Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorNarváez Rincón, Paulo César
dc.contributor.advisorSerna Rodas, Juliana
dc.contributor.authorMontañez Abril, Mauro Andrés
dc.date.accessioned2024-02-09T19:31:14Z
dc.date.available2024-02-09T19:31:14Z
dc.date.issued2023-09-10
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85678
dc.descriptionilustraciones a color, diagramas, fotografías
dc.description.abstractThe decision-making process for the design of chemical products is a key activity to increase its acceptance in the market and to enhance its sustainability performance. For this, it is important to consider not only the preferences of the consumers but also the requirements of the supply chain, which are not taken into account in existing design methodologies. Therefore, this study presents a methodology to support the product design process considering the requirements of the supply chain. The methodology is implemented in 2 phases: a diagnostic phase of the supply chain where different stakeholders are interviewed to know their limitations; and a product design phase, where a workshop is developed including the identified limitations in the design problem. The methodology was tested in a case study: the design of chemical products from the palm oil supply chain. Palm oil is the highest vegetable oil productivity but it is in the spotlight because of its implications for environmental and social issues. The diagnostic phase involved the participation of 8 different stakeholders of the palm oil supply chain who were interviewed individually through semi-structured interviews of one hour. The information was systematically analyzed using qualitative methods. The second phase design workshop was conducted with three focus groups, two with chemical engineering students and one with expert product designers from a Latin American food company. The groups were asked to select between different surfactants (some of them based on palm oil) to create a vegetable milk drink; at first, without considering the limitations of the supply chain, and at a second time, considering them. The results of the first phase showed that the main requirements of the supply chain according to the interviewed stakeholders are the last of integration between the actors of the supply chain (overall in relation to the last stages when final products are developed), the dependency to the oil suppliers and the possible biodiesel/food competition, and the supply chain's lack of capacity to adapt to changes. When this information was used for the product design workshop, the two groups of students modified their design decision when they considered the supply chain limitations. By their part, experienced designers did not modify their design, but they found that this type of analysis could be relevant for other products, for example those as the margarines with have a high oil content. (Texto tomado de la fuente)
dc.description.abstractEl proceso de toma de decisiones para el diseño de productos químicos es una actividad clave para aumentar su aceptación en el mercado y mejorar su rendimiento en materia de sostenibilidad. Para ello, es importante tener en cuenta no sólo las preferencias de los consumidores, sino también los requisitos de la cadena de suministro, que no se tienen en cuenta en las metodologías de diseño existentes. Por lo tanto, este estudio presenta una metodología para apoyar el proceso de diseño de productos teniendo en cuenta los requisitos de la cadena de suministro. La metodología se implementa en 2 fases: una fase de diagnóstico de la cadena de suministro, en la que se entrevista a las diferentes partes interesadas para conocer sus limitaciones; y una fase de diseño del producto, en la que se desarrolla un taller que incluye las limitaciones identificadas en el problema de diseño. La metodología se puso a prueba en un estudio de caso: el diseño de productos químicos a partir de la cadena de suministro del aceite de palma. El aceite de palma es el aceite vegetal de mayor productividad, pero está en el punto de mira por sus implicaciones en cuestiones medioambientales y sociales. La fase de diagnóstico contó con la participación de 8 partes interesadas diferentes de la cadena de suministro del aceite de palma. Fueron entrevistadas individualmente mediante entrevistas semiestructuradas de una hora de duración. La información se analizó sistemáticamente utilizando métodos cualitativos. La segunda fase del taller de diseño se llevó a cabo con tres grupos focales, dos con estudiantes de ingeniería química y uno con diseñadores de productos expertos de una empresa latinoamericana de productos alimenticios. Se pidió a los grupos que seleccionaran entre distintos tensioactivos (algunos de ellos a base de aceite de palma) para crear una bebida no láctea de origen vegetal; en un primer momento, sin tener en cuenta las limitaciones de la cadena de suministro, y en un segundo, teniéndolas en cuenta. Los resultados de la primera fase mostraron que los principales requisitos de la cadena de suministro según las partes interesadas entrevistadas son la falta de integración entre los actores de la cadena de suministro (sobre todo en relación con las últimas fases en las que se desarrollan los productos finales), la dependencia de los proveedores de aceite y la posible competencia entre biodiésel y alimentos, y la falta de capacidad de la cadena de suministro para adaptarse a los cambios. Cuando se utilizó esta información para el taller de diseño del producto, los dos grupos de estudiantes modificaron su decisión de diseño al considerar las limitaciones de la cadena de suministro. Por su parte, los diseñadores experimentados no modificaron su diseño, pero descubrieron que este tipo de análisis podría ser relevante para otros productos, por ejemplo, aquellos como las margarinas con alto contenido en aceite.
dc.format.extentxiv, 121 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.lccDiseño de producto
dc.subject.lccProduct design
dc.subject.lccDiseño sustentable
dc.subject.lccSustainable design
dc.titleIntegrated methodology for product design including sustainability criteria and palm oil value chain requirements
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Química
dc.description.researchareaGrupo de Investigación en Procesos Químicos y Bioquímicos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAgouridas, V., Winand, H., McKay, A., & de Pennington, A. (2006). Early alignment of design requirements with stakeholder needs. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 220(9), 1483–1507. https://doi.org/10.1243/09544054JEM404
dc.relation.referencesAllen, D. T., & Shonnard, D. R. (2001). Green engineering: Environmentally conscious design of chemical processes and products. AIChE Journal, 47(9), 1906–1910. https://doi.org/10.1002/aic.690470902
dc.relation.referencesArgoti, A., Orjuela, Á., & Narváez Rincón, P. C. (2019). Challenges and opportunities in assessing sustainability during chemical process. Current Opinion in Chemical Engineering.
dc.relation.referencesArrieta escobar, J. (2018). An Integrated Methodology for Chemical Product Design : Application to Cosmetic Emulsions.
dc.relation.referencesAspers, P., & Corte, U. (2019). What is Qualitative in Qualitative Research. Qualitative Sociology, 42(2), 139–160. https://doi.org/10.1007/s11133-019-9413-7
dc.relation.referencesAuch, E., & Pretzsch, J. (2020). Participative Innovation Platforms (PIP) for Upgrading NTFP Value Chains in East Africa. Small-Scale Forestry, 19(4), 419–438. https://doi.org/10.1007/s11842-020-09442-9
dc.relation.referencesÁvila, A., & Albuquerque, J. (2018). IMPACTOS SOCIOAMBIENTALES DEL CULTIVO DE PALMA AFRICANA: LOS CASOS MEXICANO Y BRASILEÑO. Economía y Sociedad, 23, 62–83.
dc.relation.referencesAzapagic, A., Millington, A., & Collett, A. (2006). A methodology for integrating sustainability considerations into process design. Chemical Engineering Research and Design, 84(6 A), 439–452. https://doi.org/10.1205/cherd05007
dc.relation.referencesBabu, A., Maiya, A., Shah, P., & Veluswamy, S. (2013). Clinical trial registration in physiotherapy research. Perspectives in Clinical Research, 4(3), 191. https://doi.org/10.4103/2229-3485.115387
dc.relation.referencesBairamzadeh, S., Pishvaee, M. S., & Saidi-Mehrabad, M. (2016). Multiobjective Robust Possibilistic Programming Approach to Sustainable Bioethanol Supply Chain Design under Multiple Uncertainties. Industrial and Engineering Chemistry Research, 55(1), 237–256. https://doi.org/10.1021/acs.iecr.5b02875
dc.relation.referencesBarthel, M., Jennings, S., Schreiber, W., Sheane, R., Royston, S., Llp, K., Fry, J., Leng Khor, Y., & McGill, J. (2018). Study on the environmental impact of palm oil consumption and on existing sustainability standards.
dc.relation.referencesBerger, K., Baumgartner, R. J., Weinzerl, M., Bachler, J., Preston, K., & Schöggl, J.-P. (2023). Data requirements and availabilities for a digital battery passport – A value chain actor perspective. Cleaner Production Letters, 4, 100032. https://doi.org/https://doi.org/10.1016/j.clpl.2023.100032
dc.relation.referencesBernardo, F. P., & Saraiva, P. M. (2005). Integrated Process and Product Design Optimization: a Cosmetic Emulsion Application. 15th European Symposium on Computer Aided Process Engineering – ESCAPE15, 1507–1512. https://doi.org/10.1016/S1570-7946(05)80093-8
dc.relation.referencesBoons, F., & Mendoza, A. (2010). Constructing sustainable palm oil: How actors define sustainability. Journal of Cleaner Production, 18(16–17), 1686–1695. https://doi.org/10.1016/j.jclepro.2010.07.003
dc.relation.referencesBurgess, P. R., & Sunmola, F. T. (2021). Prioritising requirements of informational short food supply chain platforms using a fuzzy approach. Procedia Computer Science, 180, 852–861. https://doi.org/10.1016/j.procs.2021.01.335
dc.relation.referencesCárdenas González, A. (2016). La agroindustria de la palma de aceite en América* Oil Palm Agro-industry in America. Revista Palmas, 37, 215–228.
dc.relation.referencesCastellanos-Navarrete, A., de Castro, F., & Pacheco, P. (2021). The impact of oil palm on rural livelihoods and tropical forest landscapes in Latin America. In Journal of Rural Studies (Vol. 81, pp. 294–304). Elsevier Ltd. https://doi.org/10.1016/j.jrurstud.2020.10.047
dc.relation.referencesCharpentier, J.-C. (2010). Among the trends for a modern chemical engineering, the third paradigm: The time and length multiscale approach as an efficient tool for process intensification and product design and engineering. Chemical Engineering Research and Design, 88(3), 248–254. https://doi.org/10.1016/j.cherd.2009.03.008
dc.relation.referencesChiriacò, M. V., Bellotta, M., Jusić, J., & Perugini, L. (2022). Palm oil’s contribution to the United Nations sustainable development goals: Outcomes of a review of socio-economic aspects. In Environmental Research Letters (Vol. 17, Issue 6). Institute of Physics. https://doi.org/10.1088/1748-9326/ac6e77
dc.relation.referencesChoi, S. C., Suh, E. S., & Park, C. J. (2020). Value chain and stakeholder-driven product platform design. Systems Engineering, 23(3), 312–326. https://doi.org/10.1002/sys.21527
dc.relation.referencesChowdhury, M. M. H., Agarwal, R., & Quaddus, M. (2019). Dynamic capabilities for meeting stakeholders’ sustainability requirements in supply chain. Journal of Cleaner Production, 215, 34–45. https://doi.org/10.1016/j.jclepro.2018.12.222
dc.relation.referencesCignitti, S., Mansouri, S. S., Woodley, J. M., & Abildskov, J. (2018). Systematic Optimization-Based Integrated Chemical Product-Process Design Framework. Industrial and Engineering Chemistry Research, 57(2), 677–688. https://doi.org/10.1021/acs.iecr.7b04216
dc.relation.referencesCisternas, L. A., & Gálvez, E. D. (2006). Principles for chemical products design. In Computer Aided Chemical Engineering (Vol. 21, Issue C). https://doi.org/10.1016/S1570-7946(06)80194-X
dc.relation.referencesConte, E., Gani, R., & Ng, K. M. (2011). Design of formulated products: A systematic methodology. AIChE Journal, 57(9), 2431–2449. https://doi.org/10.1002/aic.12458
dc.relation.referencesContreras-Zarazúa, G., Martin, M., Ponce-Ortega, J. M., & Segovia-Hernández, J. G. (2021). Sustainable Design of an Optimal Supply Chain for Furfural Production from Agricultural Wastes. Industrial and Engineering Chemistry Research, 60(40), 14495–14510. https://doi.org/10.1021/acs.iecr.1c01847
dc.relation.referencesCrowe, S., Cresswell, K., Robertson, A., Huby, G., Avery, A., & Sheikh, A. (2011). The case study approach. BMC Medical Research Methodology, 11. https://doi.org/10.1186/1471-2288-11-100
dc.relation.referencesCussler, E. (2011). Chemical product design. Cambridge university press.
dc.relation.referencesCussler, E. L., & Moggridge, G. D. (2011). Chemical product design, second edition. In Chemical Product Design, Second Edition (Vol. 9780521168, pp. 1–432).
dc.relation.referencesDiaz-Barriga-Fernandez, A. D., Santibañez-Aguilar, J. E., Radwan, N., Nápoles-Rivera, F., El-Halwagi, M. M., & Ponce-Ortega, J. M. (2017). Strategic Planning for Managing Municipal Solid Wastes with Consideration of Multiple Stakeholders. ACS Sustainable Chemistry and Engineering, 5(11), 10744–10762. https://doi.org/10.1021/acssuschemeng.7b02717
dc.relation.referencesEarl, G., & Clift, R. (1999). Stakeholder value analysis: a methodology for intergrating stakeholder values into corporate enviromental investment decisions. Business Strategy and the Environment, 8(3), 149–162. https://doi.org/10.1002/(sici)1099-0836(199905/06)8:3<149::aid-bse199>3.0.co;2-q
dc.relation.referencesEaswaramoorthy, M., & Zarinpoush, F. (2006). Interviewing for research. www.fao.org/docrep/W3241E/
dc.relation.referencesEddy, D. C., Krishnamurty, S., Grosse, I. R., Wileden, J. C., & Lewis, K. E. (2013). A normative decision analysis method for the sustainability-based design of products. Journal of Engineering Design, 24(5), 342–362. https://doi.org/10.1080/09544828.2012.745931
dc.relation.referencesEscribano, M., Díaz-Caro, C., & Mesias, F. J. (2018). A participative approach to develop sustainability indicators for dehesa agroforestry farms. Science of the Total Environment, 640–641, 89–97. https://doi.org/10.1016/j.scitotenv.2018.05.297
dc.relation.referencesEspinoza Pérez, A. T., Camargo, M., Narváez Rincón, P. C., & Alfaro Marchant, M. (2017). Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: A bibliographic analysis. Renewable and Sustainable Energy Reviews, 69, 350–359. https://doi.org/10.1016/J.RSER.2016.11.084
dc.relation.referencesEspinoza Pérez, A. T., Narváez Rincón, P. C., Camargo, M., & Alfaro Marchant, M. D. (2019). Multiobjective optimization for the design of phase III biorefinery sustainable supply chain. Journal of Cleaner Production, 223, 189–213. https://doi.org/10.1016/J.JCLEPRO.2019.02.268
dc.relation.referencesFAO. (2021). Food Outlook – Biannual Report on Global Food Markets. http://www.fao.org/economic/est/publications/oilcrops-publications/
dc.relation.referencesFedepalma. (2019). INTERPRETACIÓN NACIONAL ( IN ) PARA COLOMBIA DE LOS PRINCIPIOS Y CRITERIOS DE LA ROUNDTABLE ON SUSTAINABLE PALM OIL INFORME PARA ETAPA DE Junio.
dc.relation.referencesFritz, M. M. C., Rauter, R., Baumgartner, R. J., & Dentchev, N. (2018). A supply chain perspective of stakeholder identification as a tool for responsible policy and decision-making. Environmental Science and Policy, 81, 63–76. https://doi.org/10.1016/j.envsci.2017.12.011
dc.relation.referencesFrutiger, J., Cignitti, S., Abildskov, J., Woodley, J. M., & Sin, G. (2017). Computational chemical product design problems under property uncertainties. In Computer Aided Chemical Engineering (Vol. 40). https://doi.org/10.1016/B978-0-444-63965-3.50164-1
dc.relation.referencesFung, K. Y., Ng, K. M., Zhang, L., & Gani, R. (2016a). A grand model for chemical product design. Computers and Chemical Engineering, 91, 15–27. https://doi.org/10.1016/j.compchemeng.2016.03.009
dc.relation.referencesFung, K. Y., Ng, K. M., Zhang, L., & Gani, R. (2016b). A grand model for chemical product design. Computers and Chemical Engineering, 91, 15–27. https://doi.org/10.1016/j.compchemeng.2016.03.009
dc.relation.referencesGan, T. S., & Grunow, M. (2016). Concurrent product and supply chain design: a literature review, an exploratory research framework and a process for modularity design. International Journal of Computer Integrated Manufacturing, 29(12), 1255–1271. https://doi.org/10.1080/0951192X.2015.1067908
dc.relation.referencesGani, R. (2004a). Chemical product design: Challenges and opportunities. Computers and Chemical Engineering, 28(12), 2441–2457. https://doi.org/10.1016/j.compchemeng.2004.08.010
dc.relation.referencesGani, R. (2004b). Computer-aided methods and tools for chemical product design. Chemical Engineering Research and Design, 82(11), 1494–1504. https://doi.org/10.1205/cerd.82.11.1494.52032
dc.relation.referencesGani, R., & Ng, K. M. (2015). Product design – Molecules, devices, functional products, and formulated products. Computers & Chemical Engineering, 1–10. https://doi.org/10.1016/j.compchemeng.2015.04.013
dc.relation.referencesGarcés, I. C., & Cuellar Sánchez, M. (1997). Products derived from the palm oil industry. Uses.
dc.relation.referencesGarriga, E. (2014). Beyond Stakeholder Utility Function: Stakeholder Capability in the Value Creation Process. In Source: Journal of Business Ethics (Vol. 120, Issue 4).
dc.relation.referencesGarzon, F. S., Enjolras, M., Camargo, M., & Morel, L. (2019). A green procurement methodology based on Kraljic Matrix for supplier`s evaluation and selection: a case study from the chemical sector. Supply Chain Forum: An International Journal, 20(3), 185–201. https://doi.org/10.1080/16258312.2019.1622446
dc.relation.referencesGrote, C. A., Jones, R. M., Blount, G. N., Goodyer, J., & Shayler, M. (2007). An approach to the EuP Directive and the application of the economic eco-design for complex products. International Journal of Production Research, 45(18–19), 4099–4117. https://doi.org/10.1080/00207540701450088
dc.relation.referencesGundumogula, M. (2020). Importance of Focus Groups in Qualitative Research. International Journal of Humanities and Social Science (IJHSS), 2020(11), 11. https://doi.org/10.24940/theijhss/2020/v8/i11/HS2011-082ï
dc.relation.referencesHamdani, F.-E., Quintero, I. A. Q., Enjolras, M., Camargo, M., Monticolo, D., & Lelong, C. (2022). Agile supply chain analytic approach: a case study combining agile and CRISP-DM in an end-to-end supply chain. Supply Chain Forum: An International Journal, 0(0), 1–15. https://doi.org/10.1080/16258312.2022.2064721
dc.relation.referencesHapuwatte, B. M., & Jawahir, I. S. (2021). Closed-loop sustainable product design for circular economy. Journal of Industrial Ecology, 25(6), 1430–1446. https://doi.org/10.1111/jiec.13154
dc.relation.referencesHarrell, M., & Bradley, M. (2009). Data Collection Methods Semi-Structured Interviews and Focus Groups. RAND Corporation. www.rand.org
dc.relation.referencesHaussmann, Y., & Wuttke, C. C. (2020). Strategic planning of continuous stakeholder involvement in the design of industrial product-service systems. IET Collaborative Intelligent Manufacturing, 2(3), 123–131. https://doi.org/10.1049/IET-CIM.2019.0059
dc.relation.referencesHeintz, J. (2012). Systemic approach and decision process for sustainability in chemical engineering: Applcation to computer aided product design. PhD Thesis. Université de Toulouse.
dc.relation.referencesHeintz, J., Belaud, J.-P., & Gerbaud, V. (2014). Chemical enterprise model and decision-making framework for sustainable chemical product design. Computers in Industry, 65(3), 505–520. https://doi.org/10.1016/j.compind.2014.01.010
dc.relation.referencesHellin, J., & Meijer, M. (2006). Guidelines for value chain analysis. Analysis, November.
dc.relation.referencesHerremans, I. M., Nazari, J. A., & Mahmoudian, F. (2016). Stakeholder Relationships, Engagement, and Sustainability Reporting. In Source: Journal of Business Ethics (Vol. 138, Issue 3).
dc.relation.referencesHyett, N., Kenny, A., & Dickson-Swift, V. (2014). Methodology or method? a critical review of qualitative case study reports. In International Journal of Qualitative Studies on Health and Well-being (Vol. 9, Issue 1). Informa Healthcare. https://doi.org/10.3402/qhw.v9.23606
dc.relation.referencesJamshed, S. (2014). Qualitative research method-interviewing and observation. Journal of Basic and Clinical Pharmacy, 5(4), 87. https://doi.org/10.4103/0976-0105.141942
dc.relation.referencesKalakul, S., Cignitti, S., Zhang, L., & Gani, R. (2016). Integrated Computer-aided Framework for Sustainable Chemical Product Design and Evaluation. In Computer Aided Chemical Engineering (Vol. 38). https://doi.org/10.1016/B978-0-444-63428-3.50395-7
dc.relation.referencesKallio, H., Pietilä, A. M., Johnson, M., & Kangasniemi, M. (2016). Systematic methodological review: developing a framework for a qualitative semi-structured interview guide. In Journal of Advanced Nursing (Vol. 72, Issue 12, pp. 2954–2965). Blackwell Publishing Ltd. https://doi.org/10.1111/jan.13031
dc.relation.referencesKavanagh, L., & Lant, P. (2006). Introduction to Chemical Product Design. A Hands-on Approach. Education for Chemical Engineers, 1(1), 66–71. https://doi.org/10.1205/ece.05001
dc.relation.referencesKhan, O., Stolte, T., Creazza, A., & Hansen, Z. N. L. (2016). Integrating product design into the supply chain. Cogent Engineering, 3(1), 1–24. https://doi.org/10.1080/23311916.2016.1210478
dc.relation.referencesKontogeorgis, G. M., Jhamb, S., Liang, X., & Dam-Johansen, K. (2022). Computer-aided design of formulated products. Current Opinion in Colloid and Interface Science, 57, 101536. https://doi.org/10.1016/j.cocis.2021.101536
dc.relation.referencesLai, Y. Y., Yik, K. C. H., Hau, H. P., Chow, C. P., & Ng, L. Y. (2017). Systematic decision making methodology for chemical product design in integrated biorefineries. In Computer Aided Chemical Engineering (Vol. 40). https://doi.org/10.1016/B978-0-444-63965-3.50297-X
dc.relation.referencesle Van, Q., Viet Nguyen, T., & Nguyen, M. H. (2019). Sustainable development and environmental policy: The engagement of stakeholders in green products in Vietnam. Business Strategy and the Environment, 28(5), 675–687. https://doi.org/10.1002/bse.2272
dc.relation.referencesLipsa. (2018). Aceite de Palma: Cultivo, Procesos de Obtención, Refinación y Transformación. 1–26.
dc.relation.referencesLu, Y., & Xu, W. (2013). Study on design of life circle assessment system for chemical products. Journal of Chemical and Pharmaceutical Research, 5(11), 69–72.
dc.relation.referencesMack, N., Woodsong, C., MacQueen, K., Guest, G., & Namey, E. (2011). Qualitative Research Methods: A data collector’s field guide. www.fhi360.org.
dc.relation.referencesMalaysian Palm Oil Board. (2021). MONTHLY EXPORT OF OIL PALM PRODUCTS - 2021.
dc.relation.referencesMarche, B., Boly, V., Morel, L., Camargo, M., & Ortt, J. R. (2017). Overview of phenomena occurring in supply chains during the emergence of innovation. Supply Chain Forum: An International Journal, 18(3), 150–165. https://doi.org/10.1080/16258312.2017.1354649
dc.relation.referencesMarche, B., Boly, V., Morel, L., Mayer, F., & Ortt, R. (2019). Agility and product supply chain design: The case of the Swatch. Journal of Innovation Economics & Management, n° 28(1), 79–109. https://doi.org/10.3917/jie.028.0079
dc.relation.referencesMartín, M., & Martínez, A. (2013). A methodology for simultaneous process and product design in the formulated consumer products industry: The case study of the detergent business. Chemical Engineering Research and Design, 91(5), 795–809. https://doi.org/10.1016/j.cherd.2012.08.012
dc.relation.referencesMartinez-Hernandez, E. (2017). Trends in sustainable process design—from molecular to global scales. Current Opinion in Chemical Engineering, 17, 35–41. https://doi.org/10.1016/j.coche.2017.05.005
dc.relation.referencesMatos, S., & Hall, J. (2007). Integrating sustainable development in the supply chain: The case of life cycle assessment in oil and gas and agricultural biotechnology. Journal of Operations Management, 25(6), 1083–1102. https://doi.org/10.1016/j.jom.2007.01.013
dc.relation.referencesMattei, M., Kontogeorgis, G. M., & Gani, R. (2012). A Systematic Methodology for Design of Emulsion Based Chemical Products. In Computer Aided Chemical Engineering (Vol. 31). https://doi.org/10.1016/B978-0-444-59507-2.50036-6
dc.relation.referencesMertler, C. (2018). Methods of Data Collection in quantitative, qualitative and mixed reserach. In Introduction to educational research (Vol. 2). SAGE Publications, Inc.
dc.relation.referencesMiles, M. B., Huberman, M., & Saldaña, J. (2014). Qualitative data analysis A methods Sourcebook (3rd Editio). SAGE Publications.
dc.relation.referencesMillán-Quijano, J., & Pulgarín, S. (2023). Oiling up the field. Forced internal displacement and the expansion of palm oil in Colombia. World Development, 162, 106130. https://doi.org/10.1016/j.worlddev.2022.106130
dc.relation.referencesMinagricultura. (2017). Cadena de palma de aceite.
dc.relation.referencesMinagricultura. (2020). Cadena de palma de aceite, indicadores e instrumentos. Lecturas de Economia, 1–25. https://sioc.minagricultura.gov.co/Palma/Documentos/2020-03-30 Cifras Sectoriales.pdf
dc.relation.referencesMohd, B. W., Siti Nor, A. A., & Henson, I. E. (2005). Oil palm - Achievements and potential. In Plant Production Science (Vol. 8, Issue 3, pp. 288–297). https://doi.org/10.1626/pps.8.288
dc.relation.referencesMorgan-Trimmer, S., & Wood, F. (2016). Ethnographic methods for process evaluations of complex health behaviour interventions. Trials, 17(1). https://doi.org/10.1186/s13063-016-1340-2
dc.relation.referencesMosquera, M., & Lopez, D. (2017). Sustainable-certified Oil Palm: Analysis of the Value Chain. In Revista Palmas. Bogotá (Colombia) (Vol. 38, Issue 1).
dc.relation.referencesMuscat, A., de Olde, E. M., de Boer, I. J. M., & Ripoll-Bosch, R. (2020). The battle for biomass: A systematic review of food-feed-fuel competition. In Global Food Security (Vol. 25). Elsevier B.V. https://doi.org/10.1016/j.gfs.2019.100330
dc.relation.referencesNarváez Rincón, P. C., Serna, J., Orjuela, A., & Camargo, M. (2020). Sustainability assessment for chemical product and process design during early design stages. In J. Ren, Y. Wang, & C. He (Eds.), Towards Sustainable Chemical Processes. Elsevier.
dc.relation.referencesNg, L. Y., Andiappan, V., Chemmangattuvalappil, N. G., & Ng, D. K. S. (2015). Novel methodology for the synthesis of optimal biochemicals in integrated biorefineries via inverse design techniques. Industrial and Engineering Chemistry Research, 54(21), 5722–5735. https://doi.org/10.1021/acs.iecr.5b00217
dc.relation.referencesNg, L. Y., Chemmangattuvalappil, N. G., & Ng, D. K. S. (2014a). A multiobjective optimization-based approach for optimal chemical product design. Industrial and Engineering Chemistry Research, 53(44), 17429–17444. https://doi.org/10.1021/ie502906a
dc.relation.referencesNg, L. Y., Chemmangattuvalappil, N. G., & Ng, D. K. S. (2014b). A multiobjective optimization-based approach for optimal chemical product design. Industrial and Engineering Chemistry Research, 53(44), 17429–17444. https://doi.org/10.1021/ie502906a
dc.relation.referencesNishanth G., & Ng, D. K. S. (2013). A systematic methodology for optimal product design in an integrated biorefinery. In Computer Aided Chemical Engineering (Vol. 32, pp. 91–96). Elsevier B.V. https://doi.org/10.1016/B978-0-444-63234-0.50016-6
dc.relation.referencesÖzkir, V., & Başligil, H. (2012). Modelling product-recovery processes in closed-loop supply-chain network design. International Journal of Production Research, 50(8), 2218–2233. https://doi.org/10.1080/00207543.2011.575092
dc.relation.referencesPacheco, P., Schoneveld, G., Dermawan, A., Komarudin, H., & Djama, M. (2020). Governing sustainable palm oil supply: Disconnects, complementarities, and antagonisms between state regulations and private standards. In Regulation and Governance (Vol. 14, Issue 3, pp. 568–598). Blackwell Publishing. https://doi.org/10.1111/rego.12220
dc.relation.referencesParkhomenko, S. (2004). Institute of Farm Ecology International competitiveness of soybean, rapeseed and palm oil production in major producing regions.
dc.relation.referencesRafflegeau S., F. (2013). Desarrollo de la palma de aceite: riesgos y oportunidades con base en las lecciones aprendidas de Camerún e Indonesia. Palmas, 34(2), 351–370.
dc.relation.referencesRaj, T. S., & Lakshminarayanan, S. (2008). Performance assessment/enhancement methodology for supply chains. Industrial and Engineering Chemistry Research, 47(3), 748–759. https://doi.org/10.1021/ie070256e
dc.relation.referencesRajeev, A., Pati, R. K., & Padhi, S. S. (2019). Sustainable supply chain management in the chemical industry: Evolution, opportunities, and challenges. In Resources, Conservation and Recycling (Vol. 149, pp. 275–291). Elsevier B.V. https://doi.org/10.1016/j.resconrec.2019.05.020
dc.relation.referencesRamírez, M. C., Sanabria, J. P., Duarte, D. M., & Caicedo, L. C. (2015). Methodology to Support Participative Decision-Making with Vulnerable Communities. Case Study: Engineers Without Borders Colombia/Ingenieros Sin Fronteras Colombia—ISFCOL. Systemic Practice and Action Research, 28(2), 125–161. https://doi.org/10.1007/s11213-014-9325-0
dc.relation.referencesReeves, S., Peller, J., Goldman, J., & Kitto, S. (2013). Ethnography in qualitative educational research: AMEE Guide No. 80. Medical Teacher, 35(8). https://doi.org/10.3109/0142159X.2013.804977
dc.relation.referencesReitsma, E., Hilletofth, P., & Johansson, E. (2023). Supply chain design during product development: a systematic literature review. Production Planning and Control, 34(1), 1–18. https://doi.org/10.1080/09537287.2021.1884763
dc.relation.referencesRivera Gil, J. L. (2022). A system approach to support a methodology for the design of formulated cosmetic products in the context of companies. Université de Lorraine.
dc.relation.referencesRivera Gil, J. L., Serna, J., Arrieta-Escobar, J. A., Narváez Rincón, P. C., Boly, V., & Falk, V. (2022a). Triggers for chemical product design: A systematic literature review. AIChE Journal, 68(4). https://doi.org/10.1002/aic.17563
dc.relation.referencesRivera Gil, J. L., Serna, J., Arrieta-Escobar, J. A., Narváez Rincón, P. C., Boly, V., & Falk, V. (2022b). Triggers for chemical product design: A systematic literature review. In AIChE Journal (Vol. 68, Issue 4). John Wiley and Sons Inc. https://doi.org/10.1002/aic.17563
dc.relation.referencesROBECO. (2022). Our approach to sustainable investing in palm oil.
dc.relation.referencesRoth, A., Pinta, F., Negny, S., & Montastruc, L. (2021). Importing participatory practices of the socio-environmental systems community to the process system engineering community: An application to supply chain. Computers and Chemical Engineering, 155. https://doi.org/10.1016/j.compchemeng.2021.107530
dc.relation.referencesSahebi, H., Nickel, S., & Ashayeri, J. (2014). Environmentally conscious design of upstream crude oil supply chain. Industrial and Engineering Chemistry Research, 53(28), 11501–11511. https://doi.org/10.1021/ie403492c
dc.relation.referencesSakai, K., Hassan, M. A., Vairappan, C. S., & Shirai, Y. (2022). Promotion of a green economy with the palm oil industry for biodiversity conservation: A touchstone toward a sustainable bioindustry. In Journal of Bioscience and Bioengineering (Vol. 133, Issue 5, pp. 414–424). Elsevier B.V. https://doi.org/10.1016/j.jbiosc.2022.01.001
dc.relation.referencesSakao, T. (2007). A QFD-centred design methodology for environmentally conscious product design. International Journal of Production Research, 45(18–19), 4143–4162. https://doi.org/10.1080/00207540701450179
dc.relation.referencesSantander, P., Cruz Sanchez, F. A., Boudaoud, H., & Camargo, M. (2020). Closed loop supply chain network for local and distributed plastic recycling for 3D printing: a MILP-based optimization approach. Resources, Conservation and Recycling, 154, 104531. https://doi.org/10.1016/J.RESCONREC.2019.104531
dc.relation.referencesSantibañez-Aguilar, J. E., Flores-Tlacuahuac, A., Lozano-Garciá, D. F., & Lozano, F. J. (2019). Novel Approach for Weighting in the Geographic Information System Focused on a Multistakeholder Problem: Case for the Residual Biomass Processing System. Industrial and Engineering Chemistry Research, 58(51), 23249–23260. https://doi.org/10.1021/acs.iecr.9b04759
dc.relation.referencesSayago, A., Marín, M. I., Aparicio, R., & Morales, M. T. (2007). Vitamina E y aceites vegetales. Grasas y Aceites, 58(1), 74–86. https://doi.org/10.3989/gya.2007.v58.i1.11
dc.relation.referencesSchmidt, J., & de Rosa, M. (2020). Certified palm oil reduces greenhouse gas emissions compared to non-certified. Journal of Cleaner Production, 277. https://doi.org/10.1016/j.jclepro.2020.124045
dc.relation.referencesSeider, W. D., Widagdo, S., Seader, J. D., & Lewin, D. R. (2009). Perspectives on chemical product and process design. Computers and Chemical Engineering, 33(5), 930–935. https://doi.org/10.1016/j.compchemeng.2008.10.019
dc.relation.referencesSerna, J., Narváez Rincón, P. C., Falk, V., Boly, V., & Camargo, M. (2021). Methodology for Emulsion Design Based on Emulsion Science and Expert Knowledge. Part 2: An Application in the Cosmetics Sector. Industrial and Engineering Chemistry Research, 60(14), 5220–5235. https://doi.org/10.1021/acs.iecr.1c00866
dc.relation.referencesSerna Rodas, J. (2018). Methodological approach for the sustainable design of structured chemical products during early design stages.
dc.relation.referencesShohan, S., Ali, S. M., Kabir, G., Ahmed, S. K. K., Suhi, S. A., & Haque, T. (2019). Green supply chain management in the chemical industry: structural framework of drivers. International Journal of Sustainable Development and World Ecology, 26(8), 752–768. https://doi.org/10.1080/13504509.2019.1674406
dc.relation.referencesSmith, B. V., & Ierapepritou, M. G. (2010). Integrative chemical product design strategies: Reflecting industry trends and challenges. Computers and Chemical Engineering, 34(6), 857–865. https://doi.org/10.1016/j.compchemeng.2010.02.039
dc.relation.referencesSmith, B. V., & Ierapepritou, M. (2009). Framework for consumer-integrated optimal product design. Industrial and Engineering Chemistry Research, 48(18), 8566–8574. https://doi.org/10.1021/ie900377e
dc.relation.referencesSolidaridad Network. (2020). Barometer on sustainable palm oil production and trade. Colombia 2020.
dc.relation.referencesSpradley, J. (2016). The ethnographic interview. Waveland Press, Inc.
dc.relation.referencesSuárez Palacios, O. Y. (2011). Production et modélisation de glycérol-esters comme plastifiants pour le PVC. http://www.theses.fr/2011INPL048N/document
dc.relation.referencesSun, X., Houssin, R., Renaud, J., & Gardoni, M. (2019). A review of methodologies for integrating human factors and ergonomics in engineering design. In International Journal of Production Research (Vol. 57, Issues 15–16, pp. 4961–4976). Taylor and Francis Ltd. https://doi.org/10.1080/00207543.2018.1492161
dc.relation.referencesTapia, J. F. D., & Samsatli, S. (2020). Integrating fuzzy analytic hierarchy process into a multi-objective optimisation model for planning sustainable oil palm value chains. Food and Bioproducts Processing, 119, 48–74. https://doi.org/10.1016/j.fbp.2019.10.002
dc.relation.referencesTseng, K. C., & Abdalla, H. (2006). A novel approach to collaborative product design and development environment. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 220(12), 1997–2020. https://doi.org/10.1243/09544054JEM485
dc.relation.referencesUhlemann, J., Costa, R., & Charpentier, J. C. (2020). Product design and engineering — past, present, future trends in teaching, research and practices: academic and industry points of view. In Current Opinion in Chemical Engineering (Vol. 27, pp. 10–21). Elsevier Ltd. https://doi.org/10.1016/j.coche.2019.10.003
dc.relation.referencesUnited Nations. (2020). Mapping the Palm Oil Value Chain Opportunities for sustainable palm oil in Indonesia and China.
dc.relation.referencesvan den Berg, J., Ingram, V. J., Judge, L. O., & Arets, E. J. M. M. (2014). Integrating ecosystem services into tropical commodity value chains-cocoa, soy and palm oil Dutch policy options from an innovation system approach.
dc.relation.referencesVogt, C., Allers, T., Brosig, G., Eckert, A., Engelke, K., Jung, M., Polt, A., Schultz, H., & Sonnenschein, M. (2005). Paradigm shift and requirements in enhanced value chain design in the chemical industry. Chemical Engineering Research and Design, 83(6 A), 759–765. https://doi.org/10.1205/cherd.04373
dc.relation.referencesVoinov, A., & Bousquet, F. (2010). Modelling with stakeholders. Environmental Modelling and Software, 25(11), 1268–1281. https://doi.org/10.1016/j.envsoft.2010.03.007
dc.relation.referencesWang, R., Lee, K. E., Mokhtar, M., & Goh, T. L. (2022). The Challenges of Palm Oil Sustainable Consumption and Production in China: An Institutional Theory Perspective. Sustainability (Switzerland), 14(8). https://doi.org/10.3390/su14084856
dc.relation.referencesWeiss, S. I. (2004). 5.1.1 From Stakeholder Values to Product Requirements. INCOSE International Symposium, 14(1), 908–916. https://doi.org/10.1002/j.2334-5837.2004.tb00544.x
dc.relation.referencesWWF. (2012). Profitability and Sustainability in Palm Oil Production: Analysis of Incremental Financial Costs and Benefits of RSPO Compliance.
dc.relation.referencesYan, W., Chen, C. H., & Chang, W. (2009). An investigation into sustainable product conceptualization using a design knowledge hierarchy and Hopfield network. Computers and Industrial Engineering, 56(4), 1617–1626. https://doi.org/10.1016/j.cie.2008.10.015
dc.relation.referencesYue, D., Kim, M. A., & You, F. (2013). Design of sustainable product systems and supply chains with life cycle optimization based on functional unit: General modeling framework, mixed-integer nonlinear programming algorithms and case study on hydrocarbon biofuels. ACS Sustainable Chemistry and Engineering, 1(8), 1003–1014. https://doi.org/10.1021/sc400080x
dc.relation.referencesZahraee, S. M., Golroudbary, S. R., Shiwakoti, N., & Stasinopoulos, P. (2022). Palm oil biomass global supply chain: Environmental emissions vs. technology development of maritime transportation. Procedia CIRP, 105, 817–822. https://doi.org/10.1016/j.procir.2022.02.135
dc.relation.referencesZarei, M., Niaz, H., Dickson, R., Ryu, J. H., & Liu, J. J. (2021). Optimal Design of the Biofuel Supply Chain Utilizing Multiple Feedstocks: A Korean Case Study. ACS Sustainable Chemistry and Engineering, 9(44), 14690–14703. https://doi.org/10.1021/acssuschemeng.1c03945
dc.relation.referencesZhang, L., Mao, H., Liu, Q., & Gani, R. (2020). Chemical product design – recent advances and perspectives. In Current Opinion in Chemical Engineering (Vol. 27, pp. 22–34). Elsevier Ltd. https://doi.org/10.1016/j.coche.2019.10.005
dc.relation.referencesZimmer, Y. (2010). Competitiveness of rapeseed, soybeans and palm oil. In Journal of Oilseed Brassica (Vol. 1, Issue 2).
dc.relation.referencesZuin, V. G. (2016). Circularity in green chemical products, processes and services: Innovative routes based on integrated eco-design and solution systems. Current Opinion in Green and Sustainable Chemistry, 2, 40–44. https://doi.org/10.1016/j.cogsc.2016.09.008
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembProductos de palma - Abastecimiento y distribución
dc.subject.lembPalm products - Supply and distribution
dc.subject.lembPalm oil industry - Supply and distribution
dc.subject.lembIndustria del aceite de palma - Abastecimiento y distribución
dc.subject.proposalDesign methodology
dc.subject.proposalSupply Chain
dc.subject.proposalValue Chain
dc.subject.proposalSustainability
dc.subject.proposalChemical product design
dc.subject.proposalPalm oil
dc.subject.proposalMetodología de diseño
dc.subject.proposalCadena de suministros
dc.subject.proposalCadena de valor
dc.subject.proposalSostenibilidad
dc.subject.proposalDiseño de productos químicos
dc.subject.proposalAceite de palma
dc.title.translatedMetodología integrada para el diseño de productos incluyendo criterios de sostenibilidad y los requerimientos de la cadena de valor del aceite de palma
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dc.contributor.orcidMontañez Abril, Mauro Andrés [0000-0002-8304-4310]
dc.subject.wikidataCadena de valor
dc.subject.wikidataValue chain


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito