel Reaction. Compr. Org. Synth. 1991, 341–394. https://doi.org/10.1016/B978-0-08-052349-1.00033-0.
dc.relation.references(95) Knoevenagel Condensation - an overview | ScienceDirect Topics https://www-sciencedirect-com.ezproxy.unal.edu.co/topics/chemistry/knoevenagel-condensation#reaction (accessed Feb 27, 2023).
dc.relation.references(96) Ferreira, J. M. G. O.; De, J. B. M.; Filho, R.; Batista, P. K.; Teotonio, E. E. S.; Vale, J. A. Rapid and Efficient Uncatalyzed Knoevenagel Condensations from Binary Mixture of Ethanol and Water. Artic. J. Braz. Chem. Soc 2018, 29 (7), 1382–1387. https://doi.org/10.21577/0103-5053.20170240.
dc.relation.references(97) Aldol Condensation - an overview | ScienceDirect Topics https://www.sciencedirect.com/topics/chemistry/aldol-condensation# (accessed Feb 27, 2023).
dc.relation.references(98) Ouellette, R. J.; Rawn, J. D. Condensation Reactions of Carbonyl Compounds. Org. Chem. Study Guid. 2015, 419–463. https://doi.org/10.1016/B978-0-12-801889-7.00022-4.
dc.relation.references(99) Vazquez-Rodriguez, S.; Lama López, R.; Matos, M. J.; Armesto-Quintas, G.; Serra, S.; Uriarte, E.; Santana, L.; Borges, F.; Muñoz Crego, A.; Santos, Y. Design, Synthesis and Antibacterial Study of New Potent and Selective Coumarin-Chalcone Derivatives for the Treatment of Tenacibaculosis. Bioorg. Med. Chem. 2015, 23 (21), 7045–7052. https://doi.org/10.1016/J.BMC.2015.09.028.
dc.relation.references(100) Pingaew, R.; Saekee, A.; Mandi, P.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, Biological Evaluation and Molecular Docking of Novel Chalcone–Coumarin Hybrids as Anticancer and Antimalarial Agents. Eur. J. Med. Chem. 2014, 85, 65–76. https://doi.org/10.1016/J.EJMECH.2014.07.087.
dc.relation.references(101) Xi, G. L.; Liu, Z. Q. Coumarin Moiety Can Enhance Abilities of Chalcones to Inhibit DNA Oxidation and to Scavenge Radicals. Tetrahedron 2014, 70 (44), 8397–8404. https://doi.org/10.1016/J.TET.2014.08.063.
dc.relation.references(102) Patel, K.; Karthikeyan, C.; Hari Narayana Moorthy, N. S.; Deora, G. S.; Solomon, V. R.; Lee, H.; Trivedi, P. Design, Synthesis and Biological Evaluation of Some Novel 3-Cinnamoyl-4-Hydroxy-2H-Chromen-2-Ones as Antimalarial Agents. Med. Chem. Res. 2011 218 2011, 21 (8), 1780–1784. https://doi.org/10.1007/S00044-011-9694-1.
dc.relation.references(103) Vazquez-Rodriguez, S.; Figueroa-Guíñez, R.; Matos, M. J.; Santana, L.; Uriarte, E.; Lapier, M.; Maya, J. D.; Olea-Azar, C. Synthesis of Coumarin-Chalcone Hybrids and Evaluation of Their Antioxidant and Trypanocidal Properties. Medchemcomm 2013, 4 (6), 993–1000. https://doi.org/10.1039/c3md00025g.
dc.relation.references(104) Cuellar, J. E.; Quiñones, W.; Robledo, S.; Gil, J.; Durango, D. Coumaro-Chalcones Synthesized under Solvent-Free Conditions as Potential Agents against Malaria, Leishmania and Trypanosomiasis. Heliyon 2022, 8 (2), e08939. https://doi.org/10.1016/J.HELIYON.2022.E08939.
dc.relation.references(105) Roy, K.; Kar, S. How to Judge Predictive Quality of Classification and Regression Based QSAR Models? Front. Comput. Chem. Vol. 2 Comput. Appl. Drug Des. Biomol. Syst. 2015, 71–120. https://doi.org/10.1016/B978-1-60805-979-9.50003-2.
dc.relation.references(106) Davis, A. M. Quantitative Structure-Activity Relationships. Compr. Med. Chem. III 2017, 3–8, 379–392. https://doi.org/10.1016/B978-0-12-409547-2.12348-0.
dc.relation.references(107) Verma, J.; Khedkar, V.; Coutinho, E. 3D-QSAR in Drug Design--a Review. Curr. Top. Med. Chem. 2010, 10 (1), 95–115. https://doi.org/10.2174/156802610790232260.
dc.relation.references(108) Agrawal, V.; Dubey, V.; Shaik, B.; … J. S.-J. of the I.; 2009, U. Modeling of Lipophilicity of Some Organic Compounds Using Structural and Topological Indices. J. Indian Chem. 2009, No. Soc., 86, 1–9.
dc.relation.references(109) Wood, J. M.; Maibaum, J.; Rahuel, J.; Grütter, M. G.; Cohen, N. C.; Rasetti, V.; Rüger, H.; Göschke, R.; Stutz, S.; Fuhrer, W.; Schilling, W.; Rigollier, P.; Yamaguchi, Y.; Cumin, F.; Baum, H. P.; Schnell, C. R.; Herold, P.; Mah, R.; Jensen, C.; O’Brien, E.; Stanton, A.; Bedigian, M. P. Structure-Based Design of Aliskiren, a Novel Orally Effective Renin Inhibitor. Biochem. Biophys. Res. Commun. 2003, 308 (4), 698–705. https://doi.org/10.1016/S0006-291X(03)01451-7.
dc.relation.references(110) Oprea, T. I.; Davis, A. M.; Teague, S. J.; Leeson, P. D. Is There a Difference between Leads and Drugs? A Historical Perspective. J. Chem. Inf. Comput. Sci. 2001, 41 (5), 1308–1315. https://doi.org/10.1021/CI010366A.
dc.relation.references(111) Turfus, S. C.; Delgoda, R.; Picking, D.; Gurley, B. J. Pharmacokinetics. Pharmacogn. Fundam. Appl. Strateg. 2017, 495–512. https://doi.org/10.1016/B978-0-12-802104-0.00025-1.
dc.relation.references(112) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 1997, 23 (1–3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1.
dc.relation.references(113) Veber, D. F.; Johnson, S. R.; Cheng, H. Y.; Smith, B. R.; Ward, K. W.; Kopple, K. D. Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45 (12), 2615–2623. https://doi.org/10.1021/JM020017N.
dc.relation.references(114) Wang, Y.; Zhang, W.; Dong, J.; Gao, J. Design, Synthesis and Bioactivity Evaluation of Coumarin-Chalcone Hybrids as Potential Anticancer Agents. Bioorg. Chem. 2020, 95 (September 2019), 103530. https://doi.org/10.1016/j.bioorg.2019.103530.
dc.relation.references(115) Murillo, J. A.; Gil, J. F.; Upegui, Y. A.; Restrepo, A. M.; Robledo, S. M.; Quiñones, W.; Echeverri, F.; San Martin, A.; Olivo, H. F.; Escobar, G. Antileishmanial Activity and Cytotoxicity of Ent-Beyerene Diterpenoids. Bioorg. Med. Chem. 2019, 27 (1), 153–160. https://doi.org/10.1016/J.BMC.2018.11.030.
dc.relation.references(116) Cuartas, V.; Robledo, S. M.; Vélez, I. D.; Crespo, M. del P.; Sortino, M.; Zacchino, S.; Nogueras, M.; Cobo, J.; Upegui, Y.; Pineda, T.; Yepes, L.; Insuasty, B. New Thiazolyl-Pyrazoline Derivatives Bearing Nitrogen Mustard as Potential Antimicrobial and Antiprotozoal Agents. Arch. Pharm. (Weinheim). 2020, 353 (5), e1900351. https://doi.org/10.1002/ARDP.201900351.
dc.relation.references(117) Buckner, F. S.; Verlinde, C. L. M. J.; La Flamme, A. C.; Van Voorhis, W. C. Efficient Technique for Screening Drugs for Activity against Trypanosoma Cruzi Using Parasites Expressing Beta-Galactosidase. Antimicrob. Agents Chemother. 1996, 40 (11), 2592–2597. https://doi.org/10.1128/AAC.40.11.2592.
dc.relation.references(118) Bosquiroli, L. S. S.; Demarque, D. P.; Rizk, Y. S.; Cunha, M. C.; Marques, M. C. S.; De Matos, M. F. C.; Kadri, M. C. T.; Carollo, C. A.; Arruda, C. C. P. In Vitro Anti-Leishmania Infantum Activity of Essential Oil from Piper Angustifolium. Rev. Bras. Farmacogn. 2015, 25 (2), 124–128. https://doi.org/10.1016/J.BJP.2015.03.008.
dc.relation.references(119) Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7. https://doi.org/10.1038/SREP42717.
dc.relation.references(120) Himangini; Pathak, D. P.; Sharma, V.; Kumar, S. Designing Novel Inhibitors against Falcipain-2 of Plasmodium Falciparum. Bioorg. Med. Chem. Lett. 2018, 28 (9), 1566–1569. https://doi.org/10.1016/J.BMCL.2018.03.058.
dc.relation.references(121) Patra, S. K.; Manivannan, R.; Son, Y. A. Multicolor Emissive Organic Material to Display Aggregation Caused Red Shift with Dual State Emission, and Application towards Rewritable Data Storage. J. Photochem. Photobiol. A Chem. 2023, 444, 114945. https://doi.org/10.1016/J.JPHOTOCHEM.2023.114945.
dc.relation.references(122) Yang, F.; Fan, H.; Xue, Z.; Wang, X. Synthesis and Fluorescent Properties of Coumarin–Chalcone Hybrids. https://doi.org/10.3184/174751917X15035711817504 2017, 41 (9), 534–536. https://doi.org/10.3184/174751917X15035711817504.
dc.relation.references(123) Moya-Alvarado, G.; Yañez, O.; Morales, N.; González-González, A.; Areche, C.; Núñez, M. T.; Fierro, A.; García-Beltrán, O. Coumarin-Chalcone Hybrids as Inhibitors of MAO-B: Biological Activity and In Silico Studies. Mol. 2021, Vol. 26, Page 2430 2021, 26 (9), 2430. https://doi.org/10.3390/MOLECULES26092430.
dc.relation.references(124) Aliaga, M. E.; Tiznado, W.; Cassels, B. K.; Nuñez, M. T.; Millán, D.; Pérez, E. G.; García-Beltrán, O.; Pavez, P. Substituent Effects on Reactivity of 3-Cinnamoylcoumarins with Thiols of Biological Interest. RSC Adv. 2013, 4 (2), 697–704. https://doi.org/10.1039/C3RA44695F.
dc.relation.references(125) Robledo-O’Ryan, N.; Moncada-Basualto, M.; Mura, F.; Olea-Azar, C.; Matos, M. J.; Vazquez-Rodriguez, S.; Santana, L.; Uriarte, E.; Moncada-Basualto, M.; Lapier, M.; Maya, J. D. Synthesis, Antioxidant and Antichagasic Properties of a Selected Series of Hydroxy-3-Arylcoumarins. Bioorg. Med. Chem. 2017, 25 (2), 621–632. https://doi.org/10.1016/J.BMC.2016.11.033.
dc.relation.references(126) MacIel-Rezende, C. M.; De Almeida, L.; Costa, É. D. M.; Pires, F. R.; Alves, K. F.; Junior, C. V.; Dias, D. F.; Doriguetto, A. C.; Marques, M. J.; Dos Santos, M. H. Synthesis and Biological Evaluation against Leishmania Amazonensis of a Series of Alkyl-Substituted Benzophenones. Bioorg. Med. Chem. 2013, 21 (11), 3114–3119. https://doi.org/10.1016/J.BMC.2013.03.045.
dc.relation.references(127) Gonçalves, G. A.; Spillere, A. R.; das Neves, G. M.; Kagami, L. P.; von Poser, G. L.; Canto, R. F. S.; Eifler-Lima, V. L. Natural and Synthetic Coumarins as Antileishmanial Agents: A Review. Eur. J. Med. Chem. 2020, 203, 112514. https://doi.org/10.1016/J.EJMECH.2020.112514.
dc.relation.references(128) El Khatabi, K.; Aanouz, I.; Aouidate, A.; Ghaleb, A.; Abdelaziz Ajana, M.; Bouachrine, M.; Lakhlifi, T. QSAR Studies of the 4-Fluorobenzyl L-Valinate Amide Benzoxaborale (AN11736) Derivatives against Trypanosoma. RHAZES Green Appl. Chem. 2019, 4 (4), 51–64. https://doi.org/10.48419/IMIST.PRSM/RHAZES-V4.16203.
dc.relation.references(129) Lipinski, C. A. Lead- and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today Technol. 2004, 1 (4), 337–341. https://doi.org/10.1016/J.DDTEC.2004.11.007.
dc.relation.references(130) Yoshida, K.; Shigeoka, T.; Yamauchi, F. Relationship between Molar Refraction and N-Octanol/Water Partition Coefficient. Ecotoxicol. Environ. Saf. 1983, 7 (6), 558–565. https://doi.org/10.1016/0147-6513(83)90015-5.
dc.relation.references(131) Daunes, S.; D’Silva, C.; Kendrick, H.; Yardley, V.; Croft, S. L. QSAR Study on the Contribution of Log P and Es to the in Vitro Antiprotozoal Activity of Glutathione Derivatives. J. Med. Chem. 2001, 44 (18), 2976–2983. https://doi.org/10.1021/JM000502N/ASSET/IMAGES/MEDIUM/JM000502NN00001.GIF.
dc.relation.references(132) Prasanna, S.; Doerksen, R. J. Topological Polar Surface Area: A Useful Descriptor in 2D-QSAR. Curr. Med. Chem. 2009, 16 (1), 21. https://doi.org/10.2174/092986709787002817.
dc.relation.references(133) Liu, M.; Wilairat, P.; Go, M. L. Antimalarial Alkoxylated and Hydroxylated Chalones: Structure-Activity Relationship Analysis. J. Med. Chem. 2001, 44 (25), 4443–4452. https://doi.org/10.1021/JM0101747/SUPPL_FILE/JM0101747_S.PDF.
dc.relation.references(134) Chan, C.; Yin, H.; Garforth, J.; McKie, J. H.; Jaouhari, R.; Speers, P.; Douglas, K. T.; Rock, P. J.; Yardley, V.; Croft, S. L.; Fairlamb, A. H. Phenothiazine Inhibitors of Trypanothione Reductase as Potential Antitrypanosomal and Antileishmanial Drugs. J. Med. Chem. 1998, 41 (2), 148–156. https://doi.org/10.1021/JM960814J/SUPPL_FILE/JM148.PDF.
dc.relation.references(135) Turabekova, M. A.; Rasulev, B. F. A QSAR Toxicity Study of a Series of Alkaloids with the Lycoctonine Skeleton. Mol. 2004, Vol. 9, Pages 1194-1207 2004, 9 (12), 1194–1207. https://doi.org/10.3390/91201194.
dc.relation.references(136) García, E.; Ochoa, R.; Vásquez, I.; Conesa-Milián, L.; Carda, M.; Yepes, A.; Vélez, I. D.; Robledo, S. M.; Cardona-G, W. Furanchalcone–Biphenyl Hybrids: Synthesis, in Silico Studies, Antitrypanosomal and Cytotoxic Activities. Med. Chem. Res. 2019, 28 (4), 608–622. https://doi.org/10.1007/S00044-019-02323-7/METRICS.
dc.relation.references(137) Ibrahim, Z. Y.; Uzairu, A.; Shallangwa, G. A.; Abechi, S. E. Application of QSAR Method in the Design of Enhanced Antimalarial Derivatives of Azetidine-2-Carbonitriles, Their Molecular Docking, Drug-Likeness, and SwissADME Properties. Iran. J. Pharm. Res. IJPR 2021, 20 (3), 254–270. https://doi.org/10.22037/IJPR.2021.114536.14901.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembMedicina tropical
dc.subject.lembEnfermedades parasitarias
dc.subject.lembInfecciones por protozoarios
dc.subject.lembCumarinas
dc.subject.lembAgentes antiparasitarios
dc.subject.lembTrypanosoma cruzii
dc.subject.lembLeishmaniasis
dc.subject.proposalT. cruzi
dc.subject.proposalL. braziliensis
dc.subject.proposalActividad biológica
dc.subject.proposalHíbridos
dc.subject.proposalCumarinas
dc.subject.proposalChalconas
dc.title.translatedSynthesis of coumarin-chalcone hybrids and evaluation of antiparasitic activity in vitro
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameUniversidad Nacional de Colombia
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaÁrea Curricular en Ciencias Naturales
dc.subject.wikidataLeishmaniasis cutánea
dc.subject.wikidataChalcona


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito