Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorMaldona Villamil, Mauricio
dc.contributor.advisorRivera Monroy, Zuly Jenny
dc.contributor.authorPineda Castañeda, Héctor Manuel
dc.date.accessioned2024-02-07T13:53:46Z
dc.date.available2024-02-07T13:53:46Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85642
dc.description.abstractLa resistencia a los antimicrobianos (RAM) es una de las diez principales amenazas para la salud pública reportadas por la Organización Mundial de la Salud (OMS). Una de las causas del creciente problema de la RAM es la falta de nuevas terapias y/o agentes de tratamiento; en consecuencia, muchas enfermedades infecciosas podrían volverse incontrolables. La necesidad de descubrir nuevos agentes antimicrobianos, que sean alternativos a los existentes, y que permitan mitigar este problema, se ha incrementado debido a la rápida y global expansión de la RAM. En este contexto, se han propuesto como alternativas para combatir la RAM tanto los péptidos antimicrobianos (PAMs) como los dendrímeros que presentan múltiples copias de compuestos antibacterianos en su estructura. Los dendrímeros han exhibido propiedades antifúngicas y antibacterianas y también se han utilizado en terapias antiinflamatorias, antineoplásicas y cardiovasculares y son útiles en sistemas de administración de fármacos y genes. En este trabajo se propuso obtener dendrímeros que presenten cuatro copias de secuencias de PAMs. Específicamente, (i) se exploró la síntesis, purificación y caracterización de dendrímeros de péptido-resorcinareno derivados de las secuencias LfcinB (20-25): RRWQWR y BF (32-35): RLLR, y (ii) la actividad antimicrobiana y citotóxica de estos dendrímeros. Se establecieron las rutas de síntesis que permitieron obtener: a) alquino-resorcinarenos y b) péptidos funcionalizados con el grupo azida; los cuales se usaron para generar c) dendrímeros de péptido-resorcinareno mediante química click de cicloadición de azida-alquino CuAAC. Finalmente, se evaluó la actividad antimicrobiana y citotóxica de los dendrímeros obtenidos frente a cepas de referencia y aislados clínicos. Estos resultados permitieron la identificación de moléculas antimicrobianas prometedoras que pueden conducir a avances en el desarrollo de nuevos agentes terapéuticos. (Texto tomado de la fuente)
dc.description.abstractAntimicrobial resistance (AMR) is one of the top ten threats to public health reported by the World Health Organization (WHO). One of the causes of the growing AMR problem is the lack of new therapies and/or treatment agents; consequently, many infectious diseases could become uncontrollable. The need to discover new antimicrobial agents, which are alternatives to the existing ones, and which allow mitigating this problem, has increased due to the rapid and global expansion of AMR. In this context, both antimicrobial peptides (AMPs) and dendrimers that present multiple copies of antibacterial compounds in their structure have been proposed as alternatives to combat AMR. Dendrimers have exhibited antifungal and antibacterial properties and have also been used in anti-inflammatory, antineoplastic and cardiovascular therapies and are useful in drug and gene delivery systems. In this work, it was proposed to obtain dendrimers that present four copies of AMPs sequences. Specifically, (i) the synthesis, purification, and characterization of peptide-resorcinarene dendrimers derived from the sequences LfcinB (20-25): RRWQWR and BF (32-35): RLLR, and (ii) the antimicrobial and cytotoxic activity were explored. of these dendrimers. The synthesis routes that allowed obtaining: a) alkyne-resorcinarenes and b) peptides functionalized with the azide group were established, which were used to generate c) peptide-resorcinarene dendrimers by azide-alkyne cycloaddition (CuAAC) click chemistry. Finally, the antimicrobial and cytotoxic activity of the dendrimers obtained was evaluated against reference strains and clinical isolates. These results allowed the identification of promising antimicrobial molecules that may lead to breakthroughs in the development of new therapeutic agents.
dc.format.extent269 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc540 - Química y ciencias afines
dc.titleDendrímeros péptido-resorcinareno: (i) obtención mediante reacción de cicloadición azida/alquino y (ii) evaluación de su potencial antibacteriano
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Química
dc.contributor.researchgroupSíntesis y Aplicación de Moléculas Peptídicas
dc.contributor.researchgroupAplicaciones Analíticas de Compuestos Orgánicos (Aaco)
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias - Química
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesJ. M. Sierra, E. Fusté, F. Rabanal, T. Vinuesa, and M. Viñas, “An overview of antimicrobial peptides and the latest advances in their development,” Expert Opin Biol Ther, vol. 17, no. 6, pp. 663–676, 2017, doi: 10.1080/14712598.2017.1315402.
dc.relation.references“WHO | Antibiotic resistance,” WHO, 2017. http://www.who.int/mediacentre/factsheets/antibiotic-resistance/en/ (accessed Dec. 24, 2017).
dc.relation.referencesWHO, “Prevention & AMP,” 2016. http://www.who.int/antimicrobial-resistance/amr-aidememoire-may2016.pdf (accessed Dec. 24, 2017).
dc.relation.references“WHO | WHO publishes list of bacteria for which new antibiotics are urgently needed,” WHO, 2017. http://www.who.int/mediacentre/news/releases/2017/bacteria-antibiotics-needed/en/ (accessed Dec. 24, 2017).
dc.relation.references“WHO | World Health Organization,” WHO, 2016. http://www.who.int/antimicrobial-resistance/Microbes_and_Antimicrobials/en/ (accessed Dec. 24, 2017).
dc.relation.referencesM. A. León-Calvijo, A. L. Leal-Castro, G. A. Almanzar-Reina, J. E. Rosas-Pérez, J. E. García-Castañeda, and Z. J. Rivera-Monroy, “Antibacterial Activity of Synthetic Peptides Derived from Lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212,” Biomed Res Int, vol. 2015, pp. 1–8, 2015, doi: 10.1155/2015/453826.
dc.relation.referencesM. Dathe, H. Nikolenko, J. Klose, and M. Bienert, “Cyclization increases the antimicrobial activity and selectivity of arginine- and tryptophan-containing hexapeptides,” Biochemistry, vol. 43, no. 28, pp. 9140–9150, 2004, doi: 10.1021/bi035948v.
dc.relation.referencesS. C. Vega, D. A. Martínez, M. del S. Chalá, H. A. Vargas, and J. E. Rosas, “Design, Synthesis and Evaluation of Branched RRWQWR-Based Peptides as Antibacterial Agents Against Clinically Relevant Gram-Positive and Gram-Negative Pathogens,” Front Microbiol, vol. 9, p. 329, Mar. 2018, doi: 10.3389/fmicb.2018.00329.
dc.relation.referencesN. Dong et al., “Short symmetric-end antimicrobial peptides centered on β-turn amino acids unit improve selectivity and stability,” Front Microbiol, vol. 9, no. NOV, 2018, doi: 10.3389/fmicb.2018.02832.
dc.relation.referencesB. Y. Jia et al., “High cell selectivity and bactericidal mechanism of symmetric peptides centered on d-pro–gly pairs,” Int J Mol Sci, vol. 21, no. 3, 2020, doi: 10.3390/ijms21031140.
dc.relation.referencesH. M. Pineda-Castañeda, L. D. Bonilla-Velásquez, A. L. Leal-Castro, R. Fierro-Medina, J. E. García-Castañeda, and Z. J. Rivera-Monroy, “Use of Click Chemistry for Obtaining an Antimicrobial Chimeric Peptide Containing the LfcinB and Buforin II Minimal Antimicrobial Motifs,” ChemistrySelect, vol. 5, no. 5, 2020, doi: 10.1002/slct.201903834.
dc.relation.referencesY.K. Agrawal and R.N. Patadia, “Studies on Resorcinarenes and their Analytical Applications,” Rev Anal Chem, vol. 25, no. 3, pp. 155–239, 2006, doi: https://doi.org/10.1515/REVAC.2006.25.3.155.
dc.relation.referencesM. D. Shah and Y. Agrawal, “Calixarene: A new architecture in the analytical and pharmaceutical technology,” J Sci Ind Res (India), vol. 71, pp. 21–26, Jan. 2012.
dc.relation.referencesV. K. Jain and P. H. Kanaiya, “Chemistry of calix[4]resorcinarenes,” Russian Chemical Reviews, vol. 80, no. 1, pp. 75–102, 2011, doi: 10.1070/rc2011v080n01abeh004127.
dc.relation.referencesL. M. Tunstad et al., “Host-Guest Complexation. 48. Octol Building Blocks for Cavitands and Carcerands,” Journal of Organic Chemistry, vol. 54, no. 6, pp. 1305–1312, 1989, doi: 10.1021/jo00267a015.
dc.relation.referencesH. Konishi, K. Ohata, O. Morikawa, and K. Kobayashi, “Calix[6]resorcinarenes: The first examples of [16] metacyclophanes derived from resorcinols,” J Chem Soc Chem Commun, no. 3, pp. 309–310, 1995, doi: 10.1039/C39950000309.
dc.relation.referencesK. Deleersnyder, H. Mehdi, I. T. Horváth, K. Binnemans, and T. N. Parac-Vogt, “Lanthanide(III) nitrobenzenesulfonates and p-toluenesulfonate complexes of lanthanide(III), iron(III), and copper(II) as novel catalysts for the formation of calix[4]resorcinarene,” Tetrahedron, vol. 63, no. 37, pp. 9063–9070, 2007, doi: 10.1016/j.tet.2007.06.090.
dc.relation.referencesM. Hedidi et al., “Microwave-assisted synthesis of calix[4]resorcinarenes,” Tetrahedron, vol. 62, no. 24, pp. 5652–5655, 2006, doi: 10.1016/j.tet.2006.03.095.
dc.relation.referencesD. Moore, G. W. Watson, T. Gunnlaugsson, and S. E. Matthews, “Selective formation of the rctt chair stereoisomers of octa-O-alkyl resorcin[4]arenes using Brønsted acid catalysis,” New Journal of Chemistry, vol. 32, no. 6, pp. 994–1002, 2008, doi: 10.1039/b714735j.
dc.relation.referencesP. Ziaja, A. Krogul, P. TS, and G. Litwinienko, “Structure and stoichiometry of resorcinarene solvates as host-guest complexes - NMR, X-ray and thermoanalytical studies,” Thermochim Acta, vol. 623, pp. 112–119, 2016, doi: 10.1016/j.tca.2015.10.018.
dc.relation.referencesA. Velásquez-Silva, B. Cortés, Z. J. Rivera-Monroy, A. Pérez-Redondo, and M. Maldonado, “Crystal structure and dynamic NMR studies of octaacetyl-tetra(propyl)calix[4]resorcinarene,” J Mol Struct, vol. 1137, pp. 380–386, Jun. 2017, doi: 10.1016/j.molstruc.2017.02.059.
dc.relation.referencesA. A. Castillo-Aguirre, A. Pérez-Redondo, and M. Maldonado, “Influence of the hydrogen bond on the iteroselective O-alkylation of calix[4]resorcinarenes,” J Mol Struct, vol. 1202, p. 127402, 2020, doi: 10.1016/j.molstruc.2019.127402.
dc.relation.referencesE. S. Español and M. M. Villamil, “Calixarenes: Generalities and their role in improving the solubility, biocompatibility, stability, bioavailability, detection, and transport of biomolecules,” Biomolecules, vol. 9, no. 3, 2019, doi: 10.3390/biom9030090.
dc.relation.referencesR. A. Sarmiento Forero, “Reacción de sulfometilación de resorcinarenos alquilados en el borde inferior y estudio del efecto de estos sustituyentes en el proceso de reconocimiento molecular de Colina,” Universidad Nacional de Colombia - Sede Bogotá, Jul. 2018.
dc.relation.referencesA. Castillo-Aguirre, Z. Rivera-Monroy, and M. Maldonado, “Selective o-alkylation of the crown conformer of tetra(4-hydroxyphenyl)calix[4]resorcinarene to the corresponding tetraalkyl ether,” Molecules, vol. 22, no. 10, Oct. 2017, doi: 10.3390/molecules22101660.
dc.relation.referencesI. Victorovna-Lijanova, M. I. Reyes-Valderrama, J. L. Maldonado, G. Ramos-Ortiz, K. Tatiana, and M. Martínez-García, “Synthesis and cubic nonlinear optical behavior of phenyl and ferrocenyl-ended resorcinarene-based dendrimers,” Tetrahedron, vol. 64, no. 19, pp. 4460–4467, 2008, doi: 10.1016/j.tet.2008.02.050.
dc.relation.referencesD. Eisler, W. Hong, M. C. Jennings, and R. J. Puddephatt, “An organometallic octopus complex: Structure and properties of a resorcinarene with 16 cobalt centers,” Organometallics, vol. 21, no. 19, pp. 3955–3960, 2002, doi: 10.1021/om020394y.
dc.relation.referencesB. A. Velásquez-Silva, A. Castillo-Aguirre, Z. J. Rivera-Monroy, and M. Maldonado, “Aminomethylated calix[4]resorcinarenes as modifying agents for glycidyl methacrylate (GMA) rigid copolymers surface,” Polymers (Basel), vol. 11, no. 7, 2019, doi: 10.3390/polym11071147.
dc.relation.referencesA. Shivanyuk, C. Schmidt, V. Böhmer, E. F. Paulus, O. Lukin, and W. Vogt, “Selective derivatization of resorcarenes. 3. C2-symmetrical and transcavity bridged bis-benzoxazines derived from C(2v)-symmetrical tetratosylates,” J Am Chem Soc, vol. 120, no. 18, pp. 4319–4326, 1998, doi: 10.1021/ja9729286.
dc.relation.referencesB. Kuberski, M. Pecul, and A. Szumna, “A chiral ‘frozen’ hydrogen bonding in C4-symmetric inherently chiral resorcin[4]arenes: NMR, X-ray, circular dichroism, and theoretical study,” European J Org Chem, no. 18, pp. 3069–3078, 2008, doi: 10.1002/ejoc.200800247
dc.relation.referencesE. Sanabria, M. A. Esteso, A. Pérez-Redondo, E. Vargas, and M. Maldonado, “Synthesis and characterization of two sulfonated resorcinarenes: A new example of a linear array of sodium centers and macrocycles,” Molecules, vol. 20, no. 6, pp. 9915–9928, 2015, doi: 10.3390/molecules20069915.
dc.relation.referencesH. Konishi, H. Yamaguchi, M. Miyashiro, K. Kobayashi, and O. Morikawa, “Functionalization at the extraannular positions of calix[4]resorcinarene using a Mannich-type thiomethylation,” Tetrahedron Lett, vol. 37, no. 47, pp. 8547–8548, 1996, doi: 10.1016/0040-4039(96)01988-0.
dc.relation.referencesM. P. Scott and M. S. Sherburn, Resorcinarenes and Pyrogallolarenes, Second Edi., vol. 1. Elsevier, 2017. doi: 10.1016/b978-0-12-409547-2.12475-8.
dc.relation.referencesB. Astrid and V. Silva, “Funcionalización de materiales monolíticos con derivados de calix[4]resorcinareno y evaluación de su aplicación en el desarrollo de columnas para el análisis de péptidos por HPLC,” 2018.
dc.relation.referencesM. Urbaniak, J. Mattay, and W. Iwanek, “Synthesis of resorcinarene derivatives by the catalyzed mannich reaction, Part 2: Resorcinarene derivatives with unsaturated bonds,” Synth Commun, vol. 38, no. 24, pp. 4345–4351, 2008, doi: 10.1080/00397910802326588.
dc.relation.referencesS. Das and M. K. Das, Surface Modification of Nanoparticles for Targeted Drug Delivery. Cham: Springer International Publishing, 2019. doi: 10.1007/978-3-030-06115-9.
dc.relation.referencesK. J. Palmer, R. Y. Wong, L. Jurd, and K. Stevens, “The Structures of the Oetaaeetate Esters of Two Condensation Tetramers of Resoreinol with,” Acta Crystallographica B, vol. B32, pp. 847–852, 1976.
dc.relation.referencesW. Iwanek, “The synthesis of octamethoxyresorc[4]arenes catalysed by Lewis acids,” Tetrahedron, vol. 54, no. 46, pp. 14089–14094, 1998, doi: 10.1016/S0040-4020(98)00859-X.
dc.relation.referencesJ. Han and C. G. Yan, “Synthesis, crystal structure and configuration of resorcinarene amides,” J Incl Phenom Macrocycl Chem, vol. 61, no. 1–2, pp. 119–126, 2008, doi: 10.1007/s10847-007-9403-3.
dc.relation.referencesC. M. O’Farrell, J. M. Chudomel, J. M. Collins, C. F. Dignam, and T. J. Wenzel, “Water-soluble calix[4]resorcinarenes with hydroxyproline groups as chiral NMR solvating agents,” Journal of Organic Chemistry, vol. 73, no. 7, pp. 2843–2851, Apr. 2008, doi: 10.1021/jo702751z.
dc.relation.referencesB. Botta, M. Pierini, G. D. Monache, D. Subissati, F. Subrizi, and G. Zappia, “Synthesis of amino and ammonium resorcin[4]arenes as potential receptors,” Synthesis (Stuttg), no. 13, pp. 2110–2116, 2008, doi: 10.1055/s-2008-1067111.
dc.relation.referencesW. Xu, J. P. Rourke, J. J. Vittal, and R. J. Puddephatt, “Transition Metal Rimmed-Calixresorcinarene Complexes,” Inorg Chem, vol. 34, no. 1, pp. 323–329, Jan. 1995, doi: 10.1021/ic00105a050.
dc.relation.referencesZ. H. Soomro et al., “CuAAC synthesis of resorcin[4]arene-based glycoclusters as multivalent ligands of lectins,” Org Biomol Chem, vol. 9, no. 19, pp. 6587–6597, 2011, doi: 10.1039/c1ob05676j.
dc.relation.referencesR. E. Sardjono, A. Kadarohman, and A. Mardhiyah, “Green Synthesis of Some Calix[4]Resorcinarene Under Microwave Irradiation,” Procedia Chem, vol. 4, pp. 224–231, 2012, doi: 10.1016/j.proche.2012.06.031.
dc.relation.referencesX. Han et al., “A resorcinarene for inhibition of Aβ fibrillation,” Chem Sci, vol. 8, no. 3, pp. 2003–2009, 2017, doi: 10.1039/c6sc04854d.
dc.relation.referencesJ. Han, Y. H. Cai, L. Liu, C. G. Yan, and Q. Li, “Syntheses, crystal structures, and electrochemical properties of multi-ferrocenyl resorcinarenes,” Tetrahedron, vol. 63, no. 10, pp. 2275–2282, 2007, doi: 10.1016/j.tet.2006.12.073.
dc.relation.referencesH. C. Kolb and K. B. Sharpless, “The growing impact of click chemistry on drug discovery.,” Drug Discov Today, vol. 8, no. 24, pp. 1128–37, Dec. 2003.
dc.relation.referencesJ. Thundimadathil, “ChemInform Abstract: Click Chemistry in Peptide Science: A Mini-Review: Synthesis of Clickable Peptides and Applications,” ChemInform, vol. 44, no. 45, pp. 34–37, 2013, doi: 10.1002/chin.201345215.
dc.relation.referencesH. M. Pineda-Castañeda, Z. J. Rivera-Monroy, and M. Maldonado, “Copper(I)-Catalyzed Alkyne–Azide Cycloaddition (CuAAC) ‘Click’ Reaction: A Powerful Tool for Functionalizing Polyhydroxylated Platforms,” ACS Omega, Jan. 2023, doi: 10.1021/ACSOMEGA.2C06269.
dc.relation.referencesC. J. H. D. Díaz Díaz, M.G. Finn, K.B. Sharpless, V.V. Fokin, “Cicloadición 1,3-dipolar de azidas y alquinos. I: pricipales aspectos sintéticos,” Anales de Química, vol. 104, no. 3, pp. 173–180, Jul. 2008.
dc.relation.referencesV. V. Rostovtsev, L. G. Green, V. V. Fokin, and K. B. Sharpless, “A stepwise huisgen cycloaddition process: Copper(I)-catalyzed regioselective ‘ligation’ of azides and terminal alkynes,” Angewandte Chemie - International Edition, vol. 41, no. 14, pp. 2596–2599, Jul. 2002, doi: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4.
dc.relation.referencesH. M. Pineda Castañeda, “Péptidos quiméricos derivados de la lactoferricina bovina y la buforina: síntesis, caracterización y evaluación de su actividad antibacteriana,” Universidad Nacional de Colombia - Sede Bogotá, 2019. [Online]. Available: http://bdigital.unal.edu.co/73364/
dc.relation.referencesT. Qadri, I. Ali, M. Hussain, F. Ahmed, M. R. Shah, and Z. Hussain, “Synthesis of New Tetra Triazole Functionalized Calix[4]resorcinarene and Chemosensing of Copper Ions in Aqueous Medium,” Curr Org Chem, vol. 24, no. 3, pp. 332–337, May 2020, doi: 10.2174/1385272824666200211114211.
dc.relation.referencesE. Galante et al., “Glycoclusters presenting lactose on calix[4]arene cores display trypanocidal activity,” Tetrahedron, vol. 67, no. 33, pp. 5902–5912, 2011, doi: 10.1016/j.tet.2011.06.065.
dc.relation.referencesA. Dondoni and A. Marra, “C-glycoside clustering on calix[4]arene, adamantane, and benzene scaffolds through 1,2,3-triazole linkers,” Journal of Organic Chemistry, vol. 71, no. 20, pp. 7546–7557, 2006, doi: 10.1021/jo0607156.
dc.relation.referencesA. A. Husain and K. S. Bisht, “Synthesis of a novel resorcin[4]arene-glucose conjugate and its catalysis of the CuAAC reaction for the synthesis of 1,4-disubstituted 1,2,3-triazoles in water,” RSC Adv, vol. 9, no. 18, pp. 10109–10116, 2019, doi: 10.1039/c9ra00972h.
dc.relation.referencesC. Gao et al., “Synthesis and characterization of resorcinarene-centered amphiphilic A 8B4 miktoarm star copolymers based on poly(ε- caprolactone) and poly(ethylene glycol) by combination of CROP and ‘click’ chemistry,” J Polym Sci A Polym Chem, vol. 51, no. 13, pp. 2824–2833, 2013, doi: 10.1002/pola.26670.
dc.relation.referencesW. Liu, M. A. Minier, A. H. Franz, M. Curtis, and L. Xue, “Synthesis of nucleobase-calix[4]arenes via click chemistry and evaluation of their complexation with alkali metal ions and molecular assembly,” Supramol Chem, vol. 23, no. 12, pp. 806–818, 2011, doi: 10.1080/10610278.2011.632824.
dc.relation.referencesT. Läppchen et al., “Novel analogs of antitumor agent calixarene 0118: Synthesis, cytotoxicity, click labeling with 2-[18F]fluoroethylazide, and in vivo evaluation,” Eur J Med Chem, vol. 89, pp. 279–295, 2015, doi: 10.1016/j.ejmech.2014.10.048.
dc.relation.referencesR. Hosseinzadeh, E. Domehri, M. Tajbakhsh, and A. Bekhradnia, “New fluorescent sensor based on a calix[4]arene bearing two triazole–coumarin units for copper ions: application for Cu 2+ detection in human blood serum,” J Incl Phenom Macrocycl Chem, vol. 93, no. 3–4, pp. 245–252, 2019, doi: 10.1007/s10847-018-0872-3.
dc.relation.referencesJ. Mo, P. K. Eggers, Z. X. Yuan, C. L. Raston, and L. Y. Lim, “Paclitaxel-loaded phosphonated calixarene nanovesicles as a modular drug delivery platform,” Sci Rep, vol. 6, no. March, pp. 1–12, 2016, doi: 10.1038/srep23489.
dc.relation.referencesB. Garska, M. Tabatabai, and H. Ritter, “Calix[4]arene-click-cyclodextrin and supramolecular structures with watersoluble NIPAAM-copolymers bearing adamantyl units: ‘Rings on ring on chain,’” Beilstein Journal of Organic Chemistry, vol. 6, pp. 784–788, 2010, doi: 10.3762/bjoc.6.83.
dc.relation.referencesR. Nag, S. Polepalli, M. Althaf Hussain, and C. P. Rao, “Ratiometric Cu2+ Binding, Cell Imaging, Mitochondrial Targeting, and Anticancer Activity with Nanomolar IC50 by Spiro-Indoline-Conjugated Calix[4]arene,” ACS Omega, vol. 4, no. 8, pp. 13231–13240, 2019, doi: 10.1021/acsomega.9b01402.
dc.relation.referencesM. Charnley et al., “Generation of bioactive materials with rapid self-assembling resorcinarene-peptides,” Advanced Materials, vol. 21, no. 28, pp. 2909–2915, Jul. 2009, doi: 10.1002/adma.200802731.
dc.relation.referencesD. Astruc, E. Boisselier, and C. Ornelas, “Dendrimers designed for functions: From physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine,” Chem Rev, vol. 110, no. 4, pp. 1857–1959, 2010, doi: 10.1021/cr900327d.
dc.relation.referencesS. Kajouj et al., “ Synthesis and photophysical studies of a multivalent photoreactive Ru II -calix[4]arene complex bearing RGD-containing cyclopentapeptides ,” Beilstein Journal of Organic Chemistry, vol. 14, no. Ii, pp. 1758–1768, 2018, doi: 10.3762/bjoc.14.150.
dc.relation.referencesM. Li et al., “Metal ion-responsive nanocarrier derived from phosphonated calix[4]arenes for delivering dauricine specifically to sites of brain injury in a mouse model of intracerebral hemorrhage,” J Nanobiotechnology, vol. 18, no. 1, pp. 1–19, 2020, doi: 10.1186/s12951-020-00616-3.
dc.relation.referencesB. A. Makwana, K. Bhatt, D. Vyas, H. S. Gupte, and V. K. Jain, “Synthesis , Characterisation , Binding Behaviour and Antimicrobial Activity of Azocalix [ 4 ] Resorcine dye derived from 8-aminoquinoline,” vol. 3, no. 6, pp. 463–470, 2014.
dc.relation.referencesR. R. Kashapov et al., “N-Methyl-d-glucamine–Calix[4]resorcinarene Conjugates: Self-assembly and biological properties,” Molecules, vol. 24, no. 10, pp. 1–15, 2019, doi: 10.3390/molecules24101939.
dc.relation.referencesRoxane. Salvatierra-González, Yehuda. Benguigui, Pan American Health Organization., Pan American Sanitary Bureau., and World Health Organization., Resistencia antimicrobiana en las Américas magnitud del problema y su contención. Organización Panamericana de la Salud, Oficina Sanitaria Panamericana, Oficina Regional de la Organización Mundial de la Salud, 2000.
dc.relation.referencesJ. Castañeda-casimiro et al., “Péptidos antimicrobianos: péptidos con múltiples funciones,” Alergia, asma e inmunología, vol. 18, no. 1, pp. 16–29, 2009, [Online]. Available: http://www.medigraphic.com/pdfs/alergia/al-2009/al091d.pdf
dc.relation.referencesN. Bruni et al., “Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine,” Molecules, vol. 21, no. 6, 2016, doi: 10.3390/molecules21060752.
dc.relation.referencesJ. L. Gifford, H. N. Hunter, and H. J. Vogel, “Lactoferricin: A lactoferrin-derived peptide with antimicrobial, antiviral, antitumor and immunological properties,” Cellular and Molecular Life Sciences, vol. 62, no. 22, pp. 2588–2598, 2005, doi: 10.1007/s00018-005-5373-z.
dc.relation.referencesS. Farnaud and R. W. Evans, “Lactoferrin - A multifunctional protein with antimicrobial properties,” Mol Immunol, vol. 40, no. 7, pp. 395–405, 2003, doi: 10.1016/S0161-5890(03)00152-4.
dc.relation.referencesD. J. Schibli, P. M. Hwang, and H. J. Vogel, “The structure of the antimicrobial active center of lactoferricin B bound to sodium dodecyl sulfate micelles,” FEBS Lett, vol. 446, no. 2–3, pp. 213–217, 1999, doi: 10.1016/S0014-5793(99)00214-8.
dc.relation.referencesL. H. Vorland, H. Ulvatne, J. Andersen, H. Haukland, Ø. Rekdal, and J. S. Svendsen, “Lactoferricin of Bovine Origin is More Active than Lactoferricins of Human , Murine and Caprine Origin,” pp. 513–517, 1998.
dc.relation.referencesN. D. J. Huertas Méndez et al., “Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Antimicrobial Activity against E. coli ATCC 11775, S. maltophilia ATCC 13636 and S. enteritidis ATCC 13076,” Molecules, vol. 22, no. 3, pp. 1–10, 2017, doi: 10.3390/molecules22030452
dc.relation.referencesY. Vargas-Casanova et al., “Synergistic bactericide and antibiotic effects of dimeric, tetrameric, or palindromic peptides containing the RWQWR motif against Gram-positive and Gram-negative strains,” RSC Adv, vol. 9, no. 13, pp. 7239–7245, 2019, doi: 10.1039/c9ra00708c.
dc.relation.referencesN. De Jesús Huertas, Z. J. R. Monroy, R. F. Medina, and J. E. G. Casta, “Antimicrobial activity of truncated and polyvalent peptides derived from the FKCRRWQWRMKKGLA sequence against Escherichia coli ATCC 25922 and staphylococcus aureus ATCC 25923,” Molecules, vol. 22, no. 6, 2017, doi: 10.3390/molecules22060987.
dc.relation.referencesY. Vargas Casanova et al., “Antibacterial Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Cytotoxic Effect against MDA-MB-468 and MDA-MB-231 Breast Cancer Cell Lines,” Molecules, vol. 22, no. 10, p. 1641, Sep. 2017, doi: 10.3390/molecules22101641.
dc.relation.referencesJ. H. Cho, B. H. Sung, and S. C. Kim, “Buforins: Histone H2A-derived antimicrobial peptides from toad stomach,” Biochim Biophys Acta Biomembr, vol. 1788, no. 8, pp. 1564–1569, 2009, doi: 10.1016/j.bbamem.2008.10.025.
dc.relation.referencesG. Tonarelli and A. Simonetta, “Péptidos antimicrobianos de organismos procariotas y eucariotas como agentes terapéuticos y conservantes de alimentos,” Fabicib, vol. 17, pp. 137–177, 2014, doi: 10.14409/fabicib.v17i0.4316.
dc.relation.referencesE. Fleming, N. P. Maharaj, J. L. Chen, R. B. Nelson, and D. E. Elmore, “Effect of lipid composition on buforin II structure and membrane entry,” Proteins: Structure, Function, and Bioinformatics, vol. 73, no. 2, pp. 480–491, 2008, doi: 10.1002/prot.22074.
dc.relation.referencesH. S. Lee et al., “Mechanism of anticancer activity of buforin IIb, a histone H2A-derived peptide,” Cancer Lett, vol. 271, no. 1, pp. 47–55, 2008, doi: 10.1016/j.canlet.2008.05.041.
dc.relation.referencesC. B. Park, K.-S. Yi, K. Matsuzaki, M. S. Kim, and S. C. Kim, “Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: The proline hinge is responsible for the cell-penetrating ability of buforin II,” Proceedings of the National Academy of Sciences, vol. 97, no. 15, pp. 8245–8250, 2000, doi: 10.1073/pnas.150518097.
dc.relation.referencesH. S. Lee et al., “Mechanism of anticancer activity of buforin IIb, a histone H2A-derived peptide,” Cancer Lett, vol. 271, no. 1, pp. 47–55, 2008, doi: 10.1016/j.canlet.2008.05.041.
dc.relation.referencesS. A. Jang et al., “Mechanism of action and specificity of antimicrobial peptides designed based on buforin IIb,” Peptides (N.Y.), vol. 34, no. 2, pp. 283–289, 2012, doi: 10.1016/j.peptides.2012.01.015.
dc.relation.referencesH. M. Pineda-Castañeda, L. D. Bonilla-Velásquez, A. L. Leal-Castro, R. Fierro-Medina, J. E. García-Castañeda, and Z. J. Rivera-Monroy, “Use of Click Chemistry for Obtaining an Antimicrobial Chimeric Peptide Containing the LfcinB and Buforin II Minimal Antimicrobial Motifs,” ChemistrySelect, vol. 5, no. 5, pp. 1655–1657, 2020, doi: 10.1002/slct.201903834.
dc.relation.referencesK. Fosgerau and T. Hoffmann, “Peptide therapeutics: Current status and future directions,” Drug Discov Today, vol. 20, no. 1, pp. 2–8, 2015, doi: 10.1016/j.drudis.2014.10.003.
dc.relation.referencesMinisterio de salud, “Proceso De Investigación, Desarrollo Y Aprobación De Un Fármaco,” MSDsalud, pp. 1–9, 2016.
dc.relation.referencesS. B. Levy and M. Bonnie, “Antibacterial resistance worldwide: Causes, challenges and responses,” Nature Medicine, vol. 10, no. 12S. Nat Med, pp. S122–S129, 2004. doi: 10.1038/nm1145.
dc.relation.referencesM. C. Maranan, B. Moreira, S. Boyle-Vavra, and R. S. Daum, “Antimicrobial resistance in staphylococci. Epidemiology, molecular mechanisms, and clinical relevance,” Infect Dis Clin North Am, vol. 11, no. 4, pp. 813–849, 1997, doi: 10.1016/S0891-5520(05)70392-5.
dc.relation.referencesC. L. Ventola, “The Antibiotic Resistance Crisis,” Pharmacy and Therapeutics, vol. 40, no. 4, pp. 1–7, 2015, doi: 10.5796/electrochemistry.82.749.
dc.relation.referencesF. Pasteran, A. Corso, M. Monsalvo, J. Frenkel, and J. Lazovski, “Resistencia a los antimicrobianos : causas , consecuencias y perspectivas en Argentina,” Whonet-Argentina, vol. 4, pp. 1–4, 2013.
dc.relation.referencesL. Morrison and T. R. Zembower, “Antimicrobial Resistance,” Gastrointestinal Endoscopy Clinics of North America, vol. 30, no. 4. W.B. Saunders, pp. 619–635, Oct. 01, 2020. doi: 10.1016/j.giec.2020.06.004.
dc.relation.references“OMS | Prevención y control de los brotes de cólera: política y recomendaciones de la OMS.” https://www.who.int/topics/cholera/control/es/ (accessed Nov. 06, 2020).
dc.relation.referencesM. Ali, A. R. Nelson, A. L. Lopez, and D. A. Sack, “Updated global burden of cholera in endemic countries,” PLoS Negl Trop Dis, vol. 9, no. 6, Jun. 2015, doi: 10.1371/journal.pntd.0003832.
dc.relation.referencesR. Laxminarayan and G. M. Brown, “Economics of antibiotic resistance: A theory of optimal use,” J Environ Econ Manage, vol. 42, no. 2, pp. 183–206, Sep. 2001, doi: 10.1006/jeem.2000.1156
dc.relation.referencesA. Giuliani, G. Pirri, and S. F. Nicoletto, Antimicrobial peptides: an overview of a promising class of therapeutics, vol. 2, no. 1. 2007. doi: 10.2478/s11535-007-0010-5.
dc.relation.referencesN. J. Afacan, A. T.Y. Yeung, O. M. Pena, and R. E.W. Hancock, “Therapeutic Potential of Host Defense Peptides in Antibiotic-resistant Infections,” Curr Pharm Des, vol. 18, no. 6, pp. 807–819, 2012, doi: 10.2174/138161212799277617.
dc.relation.referencesJ. L. Lau and M. K. Dunn, “Therapeutic peptides: Historical perspectives, current development trends, and future directions,” Bioorg Med Chem, vol. 26, no. 10, pp. 2700–2707, 2018, doi: 10.1016/j.bmc.2017.06.052.
dc.relation.referencesO. E. Akanbi, H. A. Njom, J. Fri, A. C. Otigbu, and A. M. Clarke, “Antimicrobial Susceptibility of Staphylococcus aureus Isolated from Recreational Waters and Beach Sand in Eastern Cape Province of South Africa,” Int J Environ Res Public Health, vol. 14, no. 9, p. 1001, Sep. 2017, doi: 10.3390/ijerph14091001.
dc.relation.referencesT. A. Taylor and C. G. Unakal, Staphylococcus Aureus. StatPearls Publishing, 2017.
dc.relation.referencesF. P. A. Robinson and M. Shalit, “Características generales del Staphylococcus aureus,” Anti-Corrosion Methods and Materials, vol. 1, no. 4, pp. 11–14, 2014, doi: 10.1108/eb020168.
dc.relation.referencesR. Camarena, J; Roberto, “INFECCIÓN POR Staphylococcus aureus RESISTENTE A METICILINA,” Control calidad SEIMC, pp. 1–5, 2000.
dc.relation.referencesR. AGUILAR and J. OLARTE, “Escherichia coli como causa de diarrea infantil,” Rev Cubana Pediatr, vol. 22, no. 6, pp. 334–33448, 2003.
dc.relation.referencesBETELGEUX, “Escherichia Coli: características, patogenicidad y prevención (I) -,” BETELGEUX, 2016.
dc.relation.referencesR. AGUILAR and J. OLARTE, “Escherichia coli como causa de diarrea infantil,” Rev Cubana Pediatr, vol. 22, no. 6, pp. 334–33448, 2003
dc.relation.referencesS. Mosquito, J. Ruiz, and T. J. Ochoa, “MECANISMOS MOLECULARES DE RESISTENCIA ANTIBIÓTICA EN Escherichia coli ASOCIADAS A DIARREA Escherichia coli- ASSOCIATED DIARRHEA,” vol. 28, no. 4, pp. 9–11, 2011.
dc.relation.referencesA. T. Pavia et al., “Hemolytic-uremic syndrome during an outbreak of Escherichia coli O157:H7 infections in institutions for mentally retarded persons: Clinical and epidemiologic observations,” J Pediatr, vol. 116, no. 4, pp. 544–551, 1990, doi: 10.1016/S0022-3476(05)81600-2.
dc.relation.referencesJ. M. Sánchez Merino, C. Guillán Maquieira, C. Fuster Foz, F. J. Madrid García, M. Jiménez Rodríguez, and J. García Alonso, “Sensibilidad microbiana de escherichia coli en infecciones urinarias extrahospitalarias,” Actas Urol Esp, vol. 27, no. 10, pp. 3–7, 2003, doi: 10.1016/S0210-4806(03)73014-9.
dc.relation.referencesZ. Rivera et al., “Double dimer peptide constructs are immunogenic and protective against Plasmodium falciparum in the experimental Aotus monkey model,” Journal of Peptide Research, vol. 59, no. 2, pp. 62–70, 2002, doi: 10.1046/j.1397-002x.2001.00001_957.x.
dc.relation.referencesA. G. S. Hogberg, “Two stereoisomeric macrocyclic resorcinol-acetaldehyde condensation products,” Journal of Organic Chemistry, vol. 45, no. 22, pp. 4498–4500, 2002, doi: 10.1021/JO01310A046.
dc.relation.referencesA. Kivrak, C. Yilmaz, M. Konus, H. Koca, S. Aydemir, and J. A. Oagaz, “Synthesis and biological properties of novel 1-methyl-2-(2-(prop-2-yn-1-yloxy)benzylidene) hydrazine analogues,” Turk J Chem, vol. 42, no. 2, pp. 306–316, Apr. 2018, doi: 10.3906/kim-1701-42.
dc.relation.referencesV. Rodríguez et al., “Efficient Fmoc Group Removal Using Diluted 4-Methylpiperidine: An Alternative for a Less-Polluting SPPS-Fmoc/tBu Protocol,” Int J Pept Res Ther, no. 0123456789, pp. 4–6, 2019, doi: 10.1007/s10989-019-09865-9
dc.relation.referencesX. Li, “Click to join peptides/proteins together,” Chem Asian J, vol. 6, no. 10, pp. 2606–2616, 2011, doi: 10.1002/asia.201100329
dc.relation.referencesO. Avrutina et al., “Application of copper(I) catalyzed azide-alkyne [3+2] cycloaddition to the synthesis of template-assembled multivalent peptide conjugates.,” Org Biomol Chem, vol. 7, no. 20, pp. 4177–4185, 2009, doi: 10.1039/b908261a
dc.relation.referencesA. Suárez, “Reacciones de cicloadición 1,3-dipolares a alquinos catalizadas por cobre,” An. Quím, vol. 108, no. 4, pp. 306–313, 2012, [Online]. Available: file:///C:/Users/Usuario/Downloads/pag_306.pdf
dc.relation.referencesM. D. C. C. S. Arthur L. Barry, Ph.D. William A. Craig, M.D. Harriette Nadler, Ph.D. L. Barth Reller, “M26-A: Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline,” Clinical and laboratory standards institute, vol. 19, no. 1, pp. 56–78, 1999.
dc.relation.referencesL. Saiman, “Clinical utility of synergy testing for multidrug-resistant Pseudomonas aeruginosa isolated from patients with cystic fibrosis: ‘the motion for,’” Paediatr Respir Rev, vol. 8, no. 3, pp. 249–255, 2007, doi: 10.1016/j.prrv.2007.04.006.
dc.relation.referencesM27-A3 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard-Third Edition,” 2008, Accessed: Sep. 07, 2022. [Online]. Available: www.clsi.org
dc.relation.referencesY. Vargas-Casanova et al., “Synergistic bactericide and antibiotic effects of dimeric, tetrameric, or palindromic peptides containing the RWQWR motif against Gram-positive and Gram-negative strains,” RSC Adv, vol. 9, no. 13, pp. 7239–7245, 2019, doi: 10.1039/c9ra00708c.
dc.relation.referencesV. Solarte, J. Rosas, Z. Rivera, J. E. García, M. Arango, and J.-P. Vernot, “A tetrameric peptide ferived from bovine lactoferricin exhibits specific cytotoxic effects against Oral Squamous-Cell Carcinoma cell lines,” Biomed Res Int, p. 13, 2015, doi: 10.1155/2015/630179.
dc.relation.referencesT. Langan, K. Rodgers, and R. Chou, “Synchromization of Mammalian Cell Cultures by Serum Deprivation,” Methods in Cell Science, vol. 1524, pp. 97–105, 2017, doi: 10.1023/A:1009872403440
dc.relation.referencesS. Alfei and A. M. Schito, “From nanobiotechnology, positively charged biomimetic dendrimers as novel antibacterial agents: A review,” Nanomaterials, vol. 10, no. 10, pp. 1–50, 2020, doi: 10.3390/nano10102022
dc.relation.referencesP. Patel, V. Patel, and P. M. Patel, “Synthetic strategy of dendrimers: A review,” Journal of the Indian Chemical Society, vol. 99, no. 7, p. 100514, Jul. 2022, doi: 10.1016/J.JICS.2022.100514
dc.relation.referencesA. Velásquez-Silva, B. Cortés, Z. J. Rivera-Monroy, A. Pérez-Redondo, and M. Maldonado, “Crystal structure and dynamic NMR studies of octaacetyl-tetra(propyl)calix[4]resorcinarene,” J Mol Struct, vol. 1137, pp. 380–386, Jun. 2017, doi: 10.1016/j.molstruc.2017.02.059
dc.relation.referencesM. He et al., “Chromophore formation in resorcinarene solutions and the visual detection of mono- and oligosaccharides,” J Am Chem Soc, vol. 124, no. 18, pp. 5000–5009, May 2002, doi: 10.1021/JA017713H/SUPPL_FILE/JA017713H_S2.CIF
dc.relation.referencesN. K. Beyeh and K. Rissanen, “Tetranitroresorcin[4]arene: synthesis and structure of a new stereoisomer,” Tetrahedron Lett, vol. 50, no. 52, pp. 7369–7373, Dec. 2009, doi: 10.1016/J.TETLET.2009.10.075
dc.relation.referencesH. Mu, R. Zhou, J. Sun, and C. Yan, “Syntheses and crystal structures of functionalized tetramethyl resorcinarenes,” Chem Res Chin Univ, vol. 31, no. 6, pp. 925–929, 2015, doi: 10.1007/s40242-015-5235-7
dc.relation.referencesH. Ito, T. Nakayama, M. Sherwood, D. Miller, and M. Ueda, “Characterization and Lithographic Application of Calix[4]resorcinarene Derivatives,” Chemistry of Materials, vol. 20, no. 1, pp. 341–356, Jan. 2007, doi: 10.1021/CM7021483
dc.relation.referencesA. A. Castillo-Aguirre, Z. J. Rivera Monroy, and M. Maldonado, “Analysis by RP-HPLC and Purification by RP-SPE of the C -Tetra(p -hydroxyphenyl)resorcinolarene Crown and Chair Stereoisomers,” J Anal Methods Chem, vol. 2019, 2019, doi: 10.1155/2019/2051282
dc.relation.referencesD. S. Insuasty Cepeda et al., “Synthetic Peptide Purification via Solid-Phase Extraction with Gradient Elution: A Simple, Economical, Fast, and Efficient Methodology,” Molecules, vol. 24, no. 7, 2019, doi: 10.3390/molecules24071215
dc.relation.referencesH. M. Pineda-Castañeda, M. Maldonado, and Z. J. Rivera-Monroy, “Efficient Separation of C-Tetramethylcalix[4]resorcinarene Conformers by Means of Reversed-Phase Solid-Phase Extraction,” ACS Omega, vol. 8, no. 1, pp. 231–237, Jan. 2023, doi: 10.1021/acsomega.2c03218
dc.relation.referencesI. R. Knyazeva et al., “Synthesis of novel highly functionalized triazole-linked calix[4]resorcinols via click reaction,” Mendeleev Communications, vol. 27, no. 6, pp. 556–558, 2017, doi: 10.1016/j.mencom.2017.11.005
dc.relation.referencesH. Wenschuh, M. Beyermann, R. Winter, M. Bienert, D. Ionescu, and L. A. Carpino, “Fmoc amino acid fluorides in peptide synthesis — Extension of the method to extremely hindered amino acids,” Tetrahedron Lett, vol. 37, no. 31, pp. 5483–5486, Jul. 1996, doi: 10.1016/0040-4039(96)01160-4
dc.relation.referencesG. B. Fields and R. L. Noble, “Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids,” Int J Pept Protein Res, vol. 35, no. 3, pp. 161–214, 1990, doi: 10.1111/j.1399-3011.1990.tb00939.x
dc.relation.referencesR. Behrendt, P. White, and J. Offer, “Advances in Fmoc solid-phase peptide synthesis,” Journal of Peptide Science, vol. 22, no. 1, pp. 4–27, 2016, doi: 10.1002/psc.2836
dc.relation.referencesP. E. Schneggenburger, B. Worbs, and U. Diederichsen, “Azide reduction during peptide cleavage from solid support—the choice of thioscavenger?,” Journal of Peptide Science, vol. 16, no. 1, pp. 10–14, Jan. 2010, doi: 10.1002/PSC.1202
dc.relation.referencesM. Arias, L. J. McDonald, E. F. Haney, K. Nazmi, J. G. M. Bolscher, and H. J. Vogel, “Bovine and human lactoferricin peptides: Chimeras and new cyclic analogs,” BioMetals, vol. 27, no. 5, pp. 935–948, 2014, doi: 10.1007/s10534-014-9753-4.
dc.relation.referencesM. A. León-Calvijo, A. L. Leal-Castro, G. A. Almanzar-Reina, J. E. Rosas-Pérez, J. E. García-Castañeda, and Z. J. Rivera-Monroy, “Antibacterial Activity of Synthetic Peptides Derived from Lactoferricin against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212,” Biomed Res Int, vol. 2015, pp. 1–8, Mar. 2015, doi: 10.1155/2015/453826
dc.relation.referencesV. Solarte, J. Rosas, Z. Rivera, J. E. García, M. Arango, and J.-P. Vernot, “A tetrameric peptide ferived from bovine lactoferricin exhibits specific cytotoxic effects against Oral Squamous-Cell Carcinoma cell lines,” Biomed Res Int, vol. 2015, p. 13, 2015, doi: 10.1155/2015/630179
dc.relation.referencesB. Fang, H. Y. Guo, M. Zhang, L. Jiang, and F. Z. Ren, “The six amino acid antimicrobial peptide bLFcin6 penetrates cells and delivers siRNA,” FEBS Journal, vol. 280, no. 4, pp. 1007–1017, 2013, doi: 10.1111/febs.12093.
dc.relation.referencesK. Aguirre-Guataqui et al., “Chimeric Peptides Derived from Bovine Lactoferricin and Buforin II: Antifungal Activity against Reference Strains and Clinical Isolates of Candida spp.,” Antibiotics, vol. 11, no. 11, p. 1561, Nov. 2022, doi: 10.3390/antibiotics11111561
dc.relation.referencesS. K. Carvajal, Y. Vargas-Casanova, H. M. Pineda-Castañeda, J. E. García-Castañeda, Z. J. Rivera-Monroy, and C. M. Parra-Giraldo, “In Vitro Antifungal Activity of Chimeric Peptides Derived from Bovine Lactoferricin and Buforin II against Cryptococcus neoformans var. grubii,” Antibiotics 2022, Vol. 11, Page 1819, vol. 11, no. 12, p. 1819, Dec. 2022, doi: 10.3390/ANTIBIOTICS11121819.
dc.relation.referencesH. M. Pineda-Castañeda et al., “Designing Chimeric Peptides: A Powerful Tool for Enhancing Antibacterial Activity,” Chem Biodivers, vol. 18, no. 2, 2021, doi: 10.1002/cbdv.202000885
dc.relation.referencesJ. R. Guerra et al., “The tetrameric peptide LfcinB (20-25)4 derived from bovine lactoferricin induces apoptosis in the MCF-7 breast cancer cell line,” RSC Adv, vol. 9, no. 36, pp. 20497–20504, 2019, doi: 10.1039/c9ra04145a
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsProgramas de Optimización del Uso de los Antimicrobianos
dc.subject.decsAntimicrobial Stewardship
dc.subject.decsAntiinfecciosos
dc.subject.decsAnti-Infective Agents
dc.subject.proposalDendrimeros
dc.subject.proposalPéptido
dc.subject.proposalResorcinareno
dc.subject.proposalPéptidos Antimicrobianos
dc.subject.proposalQuímica click
dc.title.translatedPeptide-resorcinarene dendrimers: (i) obtaining by azide/alkyne cycloaddition reaction and (ii) evaluation of their antibacterial potential
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentDataPaper
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleDiseño y obtención de nuevos agentes antibacterianos basados en dendrímeros péptido-resorcinareno: Una alternativa para combatir la resistencia bacteriana
oaire.fundernameMinciencias
dcterms.audience.professionaldevelopmentInvestigadores
dc.contributor.orcid0000-0002-9081-0546
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000073189
dc.contributor.scopushttps://www.scopus.com/authid/detail.uri?authorId=57208139842
dc.contributor.researchgatehttps://www.researchgate.net/profile/Hector-Pineda-Castaneda
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=Wu60Xw0AAAAJ&hl=es&authuser=3


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito