Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorPinzón Botero, María Victoria
dc.contributor.authorAlbornoz Manyoma, Guillermo Andrés
dc.date.accessioned2024-02-12T14:26:35Z
dc.date.available2024-02-12T14:26:35Z
dc.date.issued2024
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85680
dc.descriptionIlustraciones, fotografías, mapas , tablas
dc.description.abstractEs importante tener criterios para clasificar las áreas con cobertura arbórea a partir de la generación de servicios ecosistémicos, para priorizar la conservación y aportar de manera efectiva a los instrumentos de planificación. Estas áreas son un elemento esencial en el espacio urbano porque aportan servicios ecosistémicos, principalmente relacionados con la regulación del clima, el ciclo del agua y la recreación. También, contribuyen a alcanzar los Objetivos de desarrollo sostenible 11 y 15 al incentivar la trasformación de las áreas urbanas en espacios sostenibles, inclusivos, seguros y resilientes. La investigación se desarrolló con una metodología flexible que permite adaptarse a diferentes regiones, sirviendo como herramienta para los instrumentos de planificación territorial. La metodología se basó en el análisis bibliométrico y la revisión sistemática de literatura académica y gris, para identificar y evaluar con métodos estadísticos las variables estratégicas territoriales (VTU) para la silvicultura urbana y los servicios ecosistémicos (SE) relacionados con la cobertura arbórea. La investigación propuso criterios relevantes que permiten tomar decisiones de planificación en cuanto a las áreas arbóreas, para caracterizarlas y clasificarlas en categorías con el propósito de generar mayores servicios ecosistémicos urbanos. Se aplicaron los criterios de clasificación al corredor del río Cali, que es uno de los sectores que tiene mayores áreas con cobertura arbórea de la ciudad de Santiago de Cali, obteniendo como resultado que más del 40% de las áreas con cobertura arbórea se clasifican como áreas para la recuperación. La investigación concluyó que las áreas de menor extensión y distribuidas espacialmente en la periferia del corredor del Río Cali son las que tienen mayor relevancia para la preservación. Siendo así, los entes municipales deberían centrar la gestión en los espacios intervenidos y aledaños al río Cali, para aumentar la cobertura arbórea que llevaría a la generación de más servicios ecosistémicos. (Texto tomado de la fuente)
dc.description.abstractIt is important to have criteria to classify areas with tree cover based on the generation of ecosystem services, in order to prioritize conservation and contribute effectively to planning instruments. These areas are an essential element in the urban space because they provide ecosystem services, mainly related to climate regulation, the water cycle and recreation. They also contribute to achieving Sustainable Development Goals 11 and 15 by encouraging the transformation of urban areas into sustainable, inclusive, safe and resilient spaces. The research was developed with a flexible methodology that can be adapted to different regions, serving as a tool for territorial planning instruments. The methodology was based on bibliometric analysis and systematic review of academic and grey literature, to identify and evaluate with statistical methods the strategic territorial variables (VTU) for urban forestry and ecosystem services (ES) related to tree cover. The research proposed relevant criteria that allow planning decisions to be made regarding tree areas, to characterize them and classify them into categories with the purpose of generating greater urban ecosystem services. The classification criteria were applied to the Cali River corridor, which is one of the sectors with the largest areas with tree cover in the city of Santiago de Cali, obtaining as a result that more than 40% of the areas with tree cover are classified as areas for recovery. The research concluded that the areas of lesser extension and spatially distributed in the periphery of the Cali River corridor are the most relevant for conservation. Thus, the municipal entities should focus their efforts on the intervened areas adjacent to the Cali River in order to increase tree cover, which would lead to the generation of more ecosystem services.
dc.format.extentvii, 109páginas + anexos
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleCriterios para la clasificación de áreas urbanas con cobertura arbórea según sus servicios ecosistémicos: Corredor Río Cali, Cali Colombia
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programPalmira - Ingeniería y Administración - Maestría en Ingeniería - Ingeniería Ambiental
dc.coverage.regionCorredor Rio Cali, Cali, Valle del Cauca, Colombia
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Ambiental
dc.description.methods. La investigación se desarrolló con una metodología flexible que permite adaptarse a diferentes regiones, sirviendo como herramienta para los instrumentos de planificación territorial. La metodología se basó en el análisis bibliométrico y la revisión sistemática de literatura académica y gris, para identificar y evaluar con métodos estadísticos las variables estratégicas territoriales (VTU) para la silvicultura urbana y los servicios ecosistémicos (SE) relacionados con la cobertura arbórea. • Etapa I denominada Alistamiento: Esta atapa abordó parcialmente los objetivos 1 y 2 logrando identificar las VTU y los SE asociados con las áreas urbanas y coberturas arbóreas. Se realizó a partir de la evaluación de la literatura temática académica y literatura gris por medio de análisis bibliométrico y revisión sistemática. Estos dos métodos se utilizaron para ampliar el rango de búsqueda evitando el sesgo de ubicación de los documentos y líneas de investigación. Las VTU y los SE se identificaron a partir de la revisión uno a uno del material bibliográfico seleccionado. • Etapa II denominada VTU: Esta etapa complementó el objetivo 1 logrando evaluar las VTU. Se realizó a partir del análisis de clúster jerárquico (dendrograma) determinado por la relación espacial de distancia entre la cobertura arbórea (censo arbóreo) y las VTU. Con este proceso se determinaron las Variables estratégicas Territoriales Urbanas (VeTU). Este método se utilizó para agilizar el procesamiento de los datos manteniendo la rigurosidad para obtener las variables estratégicas según la distancia a la cobertura arbórea. Las VTU se evalúan a partir de la distancia a la cobertura arbórea identificada (individuo arboreo) en el censo. Las VeTU son las VTU que tienen menor distancia a la cobertura arbórea. • Etapa III denominada SE: Esta etapa complementó el objetivo 2 logrando evaluar los SE. Se realizó a partir de la adaptación del cálculo del Índice de Servicios Ecosistémicos para Áreas Verdes (ISEAV) y árbol de decisión para estimar los indicadores e inferir los Servicios Ecosistémicos priorizados (SEp). Este método se utilizó para facilitar la toma de datos y agilizar el procesamiento de cada función ecosistémica. Los SE se evaluaron a partir de calcular el Índice de Servicios Ecosistémicos para Áreas Verdes (ISEAV) obtenido de la digitalización y caracterización de las coberturas. • Etapa IV denominada criterios de clasificación: Esta etapa abordó el objetivo 3 logrando relacionar los resultados de las etapas previas para finalmente proponer criterios de clasificación de las áreas urbanas con cobertura arbórea. Se realizó a partir de una matriz de relación de influencia de las VeTU y los SEp calificada por expertos (encuesta a expertos) para integrarla con los resultados previos. Este método se utilizó para abarcar diferentes enfoques profesionales y académicos que permitieran dilucidar las relaciones de influencia. • Etapa V denominada caso de estudio: Esta etapa se aplicaron los criterios de clasificación al caso del corredor del río Cali.
dc.description.researchareaPlaneación y desarrollo territorial
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería y Administración
dc.publisher.placePalmira, Valle del Cauca, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmira
dc.relation.referencesAbubakar, Ismaila Rimi, and Yusuf Adedoyin Aina. 2019. “The Prospects and Challenges of Developing More Inclusive, Safe, Resilient and Sustainable Cities in Nigeria.” Land Use Policy 87(December 2018): 104105
dc.relation.referencesAlam, Mahbubul, Jérôme Dupras, and Christian Messier. 2016. “A Framework towards a Composite Indicator for Urban Ecosystem Services.” Ecological Indicators 60: 38–44. https://linkinghub.elsevier.com/retrieve/pii/S1470160X15002575
dc.relation.referencesAlvey, Alexis A. 2006. “Promoting and Preserving Biodiversity in the Urban Forest.” Urban Forestry & Urban Greening 5(4): 195–201. https://linkinghub.elsevier.com/retrieve/pii/S1618866706000732
dc.relation.referencesAngelstam, Per et al. 2019. “Model Forests in Russia as Landscape Approach: Demonstration Projects or Initiatives for Learning towards Sustainable Forest Management?” Forest Policy and Economics 101: 96–110. https://linkinghub.elsevier.com/retrieve/pii/S1389934117303337
dc.relation.referencesAria, Massimo, and Corrado Cuccurullo. 2017. “Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis.” Journal of Informetrics 11(4): 959–75. https://doi.org/10.1016/j.joi.2017.08.007
dc.relation.referencesBanerjee, Shiboram, Arnab Banerjee, and Debnath Palit. 2021. “Ecosystem Services and Impact of Industrial Pollution on Urban Health: Evidence from Durgapur, West Bengal, India.” Environmental Monitoring and Assessment 193(11): 744
dc.relation.referencesBerland, Adam et al. 2017. “The Role of Trees in Urban Stormwater Management.” Landscape and Urban Planning 162: 167–77. https://linkinghub.elsevier.com/retrieve/pii/S0169204617300464
dc.relation.referencesBlakely, Edward J. 2007. “Urban Planning for Climate Change.” Lincoln Institute of Land Policy 53(9): 1689–99
dc.relation.referencesBodnaruk, E. W. et al. 2017. “Where to Plant Urban Trees? A Spatially Explicit Methodology to Explore Ecosystem Service Tradeoffs.” Landscape and Urban Planning 157: 457–67
dc.relation.referencesBolund, Per, and Sven Hunhammar. 1999. “Ecosystem Services in Urban Areas.” Ecological Economics 29(2): 293–301. https://linkinghub.elsevier.com/retrieve/pii/S0921800999000130
dc.relation.referencesBrown, Greg, and Nora Fagerholm. 2015. “Empirical PPGIS/PGIS Mapping of Ecosystem Services: A Review and Evaluation.” Ecosystem Services 13: 119–33
dc.relation.referencesCapotorti, Giulia et al. 2019. “Biodiversity and Ecosystem Services in Urban Green Infrastructure Planning: A Case Study from the Metropolitan Area of Rome (Italy).” Urban Forestry & Urban Greening 37: 87–96. https://linkinghub.elsevier.com/retrieve/pii/S161886671730482X
dc.relation.referencesCarpenter, Stephen R. et al. 2009. “Science for Managing Ecosystem Services: Beyond the Millennium Ecosystem Assessment.” Proceedings of the National Academy of Sciences 106(5): 1305–12. https://pnas.org/doi/full/10.1073/pnas.0808772106
dc.relation.referencesCarver, Andrew D., Daniel R. Unger, and Courtney L. Parks. 2004. “Modeling Energy Savings from Urban Shade Trees: An Assessment of the CITYgreen® Energy Conservation Module.” Environmental Management 34(5): 650–55. http://link.springer.com/10.1007/s00267-002-7003-y
dc.relation.referencesCooke, Alison. 2001. A Guide to Finding Quality Information on the Internet : Selection and Evaluation Strategies. Second edi. ed. Library Association. London
dc.relation.referencesCorrea, L. et al. 2013. 53 Journal of Chemical Information and Modeling Manual de Silvicultura Urbana Para Medellín
dc.relation.referencesCostanza, Robert et al. 1998. “The Value of the World’s Ecosystem Services and Natural Capital.” Ecological Economics 25(1): 3–15
dc.relation.referencesDobbs, Cynnamon, Francisco J. Escobedo, and Wayne C. Zipperer. 2011. “A Framework for Developing Urban Forest Ecosystem Services and Goods Indicators.” Landscape and Urban Planning 99(3–4): 196–206
dc.relation.referencesDobbs, Cynnamon, Dave Kendal, and Craig R. Nitschke. 2014. “Multiple Ecosystem Services and Disservices of the Urban Forest Establishing Their Connections with Landscape Structure and Sociodemographics.” Ecological Indicators 43: 44–55. http://dx.doi.org/10.1016/j.ecolind.2014.02.007
dc.relation.referencesEggers, Jeannette et al. 2019. “Balancing Different Forest Values: Evaluation of Forest Management Scenarios in a Multi-Criteria Decision Analysis Framework.” Forest Policy and Economics 103: 55–69. https://linkinghub.elsevier.com/retrieve/pii/S1389934116303872
dc.relation.referencesEndreny, T. et al. 2017. “Implementing and Managing Urban Forests: A Much Needed Conservation Strategy to Increase Ecosystem Services and Urban Wellbeing.” Ecological Modelling 360: 328–35. https://linkinghub.elsevier.com/retrieve/pii/S0304380017300960
dc.relation.referencesEscobedo, Francisco J., Timm Kroeger, and John E. Wagner. 2011. “Urban Forests and Pollution Mitigation: Analyzing Ecosystem Services and Disservices.” Environmental Pollution 159(8–9): 2078–87. http://dx.doi.org/10.1016/j.envpol.2011.01.010
dc.relation.referencesEstenssoro, Fernando. 2015. “The Ecodevelopment as Concept Precursor of Sustainable Development and Its Influence in Latin America.” UNIVERSUM 30. http://www.scielo.cl/pdf/universum/v30n1/art_06.pdf (September 6, 2017)
dc.relation.referencesEtshekape, P. Gabriel, A. R. Atangana, and Damase P. Khasa. 2018. “Tree Planting in Urban and Peri-Urban of Kinshasa: Survey of Factors Facilitating Agroforestry Adoption.” Urban Forestry and Urban Greening 30(April 2017): 12–23
dc.relation.referencesFolke, Carl, Thomas Hahn, Per Olsson, and Jon Norberg. 2005. “ADAPTIVE GOVERNANCE OF SOCIAL-ECOLOGICAL SYSTEMS.” Annual Review of Environment and Resources 30(1): 441–73. https://www.annualreviews.org/doi/10.1146/annurev.energy.30.050504.144511
dc.relation.referencesForero Sanclemente, Esperanza, and Luis Hernando García Bueno. 2015. “EL PARQUE LINEAL DE PALMIRA, UN ESPACIO DINAMIZADOR DEL DESARROLLO DE LA CIUDAD.” Urbano 18: 64–73
dc.relation.referencesFu, Yang, and Xiaoling Zhang. 2018. “Two Faces of an Eco-City? Sustainability Transition and Territorial Rescaling of a New Town in Zhuhai.” Land Use Policy 78(81): 627–36
dc.relation.referencesGarza Villegas, Juan Baldemar, and Dante Vladimir Cortez Alejandro. 2017. “El Uso Del Método MICMAC y MACTOR Análisis Prospectivo En Un Área Operativa Para La Búsqueda de La Excelencia Operativa a Través Del Lean Manufacturing.” Revista Innovaciones de Negocios 8(16)
dc.relation.referencesGaudereto, Guilherme Leite et al. 2018. “Evaluation of Ecosystem Services and Management of Urban Green Areas: Promoting Healthy and Sustainable Cities.” Ambiente e Sociedade 21
dc.relation.referencesGiraldo Ospina, Tania, and Luis R. Vásquez-Varela. 2021. “Distribución e Indicadores de Cobertura y Accesibilidad Del Espacio Público En Manizales, Colombia.” Cuadernos de Geografía: Revista Colombiana de Geografía 30(1): 158–77. https://revistas.unal.edu.co/index.php/rcg/article/view/84320
dc.relation.referencesDe Gouw, Sarah, Justin Morgenroth, and Cong Xu. 2020. “An Updated Survey on the Use of Geospatial Technologies in New Zealand’s Plantation Forestry Sector.” New Zealand Journal of Forestry Science 50. http://nzjforestryscience.nz/index.php/nzjfs/article/view/118.
dc.relation.referencesNowak, David J., Eric J. Greenfield, Robert E. Hoehn, and Elizabeth Lapoint. 2013. “Carbon Storage and Sequestration by Trees in Urban and Community Areas of the United States.” Environmental Pollution 178: 229–36.
dc.relation.referencesNowak, David J., and Eric J. Greenfield. 2020. “The Increase of Impervious Cover and Decrease of Tree Cover within Urban Areas Globally (2012–2017).” Urban Forestry and Urban Greening 49(April 2019)
dc.relation.referencesNyelele, Charity, and Charles N. Kroll. 2020. “The Equity of Urban Forest Ecosystem Services and Benefits in the Bronx, NY.” Urban Forestry and Urban Greening 53(May): 126723. https://doi.org/10.1016/j.ufug.2020.126723.
dc.relation.referencesOliveira, Ana, António Lopes, and Samuel Niza. 2020. “Local Climate Zones Classification Method from Copernicus Land Monitoring Service Datasets: An ArcGIS-Based Toolbox.” MethodsX 7: 101150. https://linkinghub.elsevier.com/retrieve/pii/S2215016120303708.
dc.relation.referencesOlsson, Per et al. 2006. “Shooting the Rapids: Navigating Transitions to Adaptive Governance of Social-Ecological Systems.” Ecology and Society 11(1): art18. http://www.ecologyandsociety.org/vol11/iss1/art18/.
dc.relation.referencesOrdóñez Barona, Camilo. 2015. “Adopting Public Values and Climate Change Adaptation Strategies in Urban Forest Management: A Review and Analysis of the Relevant Literature.” Journal of Environmental Management 164: 215–21.
dc.relation.referencesOrganización de las Naciones Unidas para la Educación, La Ciencia Y La Cultura (Unesco). 2007. “Unesco : Ibe Education the Saurus.” 6a. Edc. 2a. Revisión. http://www.ibe.unesco.org/fileadmin/user_upload/Publications/IBE_Thesaurus/TH_al pha_array_Oct07.pdf.
dc.relation.referencesOtaya Burbano Leodán AndrésSánhez Zapata, Robinson de Jesús, Verónica Botero Fernández, and León Morales Soto. 2006. “Los Sistemas de Información Geográfica (SIG), Una Gran Herramienta Para La Silvicultura Urbana.” 59(1): 3201–16. http://hdl.handle.net/20.500.12324/34790.
dc.relation.referencesParmehr, Ebadat G., Marco Amati, and Clive S. Fraser. 2016. “MAPPING URBAN TREE CANOPY COVER USING FUSED AIRBORNE LIDAR AND SATELLITE IMAGERY DATA.” ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences III–7: 181–86. https://isprs-annals.copernicus.org/articles/III7/181/2016/.
dc.relation.referencesPaudyal, Kiran et al. 2015. “Participatory Assessment and Mapping of Ecosystem Services in a Data-Poor Region: Case Study of Community-Managed Forests in Central Nepal.” Ecosystem Services 13: 81–92.
dc.relation.referencesPhillips, Tuana H. et al. 2019. “The Capacity of Urban Forest Patches to Infiltrate Stormwater Is Influenced by Soil Physical Properties and Soil Moisture.” Journal of Environmental Management 246: 11–18. https://linkinghub.elsevier.com/retrieve/pii/S0301479719307558.
dc.relation.referencesReyes, Isabel, and Juan Gutiérrez. 2010. “Los Servicios Ambientales de La Arborización Urbana: Retos y Aportes Para La Sustentabilidad de La Ciudad de Toluca.” Quivera 12: 96–102. http://www.redalyc.org/articulo.oa?id=40113202009
dc.relation.referencesRodríguez-Rodríguez, Julio, and Mercedes Reguant-Álvarez. 2020. “Calcular La Fiabilidad de Un Cuestionario o Escala Mediante El SPSS: El Coeficiente Alfa de Cronbach.” REIRE Revista d Innovaci� i Recerca en Educaci� 13(2). https://revistes.ub.edu/index.php/REIRE/article/view/reire2020.13.230048.
dc.relation.referencesRoeland, Samson et al. 2019. “Towards an Integrative Approach to Evaluate the Environmental Ecosystem Services Provided by Urban Forest.” Journal of Forestry Research 30(6): 1981–96. http://link.springer.com/10.1007/s11676-019-00916-x.
dc.relation.referencesRoman, Lara A. et al. 2017. “Growing Canopy on a College Campus: Understanding Urban Forest Change through Archival Records and Aerial Photography.” Environmental Management 60(6): 1042–61. http://link.springer.com/10.1007/s00267-017-0934-0.
dc.relation.referencesRosales, Andrés González, Carlos Israel Vázquez León, and Carlos Francisco OrtizPaniagua. 2023. “Gobernanza Forestal En México Desde La Perspectiva Del Análisis Estructural.” Regions and Cohesion 13(1): 52–73. http://berghahnjournals.com/view/journals/regions-andcohesion/13/1/reco130104.xml.
dc.relation.referencesRosas-Lusett, Mireya;, and Miguel. Bartorila. 2017. “Revista Electrónica Nova Scientia Aportaciones de La Forestación a La Sostenibilidad Urbana En Ciudades Tropicales . Humedal Nuevo Amanecer , Ciudad Madero , México Forestation Contributions to Urban Sustainability in Tropical Cities . Nuevo Amanecer Wetl.” Nova Scientia 9: 529 – 550. http://www.scielo.org.mx/pdf/ns/v9n19/2007-0705-ns-9-19-00528.pdf.
dc.relation.referencesRoy, Sudipto, Jason Byrne, and Catherine Pickering. 2012. “A Systematic Quantitative Review of Urban Tree Benefits, Costs, and Assessment Methods across Cities in Different Climatic Zones.” Urban Forestry and Urban Greening 11(4): 351–63.
dc.relation.referencesRuíz_T., Otero_G., Ramírez_A., and Trespalacios_G. 2008. 6 Instituto de Investigación de Recursos Biológicos Alexander von Humboldt Biodiversidad y Conectividad Ecológica En La Localidad de Suba. Bogotá. https://oab.ambientebogota.gov.co/?post_type=dlm_download&p=3623.
dc.relation.referencesSalbitano, Fabio, Simone Borelli, Michela Conigliaro, and Yujuan Chen. 2017. Fao Directrices Para La Silvicultura Urbana y Periurbana. http://infobosques.com/portal/biblioteca/directrices-para-la-silvicultura-urbana-yperiurbana/
dc.relation.referencesSarkki, Simo et al. 2015. “Adding ‘Iterativity’ to the Credibility, Relevance, Legitimacy: A Novel Scheme to Highlight Dynamic Aspects of Science–Policy Interfaces.” Environmental Science & Policy 54: 505–12. https://linkinghub.elsevier.com/retrieve/pii/S1462901115000477
dc.relation.referencesSarmiento, Mariana et al. 2015. Orientaciones Para El Diseño De Un Plan De Compensaciones Por Pérdida De Biodiversidad - Colombia.
dc.relation.referencesSchjetnan, Mario, Jorge Calvillo., and Manuel Peniche. 2008. Principios de Diseño Urbano/Ambiental. ed. Limusa. México.
dc.relation.referencesSerag El Din, Hamam, Ahmed Shalaby, Hend Elsayed Farouh, and Sarah A. Elariane. 2013. “Principles of Urban Quality of Life for a Neighborhood.” HBRC Journal 9(1): 86–92. http://dx.doi.org/10.1016/j.hbrcj.2013.02.007.
dc.relation.referencesShen, Guangrong, Zijun Wang, Chunjiang Liu, and Yujie Han. 2020. “Mapping Aboveground Biomass and Carbon in Shanghai’s Urban Forest Using Landsat ETM+ and Inventory Data.” Urban Forestry & Urban Greening 51: 126655. https://linkinghub.elsevier.com/retrieve/pii/S1618866719305643.
dc.relation.referencesSimao, Maria Carolina M., Jill Matthijs, and Ivette Perfecto. 2018. “Experimental SmallScale Flower Patches Increase Species Density but Not Abundance of Small Urban Bees.” Journal of Applied Ecology 55(4): 1759–68.
dc.relation.referencesSkärbäck, Erik. 2007. “Urban Forests as Compensation Measures for Infrastructure Development.” Urban Forestry & Urban Greening 6(4): 279–85. https://linkinghub.elsevier.com/retrieve/pii/S1618866707000362.
dc.relation.referencesSpeak, Andrew, Francisco J. Escobedo, Alessio Russo, and Stefan Zerbe. 2018. “An Ecosystem Service-Disservice Ratio: Using Composite Indicators to Assess the Net Benefits of Urban Trees.” Ecological Indicators 95(March): 544–53. https://doi.org/10.1016/j.ecolind.2018.07.048.
dc.relation.referencesSzumacher, Iwona, and Ewa Malinowska. 2013. “SERVICIOS ECOSISTÉMICOS URBANOS SEGÚN EL MODELO DE VARSOVIA.” Revista del CESLA (16): 81–108.
dc.relation.referencesTEEB. 2010. Una Guia Rápida: La Economia de Los Ecosistemas y La Biodiversidad Para Diseñadores de Políticas Locales y Regionales.
dc.relation.referencesTian, Tian et al. 2022. “How to Accurately Assess Cultural Ecosystem Services by Spatial Value Transfer? An Answer Based on the Analysis of Urban Park.” SSRN Electronic Journal 82(February): 127875. https://doi.org/10.1016/j.ufug.2023.127875.
dc.relation.referencesTovar-Corzo, G. 2013. “An Approximation Urbanistic Silviculture in Colombia [Aproximación a La Silvicultura Urbana En Colombia].” Bitacora Urbano Territorial 22(1): 119–36. https://www.scopus.com/inward/record.uri?eid=2-s2.0- 84890545275&partnerID=40&md5=8ce5825ba729e546ab655c206dbc1202.
dc.relation.referencesTovar, Germán. 2006. “Manejo Del Arbolado Urbano En Bogotá.” Revista Colombia Forestal 9(16–17): 187–205.
dc.relation.referencesTsoka, Stella, Thomas Leduc, and Auline Rodler. 2021. “Assessing the Effects of Urban Street Trees on Building Cooling Energy Needs: The Role of Foliage Density and Planting Pattern.” Sustainable Cities and Society 65: 102633. https://linkinghub.elsevier.com/retrieve/pii/S2210670720308507
dc.relation.referencesTurner‐Skoff, Jessica B., and Nicole Cavender. 2019. “The Benefits of Trees for Livable and Sustainable Communities.” PLANTS, PEOPLE, PLANET 1(4): 323–35. https://nph.onlinelibrary.wiley.com/doi/10.1002/ppp3.39.
dc.relation.referencesUrban, Analyzing et al. 2023. “Análisis de La Agroforestería Urbana : Una Revisión Sistemática y Análisis Bibliométrico.” 26(2): 77–91.
dc.relation.referencesUrrútia, Gerard, and Xavier Bonfill. 2010. “PRISMA Declaration: A Proposal to Improve the Publication of Systematic Reviews and Meta-Analyses.” Medicina Clinica 135(11): 507–11. https://linkinghub.elsevier.com/retrieve/pii/S0025775310001454.
dc.relation.referencesVera, Leandro N. Ramírez, Mirta L. Pértile, Viviana C. 2017. “Disponibilidad de Espacios Verdes En La Ciudad de Resistencia: Estudio Mediante La Aplicación de Sistemas de Información Geográfica (SIG).”
dc.relation.referencesVogt, Jess, Richard J. Hauer, and Burnell C. Fischer. 2015. “The Costs of Maintaining and Not Maintaining the Urban Forest: A Review of the Urban Forestry and Arboriculture Literature.” Arboriculture and Urban Forestry 41(6): 293–323.
dc.relation.referencesWard, Kathleen T., and Gary R. Johnson. 2007. “Geospatial Methods Provide Timely and Comprehensive Urban Forest Information.” Urban Forestry & Urban Greening 6(1): 15–22. https://linkinghub.elsevier.com/retrieve/pii/S161886670600080X.
dc.relation.referencesWiesel, Patrik Gustavo, Elias Dresch, Eduardo Rodrigo Ramos de Santana, and Eduardo Alcayaga Lobo. 2021. “Urban Afforestation and Its Ecosystem Balance Contribution: A Bibliometric Review.” Management of Environmental Quality: An International Journal 32(3): 453–69. https://www.emerald.com/insight/content/doi/10.1108/MEQ07-2020-0156/full/html.
dc.relation.referencesWood, Eric M., and Sevan Esaian. 2020. “The Importance of Street Trees to Urban Avifauna.” Ecological Applications 30(7). https://esajournals.onlinelibrary.wiley.com/doi/10.1002/eap.2149.
dc.relation.referencesYang, Jun, Conghong Huang, Zhiyong Zhang, and Le Wang. 2014. “The Temporal Trend of Urban Green Coverage in Major Chinese Cities between 1990 and 2010.” Urban Forestry and Urban Greening 13(1): 19–27.
dc.relation.referencesYao, Na et al. 2019. “Beijing’s 50 Million New Urban Trees: Strategic Governance for Large-Scale Urban Afforestation.” Urban Forestry & Urban Greening 44(January): 126392. Yaoqi Zhang, A
dc.relation.referencesYaoqi Zhang, Anwar Hussain, Jinyang Deng, and Neil Letson. 2007. “Public Attitudes Toward Urban Trees and Supporting Urban Tree Programs.” Environment and Behavior 39(6): 797–814. http://journals.sagepub.com/doi/10.1177/0013916506292326.
dc.relation.referencesYepes-Nuñez, Juan José, Gerard Urrútia, Marta Romero-García, and Sergio AlonsoFernández. 2021. “The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews.” Revista Espanola de Cardiologia 74(9): 790–99.
dc.relation.referencesZea, Jorge, Rodian Fonseca, and Edgar Balseiro. 2015. 1 Manual de Silvicultura Urbana Para Barranquilla. https://www.researchgate.net/publication/331230765.
dc.relation.referencesZheng, Yu et al. 2019. “Visual Sensitivity versus Ecological Sensitivity: An Application of GIS in Urban Forest Park Planning.” Urban Forestry & Urban Greening 41: 139–49. https://linkinghub.elsevier.com/retrieve/pii/S1618866718307179.
dc.relation.referencesŽivojinović, Ivana, and Bernhard Wolfslehner. 2015. “Perceptions of Urban Forestry Stakeholders about Climate Change Adaptation - A Q-Method Application in Serbia.” Urban Forestry and Urban Greening 14(4): 1079–87
dc.relation.referencesSchjetnan, Mario et. al. (1984). Principios de Diseño Urbano Ambiental. 12-35. Ed. Concepto. México
dc.relation.referencesSolecki, W., Marcotullio, P.J., 2013. Climate change and urban biodiversity vulnerability. Urbanization, Biodiversity and Ecosystem Services: Challenges and Opportunities. Springer, Netherlands, pp. 485–504
dc.relation.referencesVargas A., Balmaceda N. (2011) Forestación urbana mediante compensación ambiental. Centro de políticas públicas. Pontificia Universidad Católica de Chile. 43
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocPlantas de cobertura
dc.subject.agrovocCover plants
dc.subject.agrovocÁrboles callejeros
dc.subject.agrovocStreet trees
dc.subject.agrovocArboricultura urbana
dc.subject.agrovocUrban forestry
dc.subject.proposalSilvicultura urbana
dc.subject.proposalOrdenamiento territorial
dc.subject.proposalInfraestructura verde
dc.subject.proposalGestión forestal
dc.subject.proposalPlanificación y gestión
dc.subject.proposalEspacios verdes
dc.subject.proposalUrban forestry
dc.subject.proposalLand use planning
dc.subject.proposalGreen infrastructure
dc.subject.proposalUrban arboriculture
dc.subject.proposalForest management
dc.subject.proposalPlanning and management
dc.subject.proposalGreen spaces
dc.subject.unescoPlanificación urbana
dc.subject.unescoUrban planning
dc.subject.unescoServicios de los ecosistemas
dc.subject.unescoEcosystem services
dc.subject.unescoInfraestructura verde
dc.subject.unescoGreen infrastructure
dc.title.translatedCriteria for the classification of urban areas with tree cover according to their ecosystem services: Cali River Corridor, Cali Colombia.
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores
dc.description.curricularareaIngeniería.Sede Palmira
dc.contributor.orcidhttps://orcid.org/0000-0003-4715-3971


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-CompartirIgual 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito