Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorCórdoba Gaona, Oscar de Jesús
dc.contributor.authorCano Gallego, Lucas Esteban
dc.date.accessioned2024-02-09T14:28:37Z
dc.date.available2024-02-09T14:28:37Z
dc.date.issued2022-09-15
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85672
dc.descriptionGráficos
dc.description.abstractEl crecimiento de áreas de cultivos de aguacate en Colombia ha sido considerable en los últimos 10 años (ICA, 2021), a pesar de su crecimiento acelerado, en la actualidad, poca información se posee sobre la importancia de los programas de selección de nuevos patrones, variedades, y el estudio de la compatibilidad del portainjerto con las variedades de mayor interés comercial, lo cual es un criterio de selección indispensable. Es por esto por lo que, el conocimiento de las características productivas de los árboles de aguacate cv. Hass es una necesidad que apremia la producción nacional, dado que la determinación de los factores morfológicos que puedan ir en detrimento de los rendimientos y sus componentes es de vital importancia para mejorar la competitividad de los cultivos con fines a un mercado internacional, el cual genera mayor comercialización en cuanto a volúmenes (toneladas), exigiendo mayor calidad de fruta y exhibiendo mejores ganancias. En varios cultivos, la interacción morfológica existente entre el diámetro del portainjerto y el injerto es importante para determinar la compatibilidad de tejidos dado que pueden llegar a afectar el rendimiento y la calidad del producto final. Debido a esto, se plantea la presente investigación la cual tiene como objetivo determinar si la incompatibilidad entre el injerto y el portainjerto en el cultivo de aguacate cv. Hass cultivado en tres ambientes diferentes, interviene en la actividad fotosintética del aguacate, el desarrollo de los frutos durante su crecimiento y el rendimiento y sus componentes en cada caso durante dos periodos productivos (cosecha principal 2020 y traviesa 2021). La investigación se llevó a cabo en 3 huertos comerciales para exportación de aguacate cv. Hass establecidos en el 2013; injertados sobre patrones criollos originarios de semilla. Los predios están ubicados en Anserma (Caldas) a una altitud de 2.000 msnm; Rionegro (Antioquia) a 2.175 msnm, y en El Peñol (Antioquia) a 2.198 msnm. Se empleó un diseño de parcelas divididas con factor de bloqueo por localidad. La parcela principal correspondió al factor compatibilidad y las subparcelas a la edad de desarrollo del fruto. El factor compatibilidad estuvo definido por dos tratamientos (compatible e incompatible) derivados de la relación entre el diámetro del tallo del portainjerto (DP) y el diámetro del tallo de la copa (DC), medidos a 5 cm por debajo y por encima de la cicatriz del injerto, siendo árboles compatibles, cuando DP/DC fue igual a 1 ± 0,05; e incompatible cuando fue menor que 0,95. El factor edad (subparcela) correspondió a las épocas del desarrollo durante la ontogenia de las hojas y los frutos de aguacate durante dos periodos productivos denominados cosecha principal del año 2020 (marzo – diciembre 2020) y la cosecha traviesa 2021 (septiembre 2020 – junio 2021). Cada localidad contó con nueve unidades experimentales compatibles y nueve incompatibles, para un total de dieciocho árboles dentro de un mismo lote, a cada una de ellas se les evaluó de forma mensual en los periodos de cosecha principal 2020 y traviesa 2021, el intercambio gaseoso a través de las variables fotosíntesis neta (A), tasa de transpiración (E), conductancia estomática (gs), temperatura de la hoja (Tl) y eficiencia en el uso del agua (UEA). Para analizar el desarrollo morfométrico del fruto se determinó la longitud (L), el diámetro (D), peso fresco (PF) y seco (BTF) del fruto; materia fresca (MF) y seca (MS) del pericarpio (P) y la semilla (S) y la relación longitud – diámetro (RLD). Otra variable fue la tasa respiratoria (ppm CO2) y las variables productivas del rendimiento. El análisis estadístico consistió en un modelo lineal mixto, realizando una prueba de diferencia múltiple significativa utilizando el ajuste por multiplicidad por familia a través de la corrección de Holm. Los análisis estadísticos se realizaron utilizando el software R (R Core Team, 2021). La compatibilidad entre el portainjerto y el injerto en árboles de aguacate cv. Hass no exhibió diferencias para las variables de intercambio gaseoso Tl, E, gs, A y EUA. Las variables de Tl, gs, A y EUA presentaron diferencias para las edades de desarrollo de la hoja. El factor cosecha presentó diferencias para todas las variables de intercambio gaseoso evaluadas, siendo la cosecha principal la que presentó los mayores valores de Tl, E, y A. La edad de desarrollo de la hoja durante las cosechas principal 2020 y traviesa 2021 presentó diferencias para todas las variables de intercambio gaseoso presentando un comportamiento decreciente desde hojas más jóvenes a hojas más adultas. El tratamiento de compatibilidad y la época de cosecha, no modificó la tasa respiratoria de frutos del cv. Hass, la edad afectó la tasa respiratoria de CO2, siendo creciente con la ontogenia del fruto, mientras que, la tasa de CO2 específica en ppm g-1 fue inversa a la ontogenia del fruto. Las variables del crecimiento del fruto no fueron afectadas por la compatibilidad portainjerto/injerto, mientras que la cosecha principal (2020) presentó frutos con mejores características en tamaño y peso con respeto a la traviesa (2021). La edad del fruto se caracterizó por presentar un crecimiento lineal, seguido de una fase plana lineal con la ontogenia del fruto. La compatibilidad no presentó diferencias para el número de frutos por árbol y el rendimiento por árbol en kilogramos de fruta. No obstante, la cosecha presentó diferencias significativas durante el periodo P2020 donde los mayores rendimientos, estuvieron influenciados por condiciones climáticas deseables para la floración, cuajamiento, crecimiento y desarrollo de los frutos. El calibre no presentó un comportamiento porcentual diferencial sin evidencia de una diferencia notable entre el tratamiento compatibilidad, las localidades y las cosechas. Los resultados obtenidos demuestran que la hipótesis no se cumple, debido a que la diferencia en el diámetro del tallo entre el portainjerto y el injerto no afecta la fisiología del dosel y el rendimiento del cultivo de aguacate cv. Hass. (Tomado de la fuente)
dc.description.abstractThe growth of avocado areas in Colombia has been substantial in the last ten years (ICA, 2021). Despite the accelerated growth, at present, little information is available on the importance of the programs for the selection of new rootstocks and varieties and the study of the compatibility of the rootstock/scion with the cultivars of greater commercial interest. That's why the knowledge of the productive characteristics of the avocado trees cv Hass is a necessity that rewards national production. Determining the morphological factors that can go to the detriment of yields and their components is vital to improving the competitiveness of crops, which generates greater commercialization in volumes (tons), demanding greater quality of fruit and profits. In several crops, the morphological interaction between the diameter of the rootstock/scion is essential to determine tissue compatibility since it can affect the yield and the quality of the final product. Due to this, the present investigation aims to determine the incompatibility between rootstock/scion effects in the avocado cv. Hass yield, gas exchange, and fruit growth in three different environments during two-season productive periods (main harvest 2020 and harvest 2021). The investigation was carried out in 3 commercial orchards to export avocado cv. Hass planted in 2013. The trees were grafted onto native rootstocks from seed. The orchards are located in Anserma (Caldas) at 2,000 m above sea level, Rionegro (Antioquia) at 2,175 m above sea level, and El Peñol (Antioquia) at 2,198 m above sea level. A split plot design with a locality blocking factor was used—the main plot corresponded to the compatibility factor, and the subplots to the age of fruit development. The compatibility factor was defined by two treatments (compatible and incompatible) derived from the ratio between the diameter of the rootstock stem (DP) and the diameter of the canopy stem (CD), measured at 5 cm below and above the graft scar, being compatible trees, when DP/DC was equal to 1 ± 0.05; and incompatible when it was less than 0.95. The age factor (subplot) corresponded to the times of development during the ontogeny of avocado leaves and fruits during two productive periods called the main harvest of the year 2020 (March - December 2020) and the 2021 secondary harvest (September 2020 - June 2021). Each locality had nine compatible and nine incompatible experimental units for eighteen trees within the same lot. Each of the following variables was evaluated monthly in the main 2020 and secondary 2021 harvest periods: Gas exchange as photosynthesis (A), transpiration rate (E), stomatal conductance (gs), leaf temperature (Tl), and water use efficiency (UEA); the length (L), diameter (D), fresh weight (PF) and fruit dry weight (BTF); as fresh (MF) and dry (DM) matter of the pericarp (P) and the seed (S) and the length-diameter (RLD) relationship. Another variable was the respiratory rate (ppm CO2) and the yield variables. Statistical analysis consisted of a mixed linear model, performing a significant multiple difference test using the adjustment for multiplicity by family through Holm's correction. Statistical analyzes were performed using R software (R Core Team, 2021). The compatibility between the rootstock/scion in avocado trees cv. Hass did not exhibit differences for the gas exchange variables Tl, E, gs, A, and EUA. The variables of Tl, gs, A and EUA presented differences in the ages of leaf development. The harvest factor showed differences for all the gas exchange variables evaluated; the main harvest explained the highest values of Tl, E, and A. The age of leaf development during the main 2020 and naughty 2021 harvests presented differences for all the gas exchange variables, decreasing behavior from younger to more adult leaves. The compatibility treatment and the harvest season did not modify the respiratory rate of fruits of cv. Hass. The age affected the respiratory rate of CO2, increasing with fruit ontogeny, while the specific CO2 rate in ppm g-1 was inverse to fruit ontogeny. Fruit growth variables were not affected by compatibility.
dc.format.extent127 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc580 - Plantas::582 - Plantas destacadas por características vegetativas y flores
dc.subject.ddc570 - Biología::571 - Fisiología y temas relacionados
dc.titleEfecto de la compatibilidad patrón/copa sobre la fisiología productiva de árboles de aguacate CV. Hass en tres ambientes en Colombia
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.coverage.countryColombia
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Agrarias
dc.description.methodsDiseño de parcelas divididas
dc.description.researchareaFisiología de la producción vegetal
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedLaReferencia
dc.relation.referencesAgronet. 2020. Reporte: Área, producción y rendimiento nacional por cultivo. Agronet, MinAgricultura. En: https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1 Consultado: Junio 2022.
dc.relation.referencesAlbacete A, Martínez C, Martinez A, Thompson A, Dodd I and Pérez F. 2015. Unravelling rootstock×scion interactions to improve food security. Journal of Experimental Botany. 66(8). 2211-2226. https://doi.org/10.1093/jxb/erv027
dc.relation.referencesAlcaraz ML, Thorp TG and Hormaza JI. 2013. Phenological growth stages of avocado (Persea americana) according to the BBCH scale. Scientia Horticulturae, 164, 434-439. https://doi.org/10.1016/j.scienta.2013.09.051
dc.relation.referencesAloni B, Karni L, Deventurero G, Levin Z, Cohen R, Katzir N and Kapulnik Y. 2008. Physiological and biochemical changes at the rootstock-scion interface in graft combinations between Cucurbita rootstocks and a melon scion. The Journal of Horticultural Science and Biotechnology, 83(6), 777-783. https://doi.org/10.1080/14620316.2008.11512460
dc.relation.referencesÁlvarez-López H. 2020. Manual de injertación en frutales, contribución en fisiología vegetal, Universidad Nacional de Jaén. Disponible en: http://repositorio.unj.edu.pe/handle/UNJ/389 Aslam W, Noor RS, Hussain F, Ameen M, Ullah S and Chen H. 2020. Evaluating morphological growth, yield, and postharvest fruit quality of cucumber (Cucumis Sativus L.) grafted on cucurbitaceous rootstocks. Agriculture, 10(4), 101. https://doi.org/10.3390/agriculture10040101
dc.relation.referencesBaron D, Esteves A, Pina A, and Ferreira G. 2019. An overview of grafting re-establishment in woody fruit species, Scientia Horticulturae, Volume 243, Pages 84-91 https://doi.org/10.1016/j.scienta.2018.08.012.
dc.relation.referencesBarrientos VA; Barrientos PA, Rodríguez P, Peña LA y Muñoz PR. 1999. Influencia del interinjerto cv. Colín V-33 sobre algunos aspectos fisiológicos en aguacatero (Persea americana Mill.). Revista Chapingo Serie Horticultura 5: 103-116. https://www.redalyc.org/revista.oa?id=609
dc.relation.referencesBates D, Mächler M, Bolker B and Walker S 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01.
dc.relation.referencesBayram S and Seyla EPE. 2019. Determination of some physicochemical properties in fruits of some avocado (Persea americana Mill.) cultivars during the harvesting periods. Derim, 36(1), 1-12.https://doi.org/10.16882/derim.2019.410329
dc.relation.referencesBello A, López PJA, Díaz VL and Tello J. 2001. Alternatives to methyl bromide for soil fumigation in Spain. In: Global report on validated alternatives to the use of methyl bromide for soil fumigation. Food and Agriculture Organization and United Nations Environmental Programme, Rome, Italy. 95 p.
dc.relation.referencesBelmonte ULJ, Garrido CJA and Camacho FF. 2020. Analysis of world research on grafting in horticultural plants. HortScience, 55(1), 112-120. https://doi.org/10.21273/HORTSCI14533-19
dc.relation.referencesBen YA., Michelson E, Sela I. 1995. Rootstock effect on avocado vigor and productivity. Acta Hort. 349: 191-195. https://doi.org/10.17660/ActaHortic.1993.349.30
dc.relation.referencesBernal JA y Díaz CA. 2020. Capitulo I.- Generalidades del cultivo. pp 77-305. En: Bernal JA, y Díaz CA (eds.). Actualización y buenas prácticas agrícolas (BPA) en el cultivo de aguacate. Segunda edición. Agrosavia. (Corporación Colombiana de Investigación Agropecuaria – AGROSAVIA. Mosquera. 773 p.
dc.relation.referencesBernal JA. 2008. Manual Técnico del cultivo de aguacate Hass (Persea americana L.). Fundación Hondureña de Investigación Agrícola. La Lima, Cortez, Honduras. http://hdl.handle.net/123456789/654
dc.relation.referencesBernal JA. 2016. Estudios ecofisiológicos en aguacate cv. Hass en diferentes ambientes como alternativa productiva en Colombia. (Tesis de doctorado) Universidad Nacional de Colombia.296 p.
dc.relation.referencesBielczynski L., Lącki MK., Hoefnagels I., Gambin A., and Croce, R. (2017). Leaf and plant age affects photosynthetic performance and photoprotective capacity. Plant Physiology, 175(4), 1634–1648. https://doi.org/10.1104/pp.17.00904
dc.relation.referencesBlanke MM. 1991. Respiration of apple and avocado fruits. Postharvest News and Information, 2(6), 429-436. https://www.researchgate.net/profile/Michael-Blanke/publication/341881382_Blanke_1991_Respiration_of_apple_and_avocado_fruit_-_invited_review_Postharvest_News_and_Information/links/606ead74299bf1c911b64ed2/Blanke-1991-Respiration-of-apple-and-avocado-fruit-invited-review-Postharvest-News-and-Information.pdf
dc.relation.referencesCarvalho C, Velásquez M and Rooyen Z. 2014 Determination of the minimum dry matter index for the optimum harvest of ‘Hass’ avocado fruits in Colombia. Agronomía Colombiana, 32(3), 399 – 406. https://doi.org/10.15446/agron.colomb.v32n3.46031
dc.relation.referencesChoi KS, Om H, Parks DY, Lee S and Lee CH 1991 The interspecific hybrid Weonkio 601 as a rootstock for cucurbits. Res. Rep. of the office of Rural Development, Hort. and Sericiculture. 1980. Suwon 22. (Cited by Miguel et al., in Horticulture 66, 34–40).
dc.relation.referencesCohen R, Pivonia S, Burger Y, Edelstein M, Gamliel A and Katan J. 2000. Toward integrated management of Monosporascus wilt of melons in Israel Plant Dis., 84, 496-505. https://apsjournals.apsnet.org/doi/pdf/10.1094/PDIS.2000.84.5.496
dc.relation.referencesCorelli-Grappadelli, L., Musacchi, S. and Magnanini E. 2001. Single leaf and whole canopy gas exchange of pear as affected by graft incompatibility. Acta Hort. 557:377–383. https://doi.org/10.17660/ActaHortic.2001.557.50
dc.relation.referencesCornejo TNY. 2019. Plan de instalación de palta Hass con patrones Topa Topa, Zutano y Moquecano (clonal) basado en árbol de decisiones, para la adaptabilidad y comportamiento en los primeros meses de desarrollo en el anexo de Huatiapilla-Valle de Majes, 2018. http://repositorio.unsa.edu.pe/handle/UNSA/8863.
dc.relation.referencesCowan AK, Cripps RF, Richings EW and Taylor NJ. 2001. Fruit size: Towards an understanding of the metabolic control of fruit growth using avocado as a model system. Physiologia Plantarum, 111(2), 127–136. https://doi.org/10.1034/j.1399-3054.2001.1110201.x
dc.relation.referencesCPA - Cadena Productiva de Aguacate. 2021. Composición y caracterización de la cadena. En: https://sioc.minagricultura.gov.co/Aguacate/Documentos/2021-03-31%20Cifras%20Sectoriales.pdf. Consultada: enero 2021
dc.relation.referencesde Mendiburu F. 2021. Agricolae: Statistical procedures for agricultural research. R package (1.3-5). Universidad La Molina. 152 p.
dc.relation.referencesDíaz PM, Camacho FF, Diánez MF, De Cara GM and Tello MJC. 2009 Evaluation of alternatives to methyl bromide in melon crops in Guatemala. Microb. Ecol., 57, 379-383. https://doi.org/10.1007/s00248-008-9460-1
dc.relation.referencesEmbleton TW, Matsumura M, Stolzy LH, Devitt DA and Jones WW. 1986. Citrus nitrogen fertilizer management groundwater pollution, soil salinity and nitrogen balance. Applied Agricultural Research,1(1), 57-64.
dc.relation.referencesFallik E and Ziv C. 2020. How rootstock/scion combinations affect watermelon fruit quality after harvest? Journal of the Science of Food and Agriculture, 100(8), 3275-3282. https://doi.org/10.1002/jsfa.10325
dc.relation.referencesFAO. 2011. COMISIÓN DEL CODEX ALIMENTARIUS: Observaciones presentadas en respuesta al proyecto de norma para el aguacate (revisión de la Norma CODEX STAN 197-1995) por: Costa Rica, Jamaica, Kenia, Unión Europea, Nueva Zelanda y Estados Unidos de América. Disponible en https://www.fao.org/input/download/standards/321/CXS_197s.pdf. Consultado: julio 2022.
dc.relation.referencesFAO. 2022. FAOSTAT Database, production statistics En: http://www.fao.org/faostat/es/#data/QC/visualize. Consultado: junio 2022.
dc.relation.referencesFerree DC, Cahoon GA, Ellis MA, Scurlock DM. and Johns GR. 1996. Influence of eight rootstock on the performance of ‘White Riesling’ and ‘Cabernet Franc’ over five years. Fruit Var. Journal. 50(2), 124–130.
dc.relation.referencesFerree DC. 1992. Ten-year summary of the performance of 9 rootstocks in the NC-140 trials. Compact Fruit Tree, 25, 5–11.
dc.relation.referencesFeucht W and Treutter D. 1991. Phenol gradients in opposing cells of Prunus heterografts. Adv. Hort., 5, 107–111. https://www.jstor.org/stable/42881595
dc.relation.referencesFredes A, Roselló S, Beltrán J, Cebolla CJ, Pérez-de-Castro A, Gisbert C and Picó MB. 2016. Fruit quality assessment of watermelons grafted onto citron melon rootstock. Journal of the Science of Food and Agriculture, 97(5), 1646–1655. https://doi.org/10.1002/jsfa.7915
dc.relation.referencesGazit A y Ish GA. 2007. Las abejas sin aguijón pueden servir como polinizadores eficientes del aguacate. En el 9º Simposio Internacional de Polinización sobre Relaciones Planta-Polinización-Diversidad en Acton: Programa y Resúmenes. Universidad Estatal de Iowa, Ames, IA.
dc.relation.referencesGe Y, Dong X, Wu B, Xu Z, Zhou Z, Lin X and Ma W. 2019. Physiological, histological and molecular analysis of avocado mesocarp fatty acids during fruit development. J. Agric. Sci, 11(1), 95-104. https://doi.org/10.5539/jas.v11n1p95
dc.relation.referencesGoldschmidt EE. 2014. Plant grafting: new mechanisms, evolutionary implications. Front. Plant Sci., 5, 727. https://doi.org/10.3389/fpls.2014.00727
dc.relation.referencesGulen H, Arora R, Kuden A, Krebs SL and Postman J. 2002. Peroxidase isozyme profiles in compatible and incompatible pear-quince graft combinations. Journal of the American Society for Horticultural Science, 127(2), 152-157. https://doi.org/10.21273/JASHS.127.2.152
dc.relation.referencesGutiérrez CA, Arenas LC, Obando GM and Bello RY. 2021. Análisis del riesgo en la exportación del aguacate Hass para la compañía Hass Fruits de Colombia (Tesis de licienciatura), Especialización en Gerencia Procesos de Calidad e Innovación Virtual). Universidad EAN. Colombia. 52 p.
dc.relation.referencesHabibi F, Liu T, Folta K and Sarkhosh A. 2022. Physiological, biochemical, and molecular aspects of grafting in fruit trees. Horticulture Research, 9. https://doi.org/10.1093/hortre/uhac032
dc.relation.referencesHuitrón MV, Diaz M, Diánez F and Camacho F. 2007. The effect of various rootstocks on triploid watermelon yield and quality J. Food Agric. Environ., 5, 344-348.
dc.relation.referencesJiang CZ and Rodermel SR. 1995. Regulation of photosynthesis during leaf development in RbcS antisense DNA mutants of tobacco. Plant Physiol 107, 215–224. https://doi.org/10.2307/4276292
dc.relation.referencesJiang CZ, Rodermel SR and Shibles RM. 1993. Photosynthesis, rubisco activity and amount, and their regulation by transcription in senescing soybean leaves. Plant Physiology 101, 105–112. https://doi.org/10.2307/4274939
dc.relation.referencesKato T and Lou H. 1989. Effects of rootstock on the yield, mineral nutrition and hormone level in xylem sap in eggplant. Journal of the Japanese Society for Horticultural Science, 58(2), 345-352. https://doi.org/10.2503/jjshs.58.345
dc.relation.referencesKawaguchi M, Taji A, Backhouse D and Oda M. 2008. Anatomy and physiology of graft incompatibility in solanaceous plants. The Journal of Horticultural Science and Biotechnology, 83(5), 581-588. https://doi.org/10.1080/14620316.2008.11512427
dc.relation.referencesBiotechnology, 83(5), 581-588. https://doi.org/10.1080/14620316.2008.11512427 King SR, Davis AR, Zhang X and Crosby K. 2010. Genetics, breeding and selection of rootstocks for Solanaceae and Cucurbitaceae. Scientia Horticulturae, 127(2), 106–111. https://doi.org/10.1016/j.scienta.2010.08.001
dc.relation.referencesKuznetsova A, Brockhoff PB and Christensen RHB 2017. “lmerTest Package: Tests in linear mixed effects models.” Journal of Statistical Software, 82(13), 1–26. https://doi.org/10.18637/jss
dc.relation.referencesKyriacou MC, Rouphael Y, Colla G, Zrenner R and Schwarz D. 2017. Vegetable Grafting: The Implications of a growing agronomic imperative for vegetable fruit quality and nutritive value. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.00741
dc.relation.referencesLazare S, Haberman A, Yermiyahu U, Erel R, Simenski E and Dag A. 2020. Avocado rootstock influences scion leaf mineral content. Archives of Agronomy and Soil Science, 66(10), 1399-1409. https://doi.org/10.1080/03650340.2019.1672163
dc.relation.referencesLee J.M.1994 Cultivation of grafted vegetables. I. Current status, grafting methods, and benefits HortScience 29 (4), 235-239. file:///D:/Biblioteca%20Lab%20Fisiologia/Downloads/[23279834%20-%20HortScience]%20Cultivation%20of%20Grafted%20Vegetables%20I.%20Current%20Status,%20Grafting%20Methods,%20and%20Benefits.pdf
dc.relation.referencesLira GGO, Montaño YAR, Barrios P., Vargas-Sandoval M, Santos MEP, Raymundo T and Lara CM. 2020. Characterization of Fusarium spp., a phytopathogen of avocado (Persea americana Milr var. Drymifolia (Schltdl. and Cham.) in Michoacán, México. Revista de la Facultad de Ciencias Agrarias UNCuyo, 52(2), 301-316.
dc.relation.referencesLiu X, Robinson PW, Madore MA, Witney GW and Arpaia ML. 1999. Hass' avocado carbohydrate fluctuations. II. Fruit growth and ripening. Journal of the American Society for Horticultural Science, 124(6), 676-681. https://doi.org/10.21273/JASHS.124.6.676
dc.relation.referencesLobell DB, Cahill K. and Field CB. 2007. Historical effects of temperature and precipitation on California crop yields. Climatic Change, 81(2), 187–203. https://doi.org/10.1007/s10584-006-9141-3
dc.relation.referencesLong LE and Kaiser C. 2010 Sweet cherry rootstocks for the pacific northwest; OSU Extension Service: Eugene, OR, USA; 619, p. 8. http://hdl.handle.net/1957/18464
dc.relation.referencesLosciale P, Zibordi M, Manfrini L and Grappadelli LC. 2008. Effects of rootstock on pear photosynthetic efficiency. Acta Horticulturae, (800), 241–248. https://doi.org/10.17660/actahortic.2008.800.28
dc.relation.referencesLouvet, J. and Peyriere, J. 1962. Intérêt du greffage du melon sur Benincasacerifera, p. 167–171. XVI Congrès Internat. Hortic. Brussels, Belgium.
dc.relation.referencesLyu J, He QY, Chen QW, Cheng RR, Li G, Otsuki K and Du S. 2022. Distinct transpiration characteristics of black locust plantations acclimated to semiarid and subhumid sites in the Loess Plateau, China. Agricultural Water Management, 262, 107402. https://doi.org/10.1016/j.agwat.2021.107402
dc.relation.referencesMakino A, Mae T and Ohira K. 1983 Photosynthesis and ribulose 1,5- bisphosphate carboxylase in rice leaves: changes in photosynthesis and enzymes involved in carbon assimilation from leaf development through senescence. Plant Physiol 73: 1002–1007. https://doi.org/10.1104/pp.73.4.1002
dc.relation.referencesMárquez SM, Hernández LAN and Castrejón GVR. 2020. States of phenological development of avocado (Persea americana Mill.) based on the BBCH scale extended and its relationship to the incidence of anthracnose in field conditions. Scientia Horticulturae, 271, 109379. https://doi.org/10.1016/j.scienta.2020.109379
dc.relation.referencesMartínez CMR, Molina MD and Forner GMÁ. 2022. Performance of two very early-seasClementines, ‘Clemenrubi’and ‘Orogros’ mandarins on three rootstocks in Spain: Yield and Quality Study. Agronomy, 12(5), 1072. https://doi.org/10.3390/agronomy12051072
dc.relation.referencesMartínez RG, Flores JIC, Jiménez AL, Barra JDE, Salazar JAC and Veloz CS 2021. Rendimiento, calidad y comportamiento poscosecha de frutos de aguacate ‘Hass’ de huertos con diferente fertilización. Revista Mexicana de Ciencias Agrícolas, 12(2), 205-218. https://doi.org/10.29312/remexca.v12i2.2232
dc.relation.referencesMartins V, Silva V, Pereira S, Afonso S, Oliveira I, Santos M and Gonçalves, B. 2021. Rootstock affects the fruit quality of ‘Early Bigi’ sweet cherries. Foods, 10(10), 2317. https://doi.org/10.3390/foods10102317
dc.relation.referencesMarukawa S. 1979. Studies on varieties of Cucurbita spp. as rootstock for cucurbitaceous vegetables, with special reference to their grafting compatibility. Bulletin of Ibaraki ken Horticultural Experiment Station. (Japan). (Apr 1979). (no.5) p. 1-152. https://agris.fao.org/agris-search/search.do?recordID=JP19800536233
dc.relation.referencesMessiaen C, Blancard D, Rouxel F and Lafon F. 1991 Les maladies des plantes maraìchères. 3rd ed. Ed. INRA, Paris, France.
dc.relation.referencesMickelbart MV, Robinson PW, Witney G and Arpaia ML. 2012. ‘Hass’ avocado tree growth on four rootstocks in California. II. Shoot and root growth. Scientia Horticulturae, 143, 205-210. https://doi.org/10.1016/j.scienta.2012.06.021
dc.relation.referencesMiller A, Schlagnhaufer C, Spalding M and Rodermel S. 2000. Carbohydrate regulation of leaf development: prolongation of leaf senescence in Rubisco antisense mutants of tobacco. Photosynth Res., 63, 1–8. https://link.springer.com/article/10.1023/A:1006367719639
dc.relation.referencesMiller A, Tsai CH, Hemphill D, Endres M, Rodermel S and Spalding M. 1997. Elevated CO2 effects during leaf ontogeny (a new perspective on acclimation). Plant Physiology 115, 1195–1200. https://doi.org/10.2307/4277999
dc.relation.referencesMinvivienda - Ministerio de Vivienda. 2020. Mapa de Clasificación del Clima en Colombia según la Temperatura y la Humedad Relativa y Listado de Municipios. En: http://ismd.com.co/wp-content/uploads/2017/03/Anexo-No-2-Mapa-de-Clasificaci%C3%B3n-del-Clima-en-Colombia.pdf. Consultado: Junio 2022.
dc.relation.referencesMudge K, Janick J, Scofield S and Goldschmidt E. 2009. A history of grafting. Horticultural Reviews, Volume 35 Edited by Jules Janick, pp. 437 – 493. https://doi.org/10.1002/9780470593776.ch9
dc.relation.referencesNajt E, Arjona C, Ojer M, Reginato MG y Weibel A. 2011. Portainjertos y calidad de plantas. Repositorio académico. Universidad de Chile. En: https://repositorio.uchile.cl/handle/2250/12 Consultado: Enero 2022.
dc.relation.referencesNawaz MA, Imtiaz M, Kong Q, Cheng F, Ahmed W, Huang Y and Bie Z. 2016. Grafting: A technique to modify ion accumulation in horticultural crops. Frontiers in Plant Science, 7. https://doi:10.3389/fpls.2016.01457.
dc.relation.referencesOka Y, Offenbach R, and Pivonia S. 2004. Pepper rootstock graft compatibility and response to Meloidogyne javanica and M. incognita. Journal of Nematology, 36(2), 137. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2620767/
dc.relation.referencesOkimura M, Matsuo S, Arai K and Okitsu S. 1986. Influences of soil temperature on the growth of fruit vegetable grafted on different rootstocks. Bul. Natl. Res. Inst. Veg. Ornam. Plants Tea C9 43 58. https://agris.fao.org/agris-search/search.do?recordID=JP880162888
dc.relation.referencesOliveros CE, López HA, Ramírez CA, Sanz JR y Bustillo AE. 2013. Recolección de frutos de café del suelo con la máquina Cifarelli V77S. Centro Nacional de Investigaciones de Café (Cenicafé). https://biblioteca.cenicafe.org/handle/10778/369
dc.relation.referencesOster JD y Arpaia ML. 2007. Efectos de la salinidad y aplicación de agua sobre el rendimiento del palto Hass injertado sobre patrón Mexicola. Serie Actas Instituto de Investigaciones Agropecuarias. En: https://hdl.handle.net/20.500.14001/8547. Consultado: Febrero 2022.
dc.relation.referencesOzdemir F and Topuz, A. 2004. Changes in dry matter, oil content and fatty acids composition of avocado during harvesting time and post-harvesting ripening period. Science Food Chemistry, 86, 73 – 79. https://doi.org/10.1016/j.foodchem.2003.08.012
dc.relation.referencesPalacios AJ. 1986. Dynamic and nutritional balance in avocado trees (Persea americana Mill) cv. Hass with high and low yields in the region of Uruapan, Michoacan. Colegio de Postgraduados, Montecillo, Mexico. Centro de Fruticultura. 93 p.
dc.relation.referencesPattemore DE, Buxton MN, Cutting BT, McBrydie HM, Goodwin RM and Dag A. 2018. Low overnight temperatures delay ‘Hass’ avocado (Persea americana) female flower opening, leading to nocturnal flowering. Journal of Pollination Ecology, 23, 127-135. https://doi.org/10.26786/1920-7603(2018)12
dc.relation.referencesPeña J, Wysoki M, Ripa R y Larral P. 2008. Plagas del palto en México. Manejo integrado de plagas en altos y cítricos. Colección Libros Instituto Nacional de Investigaciones Agrícolas, (23), 303-309.
dc.relation.referencesPF - Portal Frutícola. 2021. Exportaciones colombianas de aguacate casi se duplican hasta mayo. En: https://www.portalfruticola.com/noticias/2021/08/04/exportaciones-colombianas-de-aguacate-casi-se-duplican-hasta-mayo. Consultado: Agosto 2021.
dc.relation.referencesPina A and Errea P. 2005. A review of new advances in mechanism of graft compatibility–incompatibility. Sci. Hortic. 106, 1–11. https://doi.org/10.1016/j.scienta.2005.04.003
dc.relation.referencesPina A. 2008. Compatibilidad de injerto en frutales. Investigación. Centro de Investigación y Tecnología Agroalimentaria de Aragón. Instituto Nacional de Investigación y Tecnología Agraria (INIA). Surcos de Aragón. No. 107: 21-24.
dc.relation.referencesProcolombia. 2021. El mayor exportador de aguacate Hass colombiano crece más de 60% en sus ventas internacionales. En: https://procolombia.co/noticias/el-mayor-exportador-de-aguacate-hass-colombiano-crece-mas-de-60-en-sus-ventas-internacionales. Consultado: Julio 2021.
dc.relation.referencesR Core Team. 2021. A language and environment for statistical computing. In: R Foundation for Statistical Computing. Vienna, Austria. http://www.R-project.org
dc.relation.referencesRamírez GJ, Cobos ME, Jiménez GD, Morales OJG and Peterson AT. 2019. Current and potential future distributions of Hass avocados in the face of climate change across the Americas. Crop and Pasture Science, 70(8), 694-708. https://doi.org/10.1071/CP19094
dc.relation.referencesRamírez GJ, Ramelli EG and Osorio JGM. 2017. Economic impact of the avocado (cv. Hass) wilt disease complex in Antioquia, Colombia, crops under different technological management levels. Crop Prot. 101, 103–115. https://doi.org/10.1016/j.cropro.2017.07.023.
dc.relation.referencesRasool A, Mansoor S, Bhat KM, Hassan GI, Baba TR, Alyemeni MN and Ahmad P. 2020. Mechanisms underlying graft union formation and rootstock scion interaction in horticultural plants. Front. Plant Sci, 11. https://doi.org/10.3389/fpls.2020.590847
dc.relation.referencesReig G, Salazar A, Zarrouk O, Forcada CF, Val J and Moreno MÁ. 2019. Long-term graft compatibility study of peach-almond hybrid and plum based rootstocks budded with European and Japanese plums. Scientia Horticulturae, 243, 392-400. https://doi.org/10.1016/j.scienta.2018.08.038
dc.relation.referencesReig G, Zarrouk O, Font I Forcada C and Moreno MÁ. 2018 Anatomical graft compatibility study between apricot cultivars and different plum based rootstocks. Scientia Horticulturae. 237, 67–73. https://doi.org/10.1016/j.scienta.2018.03.035
dc.relation.referencesRendón-Anaya, M., Ibarra-Laclette, E., Méndez-Bravo, A., Lan, T., Zheng, C., Carretero-Paulet, L., ... & Herrera-Estrella, L. (2019). The avocado genome informs deep angiosperm phylogeny, highlights introgressive hybridization, and reveals pathogen-influenced gene space adaptation. Proceedings of the National Academy of Sciences, 116(34), 17081-17089.
dc.relation.referencesRicárdez SM, Huitrón RM, Tello MJ and Camacho-Ferre F. 2010. Planting density for grafted melon as an alternative to methyl bromide use in Mexico Scientia Horticulturae. 126, 236-241 https://doi.org/10.1016/j.scienta.2010.07.022
dc.relation.referencesRivero R, Ruiz J and Romero L. 2003. Role of grafting in horticultural plants under stress conditions. J. Food Agric. Environ., 1, 70-74. https://www.researchgate.net/profile/Rosa-Rivero-3/publication/236211274_Role_of_grafting_in_horticultural_plants_under_stress_condition/links/00b495170043787b85000000/Role-of-grafting-in-horticultural-plants-under-stress-condition.pdf
dc.relation.referencesRobinson R.Wand Decker-Walters DS. 1997 Cucurbits, CAB International, Wallingford, UK. Rodríguez P y Henao J. 2016. Maduración del aguacate (Persea americana Mill. cv. Hass) y calidad de los frutos. Agronomía Colombiana, 1(1), 914-917. https://doi.org/10.15446/agron.colomb.sup.2016n1.58101
dc.relation.referencesRodriguez P, Henao JC, Correa G and Aristizabal A. 2018. Identification of harvest maturity indicators for ‘Hass’ avocado adaptable to field conditions. HortTechnology, 28(6), 815-821. https://doi.org/10.21273/HORTTECH04025-18
dc.relation.referencesRouphael Y, Schwarz D, Krumbein A and Colla G. 2010. Impact of grafting on product quality of fruit vegetables. Sci. Hortic. 127, 172–179. https://doi.org/10.1016/j. scienta.2010.09.001
dc.relation.referencesRoy B and Basu AK. 2009. Abiotic stress tolerance in crop plants breeding and biotechnology. New India Publishing Agency, Pitam Pura, New Delhi. pp. 140-147.
dc.relation.referencesSalazar G.S. y Lazcano F.I. 2003. La fertilización en "sitio específico" incrementa los rendimientos y el tamaño de la fruta del aguacate en México. Actas del V Congreso Mundial del Aguacate. Granada–Málaga, España. 19 al 24 de octubre 2003. Vol. I: 373–377. http://avocadosource.com/WAC5/Papers/WAC5_p373.pdf
dc.relation.referencesScherrer C, Dos-Santos L, Andreazza C, Getz B and Bender R. 2011. Mechanical damages increase respiratory rates of citrus fruit, International Journal of Fruit Science, 11:3, 256-263. https://doi.org/10.1080/15538362.2011.608297r-de-aguacate-de-europa.
dc.relation.referencesSchroeder C and Frolich E. 1955. Avocado rootstock-scion studies: Compatibility between avocado and new rootstocks suitable to California is object of plant program. Calif. Agr, 9(2),11-12. DOI:10.3733/ca.v009n02p11
dc.relation.referencesSilitL, Amnon H, Uri Y, Ran E, Eli S and Arnon D. 2020. Avocado rootstock influences scion leaf mineral content. Archives of Agronomy and Soil Science 66:10, 1399-1409. https://doi.org/10.1080/03650340.2019.1672163
dc.relation.referencesSilva-Souza L, Diniz RP, Neves RJ, Alves AAC and Oliveira EJ. 2018. Grafting as a strategy to increase flowering of cassava. Scientia Horticulturae, 240, 544–551. https://doi.org/10.1016/j.scienta.2018.06.070
dc.relation.referencesSimkin AJ, Faralli M, Ramamoorthy S and Lawson T. 2020. Photosynthesis in non‐foliar tissues: implications for yield. The Plant Journal, 101(4), 1001-1015. https://doi.org/10.1111/tpj.14633
dc.relation.referencesSimon AMO, Gudet WS, Ramni J, Festus KA and Jarret M. 2012. Scion and stock diameter size effect on growth and fruit production of Sclerocarya birrea (Marula) trees. Journal of Horticulture and Forestry, 4(9), 153-160. https://doi.org/10.5897/JHF12.016
dc.relation.referencesSoule MJ and Harding PL. 1955. Relation of maturity of Florida avocados to physical characters. In: Proceedings of the Florida State Horticultural Society (68, 303-307). file:///D:/Biblioteca%20Lab%20Fisiologia/Downloads/perrycollins-303-30820soule.pdf
dc.relation.referencesSteduto P, Raes D, Hsiao TC, Fereres E, Heng LK, Howell TA and Geerts S. 2009. Concepts and applications of AquaCrop: The FAO Crop Water Productivity Model. Crop modeling and decision support, pp. 175–191. https://doi.org/10.1007/978-3-642-01132-0_19
dc.relation.referencesStessman D, Miller A, Spalding M and Rodermel S. 2002 Regulation of photosynthesis during Arabidopsis leaf development in continuous light. Photosynth Res 72: 27–37. https://link.springer.com/article/10.1023/A:1016043003839
dc.relation.referencesSuzuki E and des Yamato. 1972. La sandía Brochure translated into Spanish by Mr Kimura to Alfredo Miguel Gómez in 1977.
dc.relation.referencesTraka ME, Koutsika SM and Pritsa T. 2000. Response of squash (Cucurbita spp.) as rootstock for melon (Cucumis melo L.). Scientia Horticulturae, 83(3-4), 353–362. https://doi.org/10.1016/s0304-4238(99)00088-6
dc.relation.referencesTrionfetti NP, Colla G, Granati E, Temperini O, Crinò P and Saccardo F. 2002. Rootstock resistance to fusarium wilt and effect on fruit yield and quality of two muskmelon cultivars Scientia Horticulturae. 93 281 288. https://doi.org/10.1016/S0304-4238(01)00335-1
dc.relation.referencesVan Den Berg N, Swart V, Backer R, Fick A, Wienk R, Engelbrecht J and Prabhu SA. 2021. Advances in understanding defense mechanisms in Persea americana against Phytophthora cinnamomi. Frontiers in Plant Science, 12, 123. https://doi.org/10.3389/fpls.2021.636339
dc.relation.referencesVergniaud P. 1990. Le melon: Vendre et produire P.H.M Revue Hort. 303, 43-51. Webber HJ. 1948. “Rootstocks: their character and reactions,” in The Citrus Industry, Vol.2, eds L.D. Batchelor and H.J. Webber Berkeley, CA. University of California Press, pp. 69–168.
dc.relation.referencesWebber HJ. 1948. “Rootstocks: their character and reactions,” In L.D. Batchelor and H.J. Webber (Eds.) The Citrus Industry, (Vol. 2, pp. 69-168 Berkeley, CA: University of California Press.
dc.relation.referencesWeibel A, Johnson RS, and DeJong TM. 2003. Comparative vegetative growth responses of two peach cultivars grown on size-controlling versus standard rootstocks. Journal of the American Society for Horticultural Science, 128(4), 463-471. https://doi.org/10.21273/JASHS.128.4.0463
dc.relation.referencesWhiley AW, Schaffer B and Wolstenholme BN. 2007. The Avocado. Botany, production and uses. Ediciones Universitarias de Valparaíso. Valparaiso – Chile. Pontificia Universidad Católica de Valparaíso. ISBN 978-956-17-0415-2.
dc.relation.referencesWickham H. 2016. ggplot2: Elegant graphics for data analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org.
dc.relation.referencesWillingham S L, Pegg KG, Cooke AW, Coates LM, Langdon PWB and Dean JR. 2001. Australian Journal of Agricultural Research, 52(10), 1017. https://doi:10.1071/ar01015.
dc.relation.referencesWolstenholme BN. 2013. Ecology: Climate and soils. In: Bruce A, Schaffer B, Nigel W, and Whiley A. (eds.) The avocado: botany, production and uses. Second edition. CPI Group. London, UK. 560 p
dc.relation.referencesZapata JC y Leal JM. 2018. Manejo integrado de la pudrición de raíces del aguacate (Persea americana Miller), causada por Phytophthora cinnamomi Rands. Temas agrarios, 23(2), 131-143 https://doi.org/10.21897/rta.v23i2.1297 .
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembAguacate - calidad
dc.subject.lembAgricultura - Investigaciones
dc.subject.lembCultivos alimenticios
dc.subject.lembProducción agropecuaria
dc.subject.lembInjertos (Agricultura)
dc.subject.lembFruticultura
dc.subject.proposalPersea americana Mill
dc.subject.proposalInjerto
dc.subject.proposalGrafting
dc.title.translatedEffect of rootstock/scion compatibility on the productive physiology of avocado trees CV. Hass in three environments in Colombia
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleDesarrollo y validación de tecnologías para la implementación de prácticas de manejo agronómico para el cultivo del aguacate.
oaire.fundernameAGROSAVIA
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaProducción Agraria Sostenible.Sede Medellín
dc.contributor.orcidCano Gallego, Lucas Esteban [0000-0002-2819-9694]
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000006723


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito