Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorHoyos Montilla, Ary Alain
dc.contributor.advisorTobón, Jorge Iván
dc.contributor.authorGonzález Betancur, Daniela
dc.date.accessioned2024-02-06T15:30:06Z
dc.date.available2024-02-06T15:30:06Z
dc.date.issued2023-12-30
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85631
dc.descriptionilustraciones
dc.description.abstractAccording to Global Cement and Concrete Association (GCCA), in 2020, the worldwide production of concrete is 1413 m3/year. This massive utilization of concrete production has a significant environmental impact due to the extraction of its raw materials and the production of Ordinary Portland Cement (OPC). On the other hand, polymers are used in almost all areas of our daily lives. it is estimated that by the year 2050, their production could reach 33 billons t/year. In particular, Expanded Polystyrene (EPS) is used as thermal insulation in 85 % of cases, generating a high volume of this plastic waste. Thus, alternative materials such as blended cement and recycled EPS Lightweight Aggregate (EPS LWA) can reduce this detrimental environmental impact. The objective of this research project is to determine the effect on Interfacial Transition Zone (ITZ) porosity and compressive strength of a Lightweight Aggregate Concrete (LWAC) produced with a blended cementitious matrix composed of OPC and Alkaline Activated Cement (AAC) based on Fly Ash (FA) and an additional source of Calcium (Lime). An experimental design was carried out to identify the proportion of alternative cementitious material and EPS LWA that would provide the highest compressive strength. For this purpose, a compressive strength test was performed at 7th and 28th days of curing. Having the proportions of the alternative materials, a complementary sample was made to evaluate mechanical performance and perform a quantitative analysis of the porosity of the ITZ. Finally, the compressive strength and porosity of ITZ were correlated to evaluate the influence of ITZ microstructure on the mechanical properties of LWAC. XRay Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR) were used to identify the formation of gels due to alkaline activation. From this project, it was concluded that the generation of hydration products such as Calcium Aluminate Silicate Hydrate (CA-S-H), caused the densification of the ITZ. However, the reduction in compressive strength observed in the LWAC manufactured in this project could be explained by the anhydrous phases seen in Backscatering Scanning Electron Microscopy (BSEM) images and lower raw material dissolution observed in XRD. Incorporating EPS LWA and Expanded Clays (EC) in an LWAC also physically impacts compressive strength by redistributing stresses in the microstructure of the LWAC. This is due to the inclusion of brittle and ultra-soft materials that differ from cement paste. Furthermore, the hydrophobicity of EPS LWA causes a lack of adherence of the cementitious material to this LWA. As a result, compression fracture of the material will occur around the EPS LWA in the void space between the cementitious material and the EPS LWA. Despite that, the compressive strength of the LWAC obtained in this research project could be used to design a concrete structure according to Colombian technical standards for structural design (NSR-10). Thus decreasing the dead loads directly related to its own weight. The results also indicated that it is possible to substitute up to 70 % of the OPC with alternative cementitious materials. This could ultimately translate into savings in the total cost of the work and, with the use of FA and Lime, a reduction in CO2 emissions.
dc.description.abstractSegún la Asociación Mundial del Cemento y el Concreto (GCCA), en 2020, la producción mundial de concreto será de 1413 m3/año. Esta utilización masiva de la producción de concreto tiene un impacto medioambiental significativo debido a la extracción de sus materias primas y a la producción de Cemento Portland Ordinario (OPC). Por otro lado, los polímeros se utilizan en casi todos los ámbitos de nuestra vida cotidiana. Se calcula que para el año 2050 su producción podría alcanzar las 33 billones t/año. En particular, el Poliestireno Expandido (EPS) se utiliza como aislante térmico en el 85 % de los casos, generando un elevado volumen de este residuo plástico. Por lo tanto, los materiales alternativos como el cemento hibrido y el árido ligero de EPS reciclado (EPS LWA) pueden reducir este impacto medioambiental perjudicial. El objetivo de este proyecto de investigación es determinar el efecto sobre la porosidad de la Zona de Transición Interfacial (ITZ) y la resistencia a la compresión de un Concreto con Áridos Livianos (LWAC) producido con una matriz cementante mezclada compuesta de OPC y Cemento Alcalino Activado (AAC) basado en Cenizas Volantes (FA) y una fuente adicional de Calcio (Cal). Se llevó a cabo un diseño experimental para identificar la proporción de material cementante alternativo y EPS LWA que proporcionaría la mayor resistencia a la compresión. Para ello, se realizó un ensayo de resistencia a la compresión a los 7 y 28 días de curado. Disponiendo de las proporciones de los materiales alternativos, se realizó una muestra complementaria para evaluar el comportamiento mecánico y realizar un análisis cuantitativo de la porosidad de la ITZ. Por último, se correlacionaron la resistencia a la compresión y la porosidad del ITZ para evaluar la influencia de la microestructura del ITZ en las propiedades mecánicas del LWAC. La difracción de rayos X (XRD) y la espectroscopia infrarroja por transformada de Fourier (FTIR) se utilizaron para identificar la formación de geles debido a la activación alcalina. A partir de este proyecto, se concluyó que la generación de productos de hidratación, como el silicoaluminato de calcio hidratado (C−A−S−H), causó la densificación de la ITZ. Sin embargo, la reducción de la resistencia a la compresión observada en el LWAC fabricado en este proyecto podría explicarse por las fases anhidras observadas en las imágenes de Microscopía Electrónica de Barrido por Retrodispersión (BSEM) y la menor disolución de materia prima observada en el XRD. La incorporación de EPS LWA y arcillas expandidas (EC) en un LWAC también afecta físicamente a la resistencia a la compresión al redistribuir las tensiones en la microestructura del LWAC. Esto se debe a la inclusión de materiales quebradizos y ultrablandos que difieren de la pasta de cemento. Además, la hidrofobicidad del EPS LWA provoca una falta de adherencia del material cementante a este LWA. Como resultado, la fractura por compresión del material se producirá alrededor del EPS LWA en el espacio vacío entre el material cementante y el EPS LWA. A pesar de esto, la resistencia a la compresión del LWAC obtenida en este proyecto de investigación podría ser utilizada para diseñar una estructura de concreto de acuerdo con las normas técnicas colombianas para el diseño estructural (NSR-10). Disminuyendo así las cargas muertas directamente relacionadas con su propio peso. Los resultados también indicaron que es posible sustituir hasta 70 % del OPC con materiales cementantes alternativos. Esto podría traducirse finalmente en un ahorro en el coste total de la obra y, con el uso de FA y Cal, en una reducción de las emisiones de CO2. (tomado de la fuente)
dc.format.extent90 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civil
dc.subject.ddc690 - Construcción de edificios::691 - Materiales de construcción
dc.subject.ddc720 - Arquitectura::721 - Materiales arquitectónicos y elementos estructurales
dc.titleEffect of cement and aggregate substitution in a conventional concrete with alkaline activated cement (AAC) and lightweight aggregates (LWA)
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Arquitectura - Maestría en Construcción
dc.contributor.researchgroupGrupo del Cemento y Materiales de Construcción
dc.contributor.researchgroupMateriales
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Construcción
dc.description.researchareaNew Alternative Concrete Materials
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Arquitectura
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedLaReferencia
dc.relation.referencesACI Committee 213, “Guide for Structural Lightweight-Aggregate Concrete - (ACI 213R-03),” tech. rep., 2013.
dc.relation.referencesS. Chandra and L. Berntsson, Lightweight aggregate concrete: Science, Technology, and Applications. New York: Noyes Publications and William Andrew Publishing, 2002.
dc.relation.referencesJ. R. Prestera, D. E. Dixon, and D. A. Crocker, “Standard practice for selecting proportions for structural lightweight concrete (ACI 211.2),” ACI Materials Journal, vol. 87, no. 6, pp. 638–651, 1990.
dc.relation.referencesJ. Clark, Structural lightweight aggregate concrete. Glasgow, UK: Blackie Academic and Profesional, first ed., 1993.
dc.relation.referencesA. Kili¸c, C. D. Ati¸s, E. Ya¸sar, and F. ¨ Ozcan, “High-strength lightweight concrete made with scoria aggregate containing mineral admixtures,” Cement and Concrete Research, vol. 33, no. 10, pp. 1595–1599, 2003.
dc.relation.referencesB. Arisoy and H.-C. Wu, “Material Characteristics of High performance lightweight concrete reinforced with PVA,” Construction and Building Materials, vol. 22, no. 4, pp. 635–645, 2008.
dc.relation.referencesR. V. Balendran, F. P. Zhou, A. Nadeem, and A. Y. Leung, “Influence of steel fibres on strength and ductility of normal and lightweight high strength concrete,” Building and Environment, vol. 37, no. 12, pp. 1361–1367, 2002.
dc.relation.referencesD. S. Babu, K. G. Babu, and T. Wee, “Properties of lightweight expanded polystyrene aggregate concretes containing fly ash,” Cement and Concrete Research, vol. 35, no. 6, pp. 1218–1223, 2005.
dc.relation.referencesJ. A. Rossignolo, M. V. Agnesini, and J. A. Morais, “Properties of high-performance LWAC for precast structures with Brazilian lightweight aggregates,” Cement and Concrete Composites, vol. 25, no. 1, pp. 77–82, 2003.
dc.relation.referencesR. Polat, R. Demirboˇga, M. B. Karako¸c, and I. T¨urkmen, “The influence of lightweight aggregate on the physico-mechanical properties of concrete exposed to freeze-thaw cycles,” Cold Regions Science and Technology, vol. 60, no. 1, pp. 51–56, 2010.
dc.relation.referencesP. Vargas, O. Restrepo-Baena, and J. I. Tob´on, “Microstructural analysis of interfacial transition zone (ITZ) and its impact on the compressive strength of lightweight concretes,” Construction and Building Materials, vol. 137, pp. 381–389, 2017.
dc.relation.referencesI. S. del Bosque, W. Zhu, T. Howind, A. Mat´ıas, M. S. de Rojas, and C. Medina, “Properties of interfacial transition zones (itzs) in concrete containing recycled mixed aggregate,” Cement and Concrete Composites, vol. 81, pp. 25–34, 2017.
dc.relation.referencesM. H. Zhang and V. M. Malhotra, “Characteristics of a thermally activated aluminosilicate pozzolanic material and its use in concrete,” Cement and Concrete Research, vol. 25, 12 1995.
dc.relation.referencesK. G. Babu and D. S. Babu, “Performance of fly ash concretes containing lightweight EPS aggregates,” Cement and Concrete Composites, vol. 26, no. 6, pp. 605–611, 2004.
dc.relation.referencesD. Gonz´alez Betancur, E. Andr´es, R. Garc´ıa, and H. Gil, “Characterization and Evaluation of Lightweight Fly Ash Concrete Modified with EPS,” International Journal of Civil Engineering and Technology, vol. 10, no. 8, pp. 288–304, 2019.
dc.relation.referencesY. Xu, L. Jiang, J. Xu, and Y. Li, “Mechanical properties of expanded polystyrene lightweight aggregate concrete and brick,” Construction and Building Materials, vol. 27, no. 1, pp. 32–38, 2012.
dc.relation.referencesA. Habib, U. Yildirm, and O. Eren, “Mechanical and dynamic properties of high strength concrete with well graded coarse and fine tire rubber,” Construction and Building Materials, vol. 246, p. 118502, 2020.
dc.relation.referencesE. del Rey Castillo, N. Almesfer, O. Saggi, and J. M. Ingham, “Light-weight concrete with artificial aggregate manufactured from plastic waste,” Construction and Building Materials, vol. 265, p. 120199, 2020.
dc.relation.referencesI. Almeshal, B. A. Tayeh, R. Alyousef, H. Alabduljabbar, and A. M. Mohamed, “Ecofriendly concrete containing recycled plastic as partial replacement for sand,” Journal of Materials Research and Technology, vol. 9, no. 3, pp. 4631–4643, 2020.
dc.relation.referencesF. Aslani, A. Deghani, and Z. Asif, “Development of lightweight rubberized geopolymer concrete by using polystyrene and recycled crumb-rubber aggregates,” Journal of Materials in Civil Engineering, vol. 32, no. 2, p. 04019345, 2020.
dc.relation.referencesW. Zhai, J. Ding, X. An, and Z. Wang, “An optimization model of sand and gravel mining quantity considering healthy ecosystem in yangtze river, china,” Journal of Cleaner Production, vol. 242, p. 118385, 2020.
dc.relation.referencesS. A. Miller and F. C. Moore, “Climate and health damages from global concrete production,” Nature Climate Change, vol. 10, no. 5, pp. 439–443, 2020.
dc.relation.referencesC. Shi, A. F. Jim´enez, and A. Palomo, “New cements for the 21st century: The pursuit of an alternative to Portland cement,” Cement and Concrete Research, vol. 41, no. 7, pp. 750–763, 2011.
dc.relation.referencesJ. S. Van Deventer, J. L. Provis, and P. Duxson, “Technical and commercial progress in the adoption of geopolymer cement,” Minerals Engineering, vol. 29, pp. 89–104, 2012.
dc.relation.referencesL. N. Assi, K. Carter, E. Deaver, and P. Ziehl, “Review of availability of source materials for geopolymer/sustainable concrete,” Journal of Cleaner Production, vol. 263, p. 121477, 2020.
dc.relation.referencesC. Sharma and K. Qanungo, “An overview: Recycling of expanded polystyrene foam,”AIP Conference Proceedings, vol. 2535, 05 2023.
dc.relation.referencesT. Y. Suman, P. P. Jia, W. G. Li, M. Junaid, G. Y. Xin, Y. Wang, and D. S. Pei, “Acute and chronic effects of polystyrene microplastics on brine shrimp: First evidence highlighting the molecular mechanism through transcriptome analysis,” Journal of Hazardous Materials, vol. 400, no. June, p. 123220, 2020.
dc.relation.referencesC. Xu, B. Zhang, C. Gu, C. Shen, S. Yin, M. Aamir, and F. Li, “Are we underestimating the sources of microplastic pollution in terrestrial environment?,” Journal of Hazardous Materials, vol. 400, no. February, p. 123228, 2020.
dc.relation.referencesA. Zaragoza-Benzal and D. Ferr´andez and E. Atanes-S´anchez and C. Mor´on, “New lightened plaster material with dissolved recycled expanded polystyrene and end-of-life tyres fibres for building prefabricated industry,” Case Studies in Construction Materials, vol. 18, p. e02178, 2023.
dc.relation.referencesZ. Li and X. Shi, “Graphene oxide modified, clinker-free cementitious paste with principally alkali-activated fly ash,” Fuel, vol. 269, no. February, p. 117418, 2020.
dc.relation.referencesM. Z´alesk´a, Z. Pavl´ık, D. ˇ C´ıtek, O. Jankovsk´y, and M. Pavl´ıkov´a, “Eco-friendly concrete with scrap-tyre-rubber-based aggregate Properties and thermal stability,” Construction and Building Materials, vol. 225, pp. 709–722, nov 2019.
dc.relation.referencesN. Saikia and J. D. Brito, “Use of plastic waste as aggregate in cement mortar and concrete preparation: A review,” Construction and Building Materials, vol. 34, pp. 385–401, 2012.
dc.relation.referencesR. Sharma and P. P. Bansal, “Use of different forms of waste plastic in concrete − A review,” Journal of Cleaner Production, vol. 112, pp. 473–482, 2016.
dc.relation.referencesJ. Xie, J. Wang, B. Zhang, C. Fang, and L. Li, “Physicochemical properties of alkali activated GGBS and fly ash geopolymeric recycled concrete,” Construction and Building Materials, vol. 204, pp. 384–398, 2019.
dc.relation.referencesJ. Davidovits, “False values on CO2 emission for Geopolymer Cement/Concrete published in scientific papers,” tech. rep., 2015.
dc.relation.referencesY. Guo, L. Luo, T. Liu, L. Hao, Y. Li, P. Liu, and T. Zhu, “A review of low-carbon technologies and projects for the global cement industry,” Journal of Environmental Sciences, vol. 136, pp. 682–697, 2024.
dc.relation.referencesM. G. Plaza, S. Mart´ınez, and F. Rubiera, “CO2 Capture, Use, and Storage in the Cement Industry: State of the Art and Expectations,” Energies, vol. 13, no. 21, 2020.
dc.relation.referencesJ. Davidovits, Geopolymer Chemistry and Applications. Geopolymer Institute, 2nd ed., 2008.
dc.relation.referencesJ. S. Van Deventer, J. L. Provis, P. Duxson, and D. G. Brice, “Chemical research and climate change as drivers in the commercial adoption of alkali activated materials,”Waste and Biomass Valorization, vol. 1, no. 1, pp. 145–155, 2010.
dc.relation.referencesP. Monteiro, J. Maso, and J. Ollivier, “The aggregate-mortar interface,” Cement and Concrete Research, vol. 15, pp. 953–958, nov 1985.
dc.relation.references“ASTM C33/C33M-18. Standard Specification for Concrete Aggregates,” 2018.
dc.relation.referencesD. S. Babu, K. Ganesh Babu, and W. Tiong-Huan, “Effect of polystyrene aggregate size on strength and moisture migration characteristics of lightweight concrete,” Cement and Concrete Composites, vol. 28, no. 6, pp. 520–527, 2006.
dc.relation.referencesM.-H. Zhang and O. E. Gjørv, “Microstructure of the interfacial zone between lightweight aggregate and cement paste,” Cement and Concrete Research, vol. 20, pp. 610–618, jul 1990.
dc.relation.referencesP. Vargas Samboni, “Evaluaci´on de la influencia de propiedades f´ısicas y morfol´ıgicas de agregados livianos, en la microestructura de la Zona de Transici´on Interfacial (ITZ), en concretos,” Master’s thesis, Universidad Nacional de Colombia, 2016.
dc.relation.referencesM.-H. Zhang and O. E. Gjørv, “Characteristics of Lightweight Aggregates for High-Strength Concrete,” ACI Materials Journal, vol. 88, no. 2, 1991.
dc.relation.referencesZ. Li, Advanced Concrete Technology. John Wiley & Sons, Ltd, 2011.
dc.relation.referencesV. Ferr´andiz-Mas and E. Garc´ıa-Alcocel, “Durability of expanded polystyrene mortars,”Construction and Building Materials, vol. 46, pp. 175–182, 2013.
dc.relation.referencesA. L. Brooks, H. Zhou, and D. Hanna, “Comparative study of the mechanical and thermal properties of lightweight cementitious composites,” Construction and Building Materials, vol. 159, pp. 316–328, 2018.
dc.relation.referencesA. Hanif, Z. Lu, Y. Cheng, S. Diao, and Z. Li, “Effects of Different Lightweight Functional Fillers for Use in Cementitious Composites,” International Journal of Concrete Structures and Materials, vol. 11, no. 1, pp. 99–113, 2017.
dc.relation.referencesC. Mu˜noz-Ruiperez, A. Rodr´ıguez, S. Guti´errez-Gonz´alez, and V. Calder´on, “Lightweight masonry mortars made with expanded clay and recycled aggregates,” Construction and Building Materials, vol. 118, pp. 139–145, 2016.
dc.relation.referencesO. Sengul, S. Azizi, F. Karaosmanoglu, and M. A. Tasdemir, “Effect of expanded perlite on the mechanical properties and thermal conductivity of lightweight concrete,” Energy and Buildings, vol. 43, no. 2, pp. 671–676, 2011.
dc.relation.referencesA. F. Angelin, R. C. Cecche Lintz, W. R. Os´orio, and L. A. Gachet, “Evaluation of efficiency factor of a self-compacting lightweight concrete with rubber and expanded clay contents,” Construction and Building Materials, vol. 257, p. 119573, 2020.
dc.relation.referencesM. Lanz´on, V. Cnudde, T. De Kock, and J. Dewanckele, “Microstructural examination and potential application of rendering mortars made of tire rubber and expanded polystyrene wastes,” Construction and Building Materials, vol. 94, pp. 817–825, 2015.
dc.relation.referencesJ. N. Asaad and S. Y. Tawfik, “Polymeric composites based on polystyrene and cement dust wastes,” Materials and Design, vol. 32, no. 10, pp. 5113–5119, 2011.
dc.relation.referencesS. Ak¸ca¨ozoˇglu, C. D. Ati¸s, and K. Ak¸ca¨ozoˇglu, “An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete,” Waste Management, vol. 30, no. 2, pp. 285–290, 2010.
dc.relation.referencesMehta, P. Kumar and Monteiro, Paulo J.M., Concrete: Microstructure, Properties, and Materials. New York: McGraw-Hill Education, 3rd ed., 2006.
dc.relation.referencesL. Gu and T. Ozbakkaloglu, “Use of recycled plastics in concrete: A critical review,”Waste Management, vol. 51, pp. 19–42, 2016.
dc.relation.referencesK. Miled, K. Sab, and R. Le Roy, “Particle size effect on EPS lightweight concrete compressive strength: Experimental investigation and modelling,” Mechanics of Materials, vol. 39, no. 3, pp. 222–240, 2007.
dc.relation.referencesF. Pacheco-Torgal, S. Jalali, J. A. Labrincha, and V. M. John, eds., Eco-Efficient Concrete. Woodhead Publishing, 2013.
dc.relation.referencesB. Chen and C. Fang, “Mechanical properties of EPS lightweight concrete,” in Proceedings of the Institution of Civil Engineers - Construction Materials, vol. 164, pp. 173–180, 2011.
dc.relation.referencesX. Li, T.-C. Ling, and K. Hung Mo, “Functions and impacts of plastic/rubber wastes as eco-friendly aggregate in concrete − a review,” Construction and Building Materials, vol. 240, p. 117869, 2020.
dc.relation.referencesM. Bakhshi and S. Shahbeyk, “Experimental and microstructural study of the compressive strength of concrete samples containing low volumes of expanded polystyrene beads,” Structural Concrete, vol. 20, no. 4, pp. 1379–1390, 2019.
dc.relation.referencesM. Fathi, A. Yousefipour, and E. H. Farokhy, “Mechanical and physical properties of expanded polystyrene structural concretes containing micro-silica and nano-silica,”Construction and Building Materials, vol. 136, pp. 590–597, 2017.
dc.relation.referencesM. Maaroufi, K. Abahri, C. E. Hachem, and R. Belarbi, “Characterization of EPS lightweight concrete microstructure by X-ray tomography with consideration of thermal variations,” Construction and Building Materials, vol. 178, pp. 339–348, 2018.
dc.relation.referencesD. Bouvard, J. M. Chaix, R. Dendievel, A. Fazekas, J. M. L´etang, G. Peix, and D. Quenard, “Characterization and simulation of microstructure and properties of EPS lightweight concrete,” Cement and Concrete Research, vol. 37, no. 12, pp. 1666–1673, 2007.
dc.relation.referencesC. Albano, N. Camacho, M. Hern´andez, A. Matheus, and A. Guti´errez, “Influence of content and particle size of waste pet bottles on concrete behavior at different w/c ratios,” Waste Management, vol. 29, no. 10, pp. 2707–2716, 2009.
dc.relation.referencesR. Le Roy, E. Parant, and C. Boulay, “Taking into account the inclusions’ size in lightweight concrete compressive strength prediction,” Cement and Concrete Research, vol. 35, no. 4, pp. 770–775, 2005.
dc.relation.referencesP. Vargas, N. A. Mar´ın, and J. I. Tob´on, “Performance and Microstructural Analysis of Lightweight Concrete Blended with Nanosilica under Sulfate Attack,” Advances in Civil Engineering, vol. 2018, Article ID 2715474, pp. 1–11, 2018.
dc.relation.referencesP. Zhang, K. Wang, Q. Li, J. Wang, and Y. Ling, “Fabrication and engineering properties of concretes based on geopolymers/alkali-activated binders - A review,” Journal of Cleaner Production, vol. 258, pp. 1–22, 2020.
dc.relation.referencesR. San Nicolas and J. L. Provis, “The interfacial transition zone in alkali-activated slag mortars,” Frontiers in Materials, vol. 2, no. 70, pp. 1–11, 2015.
dc.relation.referencesA. Fern´andez-Jim´enez and A. Palomo, “Characterisation of fly ashes. Potential reactivity as alkaline cements,” Fuel, vol. 82, no. 18, pp. 2259–2265, 2003.
dc.relation.referencesG. Fang and M. Zhang, “The evolution of interfacial transition zone in alkali-activated fly ash-slag concrete,” Cement and Concrete Research, vol. 129, pp. 1–21, 2020.
dc.relation.referencesW. Lee and J. van Deventer, “The interface between natural siliceous aggregates and geopolymers,” Cement and Concrete Research, vol. 34, no. 2, pp. 195–206, 2004.
dc.relation.referencesS. M.A. and O. G.J., “Slag/fly ash cements,” tech. rep., U.S. Department of Energy -Office of Scientific and Technical Information, Nov 1977.
dc.relation.referencesF. Puertas, S. Mart´ınez-Ram´ırez, S. Alonso, and T. V´azquez, “Alkali-activated fly ash/slag cements: Strength behaviour and hydration products,” Cement and Concrete Research, vol. 30, no. 10, pp. 1625–1632, 2000.
dc.relation.referencesN. Lee and H. Lee, “Reactivity and reaction products of alkali-activated, fly ash/slag paste,” Construction and Building Materials, vol. 81, pp. 303–312, 2015.
dc.relation.referencesJ. Provis and J. van Deventer, Alkali Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM. RILEM State-of-the-Art Reports, Springer Netherlands, 2013.
dc.relation.referencesI. Garc´ıa-Lodeiro, A. Fern´andez-Jim´enez, and A. Palomo, “Variation in hybrid cements over time. Alkaline activation of fly ash-portland cement blends,” Cement and Concrete Research, vol. 52, pp. 112–122, 2013.
dc.relation.referencesP. Posi, C. Teerachanwit, C. Tanutong, S. Limkamoltip, S. Lertnimoolchai, V. Sata, and P. Chindaprasirt, “Lightweight geopolymer concrete containing aggregate from recycle lightweight block,” Materials and Design, vol. 52, pp. 580–586, 2013.
dc.relation.referencesD. M. Huiskes, A. Keulen, Q. L. Yu, and H. J. Brouwers, “Design and performance evaluation of ultra-lightweight geopolymer concrete,” Materials and Design, vol. 89, pp. 516–526, 2016.
dc.relation.referencesA. Wongsa, Y. Zaetang, V. Sata, and P. Chindaprasirt, “Properties of lightweight fly ash geopolymer concrete containing bottom ash as aggregates,” Construction and Building Materials, vol. 111, pp. 637–643, 2016.
dc.relation.referencesA. A. Hoyos-Montilla, F. Puertas, and J. I. Tob´on, “Microcalorimetric study of the effect of calcium hydroxide and temperature on the alkaline activation of coal fly ash,”Journal of Thermal Analysis and Calorimetry, vol. 131, no. 3, pp. 2395–2410, 2018.
dc.relation.referencesC. Shi, P. V. Krivenko, and D. Roy, Alkali-Activated Cements and Concretes. New York: CRC Press, 2003.
dc.relation.referencesF. Pacheco-Torgal, J. Labrincha, C. Leonelli, A. Palomo, and Chindaprasirt P., Handbook of Alkali-Activated Cements, Mortars and Concretes. Woodhead Publishing, 2015.
dc.relation.referencesJ. L. P. van Deventer and J. S.J., Geopolymers: Structure, processing, propierties and industrial applications. Cambridge: Woodhead Publishing Limited, 2009.
dc.relation.referencesA. Mehta and R. Siddique, “Properties of low-calcium fly ash based geopolymer concrete incorporating OPC as partial replacement of fly ash,” Construction and Building Materials, vol. 150, pp. 792–807, 2017.
dc.relation.referencesA. A. Hoyos-Montilla, F. Puertas, and J. I. Tob´on, “Study of the reaction stages of alkali-activated cementitious materials using microcalorimetry,” Advances in Cement Research, vol. 33, no. 1, pp. 1–13, 2021.
dc.relation.referencesJ. M. Mej´ıa, E. Rodr´ıguez, R. Mej´ıa De Guti´errez, and N. Gallego, “Preparation and characterization of a hybrid alkaline binder based on a fly ash with no commercial value,” Journal of Cleaner Production, vol. 104, pp. 346–352, 2015.
dc.relation.referencesI. Garcia-Lodeiro, V. Carcelen-Taboada, A. Fern´andez-Jim´enez, and A. Palomo, “Manufacture of hybrid cements with fly ash and bottom ash from a municipal solid waste incinerator,” Construction and Building Materials, vol. 105, pp. 218–226, 2016.
dc.relation.referencesE. Acevedo-Martinez, L. Gomez-Zamorano, and J. Escalante-Garcia, “Portland cement-blast furnace slag mortars activated using waterglass: - Part 1: Effect of slag replacement and alkali concentration,” Construction and Building Materials, vol. 37, pp. 462–469, 2012.
dc.relation.referencesR. Madandoust, M. M. Ranjbar, and S. Yasin Mousavi, “An investigation on the fresh properties of self-compacted lightweight concrete containing expanded polystyrene,”Construction and Building Materials, vol. 25, no. 9, pp. 3721–3731, 2011.
dc.relation.referencesA. M. Rashad, “Lightweight expanded clay aggregate as a building material − An overview,” Construction and Building Materials, vol. 170, pp. 757–775, 2018.
dc.relation.referencesK. Scrivener, R. Snellings, and B. Lothenbach, A Practical Guide to Microstructural Analysis of Cementitious Materials. CRC Press, 2018.
dc.relation.referencesK. L. Scrivener, V. M. John, and E. M. Gartner, “Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry,” Cement and Concrete Research, vol. 114, no. December, pp. 2–26, 2018.
dc.relation.referencesP. Pavithra, M. Srinivasula Reddy, P. Dinakar, B. Hanumantha Rao, B. K. Satpathy, and A. N. Mohanty, “A mix design procedure for geopolymer concrete with fly ash,”Journal of Cleaner Production, vol. 133, pp. 117–125, 2016.
dc.relation.referencesJ. Ib´a˜nez, O. Font, N. Moreno, J. Elvira, S. Alvarez, and X. Querol, “Quantitative rietveld analysis of the crystalline and amorphous phases in coal fly ashes,” Fuel, vol. 105, pp. 314–317, 2013.
dc.relation.references[98] Y. Gao, G. De Schutter, G. Ye, H. Huang, Z. Tan, and K. Wu, “Porosity characterization of ITZ in cementitious composites: Concentric expansion and overflow criterion,”Construction and Building Materials, vol. 38, pp. 1051–1057, 2013.
dc.relation.referencesS. Diamond, “Considerations in image analysis as applied to investigations of the ITZ in concrete,” Cement and Concrete Composites, vol. 23, no. 2-3, pp. 171–178, 2001.
dc.relation.referencesY. Gao, G. De Schutter, G. Ye, Z. Tan, and K.Wu, “The ITZ microstructure, thickness and porosity in blended cementitious composite: Effects of curing age, water to binder ratio and aggregate content,” Composites Part B: Engineering, vol. 60, pp. 1–13, 2014.
dc.relation.referencesH. S. Wong, M. K. Head, and N. R. Buenfeld, “Pore segmentation of cement-based materials from backscattered electron images,” Cement and Concrete Research, vol. 36, no. 6, pp. 1083–1090, 2006.
dc.relation.referencesH. Wong and N. Buenfeld, “Patch microstructure in cement-based materials: Fact or artefact?,” Cement and Concrete Research, vol. 36, no. 5, pp. 990–997, 2006.
dc.relation.referencesS. Diamond and M. E. Leeman, “Pore size distributions in hardened cement paste by sem image analysis,” in MRS Online Proceedings Library (OPL), vol. 370, p. 217, Cambridge University Press, 1994.
dc.relation.referencesK. Komnitsas, D. Zaharaki, and V. Perdikatsis, “Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers,” Journal of Hazardous Materials, vol. 161, no. 2, pp. 760–768, 2009.
dc.relation.referencesW. A. Bautista-Ruiz, M. D´ıaz-Lagos, and S. A. Mart´ınez-Ovalle, “Caracterizaci´on de las cenizas volantes de una planta termoel´ectrica para su posible uso como aditivo en la fabricaci´on de cemento,” Revista de Investigaci´on, Desarrollo e Innovaci´on, vol. 8, pp. 135–146, dic. 2017.
dc.relation.referencesD. G´omez-Cano, J. C. Ochoa-Botero, R. B. Correa, and Y. P. Arias, “Mechanical Behavior of Recycled Mortars Manufactured from Moisture Correction Using the Halogen Light Thermogravimetric Balance as an Alternative to the Traditional ASTM C 128 Method,” International Journal of Structural and Construction Engineering, vol. 16, no. 6, pp. 164 – 168, 2022.
dc.relation.referencesA. Elsharief, M. D. Cohen, and J. Olek, “Influence of lightweight aggregate on the microstructure and durability of mortar,” Cement and Concrete Research, vol. 35, no. 7, pp. 1368–1376, 2005.
dc.relation.referencesH. F. W. Taylor, Cement Chemistry. London: Academic Press, 1990.
dc.relation.referencesA. A. Hoyos-Montilla, J. I. Tob´on, and F. Puertas, “Role of calcium hydroxide in the alkaline activation of coal fly ash,” Cement and Concrete Composites, vol. 137, p. 104925, 2023.
dc.relation.referencesI. Garc´ıa-Lodeiro, A. Palomo, A. Fern´andez-Jim´enez, and D. E. MacPhee, “Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O − CaO − Al2O3 − SiO2 − H2O,” Cement and Concrete Research, vol. 41, no. 9, pp. 923–931, 2011.
dc.relation.referencesI. Garc´ıa-Lodeiro, A. Fern´andez-Jim´enez, M. T. Blanco, and A. Palomo, “FTIR study of the sol−gel synthesis of cementitious gels: C−S−H and N−A−S−H,” Journal of Sol-Gel Science and Technology, vol. 45, no. 1, pp. 63–72, 2008.
dc.relation.referencesA. A. Hoyos-Montilla, F. Puertas, J. Molina Mosquera, and J. I. Tob´on, “Infrared spectra experimental analyses on alkali-activated fly ash-based binders,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 269, p. 120698, 2022.
dc.relation.referencesL. Gomez-Zamorano, M. Balonis, B. Erdemli, N. Neithalath, and G. Sant, “C-(N)-S-H and N-A-S-H gels: Compositions and solubility data at 25 ◦C and 50 ◦C,” Journal of the American Ceramic Society, vol. 100, no. 6, pp. 2700–2711, 2017.
dc.relation.referencesI. Garc´ıa-Lodeiro, A. Fern´andez-Jim´enez, A. Palomo, and D. E. MacPhee, “Effect of calcium additions on N-A-S-H cementitious gels,” Journal of the American Ceramic Society, vol. 93, no. 7, pp. 1934–1940, 2010.
dc.relation.referencesS. Kumar and R. Kumar, “Mechanical activation of fly ash: Effect on reaction, structure and properties of resulting geopolymer,” Ceramics International, vol. 37, pp. 533–541, 2011.
dc.relation.referencesK. Dombrowski, A. Buchwald, and M. Weil, “The influence of calcium content on the structure and thermal performance of fly ash based geopolymers,” Journal of Materials Science, vol. 42, no. 9, pp. 3033–3043, 2007.
dc.relation.referencesA. F. Angelin, F. M. Da Silva, L. A. Barbosa, R. C. Lintz, M. A. De Carvalho, and R. A. Franco, “Voids identification in rubberized mortar digital images using k-means and watershed algorithms,” Journal of Cleaner Production, vol. 164, pp. 455–464, 2017.
dc.relation.referencesT. Gupta, S. Chaudhary, and R. K. Sharma, “Mechanical and durability properties of waste rubber fiber concrete with and without silica fume,” Journal of Cleaner Production, vol. 112, pp. 702–711, 2016.
dc.relation.referencesG. Lazorenko, A. Kasprzhitskii, and E. H. Fini, “Polyethylene terephthalate (PET) waste plastic as natural aggregate replacement in geopolymer mortar production,”Journal of Cleaner Production, vol. 375, p. 134083, 2022.
dc.relation.referencesM. Sifan, B. Nagaratnam, J. Thamboo, K. Poologanathan, and M. Corradi, “Development and prospectives of lightweight high strength concrete using lightweight aggregates,” Construction and Building Materials, vol. 362, p. 129628, 2023.
dc.relation.referencesA. S. Ouda and A. M. Rashad, “An investigation on the performance of lightweight mortar-based geopolymer containing high-volume LECA aggregate against high temperatures,”Environmental Science and Pollution Research, vol. 29, no. 18, pp. 26631–26647, 2022.
dc.relation.referencesF. Ameri, P. Shoaei, S. A. Zareei, and B. Behforouz, “Geopolymers vs. alkali-activated materials (AAMs): A comparative study on durability, microstructure, and resistance to elevated temperatures of lightweight mortars,” Construction and Building Materials, vol. 222, pp. 49–63, 2019.
dc.relation.referencesZ. Hongen, J. Feng, W. Qingyuan, T. Ling, and S. Xiaoshuang, “Influence of cement on properties of Fly-Ash-Based concrete,” ACI Materials Journal, vol. 114, no. 5, pp. 745–763, 2017.
dc.relation.referencesS. A. Bernal, J. L. Provis, V. Rose, and R. M. de Gutierrez, “Evolution of binder structure in sodium silicate-activated slag-metakaolin blends,” Cement and Concrete Composites, vol. 33, no. 1, pp. 46–54, 2011.
dc.relation.referencesL. Xue, Z. Zhang, and H. Wang, “Hydration mechanisms and durability of hybrid alkaline cements (HACs): A review,” Construction and Building Materials, vol. 266, p. 121039, 2021.
dc.relation.referencesD. Gonz´alez-Betancur, A. A. Hoyos-Montilla, J. I. Tob´on, and B. Garc´ıa, “Effect of artificial lightweight aggregates on interfacial transition zone in concrete,” in Proceedings of the 75th RILEM Annual Week 2021, (Cham), pp. 489–498, Springer International Publishing, 2023.
dc.relation.referencesB. Sun, G. Ye, and G. de Schutter, “A review: Reaction mechanism and strength of slag and fly ash-based alkali-activated materials,” Construction and Building Materials, vol. 326, p. 126843, 2022.
dc.relation.referencesZ. Jiao, Y. Wang, W. Zheng, and W. Huang, “Effect of Dosage of Alkaline Activator on the Properties of Alkali-Activated Slag Pastes,” Advances in Materials Science and Engineering, vol. 2018, p. 8407380, 2018.
dc.relation.references[129] R. Snellings, A. Salze, and K. Scrivener, “Use of X-ray diffraction to quantify amorphous supplementary cementitious materials in anhydrous and hydrated blended cements,” Cement and Concrete Research, vol. 64, pp. 89–98, 2014.
dc.relation.referencesM. Echeverri-Aguirre, J. Molina, A. A. Hoyos-Montilla, H. Carvajal, and J. Rudas, “Heat flow modelling of the alkaline activation of fly ash with sodium hydroxide in the presence of portlandite,” Construction and Building Materials, vol. 357, p. 129248, 2022.
dc.relation.referencesPeter C. Hewlett, LEA’S Chemistry of cement and Concrete. Oxford: Elsevier Ltd, 4th ed., 1998.
dc.relation.referencesG. Bhagath Singh and K. V. Subramaniam, “Evaluation of sodium content and sodium hydroxide molarity on compressive strength of alkali activated low-calcium fly ash,”Cement and Concrete Composites, vol. 81, pp. 122–132, 2017.
dc.relation.references[133] H. Du, L. Yang, W. Gao, and J. Liu, “Effects of characteristics of fly ash on the properties of geopolymer,” Transactions of Tianjin University, vol. 22, no. 3, pp. 261–267, 2016.
dc.relation.referencesS. Diamond, “On the glass present in low-calcium and in high-calcium flyashes,” Cement and Concrete Research, vol. 13, no. 4, pp. 459–464, 1983.
dc.relation.referencesE. Diaz, E. Allouche, and S. Eklund, “Factors affecting the suitability of fly ash as source material for geopolymers,” Fuel, vol. 89, no. 5, pp. 992–996, 2010.
dc.relation.referencesY. P. Arias, “Incidencia de la temperatura ambiente en la formaci´on de compuestos cementantes mediante la activaci´on alcalina de cenizas de carb´on,” Master’s thesis, Universidad Nacional de Colombia, 2013.
dc.relation.referencesK. Mohan and H. Taylor, “Analytical Electron Microscopy of Cement Pastes: IV, β-Dicalcium Silicate Pastes,” Journal of the American Ceramic Society, vol. 64, no. 12, pp. 717–719, 1981.
dc.relation.referencesJ.-I. Suh, D. Jeon, S. Yoon, J. E. Oh, and H.-G. Park, “Development of strong lightweight cementitious matrix for lightweight concrete simply by increasing a water-tobinder ratio in Ca(OH)2 − Na2CO3− activated fly ash system,” Construction and Building Materials, vol. 152, pp. 444–455, 2017.
dc.relation.referencesW. S. Yum, Y. Jeong, S. Yoon, D. Jeon, Y. Jun, and J. E. Oh, “Effects of CaCl2 on hydration and properties of lime(CaO)-activated slag/fly ash binder,” Cement and Concrete Composites, vol. 84, pp. 111–123, 2017.
dc.relation.referencesY. Guo, T. Zhang, W. Tian, J. Wei, and Q. Yu, “Physically and chemically bound chlorides in hydrated cement pastes: a comparison study of the effects of silica fume and metakaolin,” Journal of Materials Science, vol. 54, no. 3, pp. 2152–2169, 2019.
dc.relation.referencesA. Novak, “Hydrogen bonding in solids correlation of spectroscopic and crystallographic data,” in Large Molecules, (Berlin, Heidelberg), pp. 177–216, Springer Berlin Heidelberg, 1974.
dc.relation.referencesS. A. Yaseen, G. A. Yiseen, and Z. Li, “Elucidation of Calcite Structure of Calcium Carbonate Formation Based on Hydrated Cement Mixed with Graphene Oxide and Reduced Graphene Oxide,” ACS Omega, vol. 4, pp. 10160–10170, jun 2019.
dc.relation.referencesP. Yu, R. J. Kirkpatrick, B. Poe, P. F. McMillan, and X. Cong, “Structure of Calcium Silicate Hydrate (C−S−H): Near−, Mid−, and Far-Infrared Spectroscopy,” Journal of the American Ceramic Society, vol. 82, no. 3, pp. 742–748, 1999.
dc.relation.referencesA. Fern´andez-Jim´enez and A. Palomo, “Mid-infrared spectroscopic studies of alkaliactivated fly ash structure,” Microporous and Mesoporous Materials, vol. 86, no. 1, pp. 207–214, 2005.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembCemento
dc.subject.lembMateriales de construcción
dc.subject.lembEstructuras de hormigón
dc.subject.lembResistencia de materiales
dc.subject.lembDiseño de estructuras
dc.subject.proposalInterfacial Transition Zone
dc.subject.proposalCompressive Strength
dc.subject.proposalLightweight Concrete
dc.subject.proposalAlkali-Activated cement
dc.subject.proposalLightweight Aggregate
dc.subject.proposalZona de Transición Interfacial
dc.subject.proposalResistencia a Compresión
dc.subject.proposalConcreto Aligerado
dc.subject.proposalCemento Activado Alcalinamente
dc.subject.proposalArido Liviano
dc.title.translatedEfecto de la Sustitución de Cemento y Agregados en un Concreto Convencional por Cemento Activado Alcalinamente (CAA) y Agregados Livianos (AL)
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_14cb
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dc.description.curricularareaÁrea Curricular de Construcción y Hábitat
dc.contributor.orcidGonzález-Betancur, Daniela [0000-0001-9595-2394]
dc.contributor.cvlacGonzález, Daniela [https://scienti.minciencias.gov.co/cvlac/EnRecursoHumano/inicio.do]
dc.contributor.researchgateGonzález Betancur, Daniela [https://www.researchgate.net/profile/Daniela-Betancur]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito