Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorSerrato Bermúdez, Juan Carlos
dc.contributor.authorRoa Gómez, Victor Alfonso
dc.date.accessioned2024-02-13T13:48:46Z
dc.date.available2024-02-13T13:48:46Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85692
dc.descriptionilustraciones, diagramas, fotografías
dc.description.abstractEl objetivo general de esta tesis es proponer una metodología de selección de solventes de extracción empleando como herramienta el diseño molecular asistido por computadora (CAMD) y la optimización multiobjetivo como criterio de decisión secuencial. El diseño metodológico de la metodología CAMD cuenta con la formulación del problema de optimización a resolver (Prediseño), la implementación del algoritmo (Diseño) y la validación experimental del modelo (Post-diseño) para el caso de estudio de la extracción de los sistemas ácido láctico-agua y ácido acético-agua. La metodología CAMD propuesta formula y resuelve un problema de optimización multiobjetivo de tres objetivos (ambiental, fisicoquímico y económico), para un espacio de búsqueda conformado por compuestos alifáticos, aromáticos y heterocíclicos, e integrando aspectos como la disponibilidad de las moléculas en el mercado como restricciones del problema de optimización. La solución de dicho problema de optimización se realizó empleando el algoritmo genético MOHAEA, el cual permite contar con flexibilidad para la representación de individuos, empleando la optimización de Pareto y la distancia de aglomeración como pautas guía del algoritmo. La metodología propuesta es una extensión de trabajos previos, de autores como Serrato [1] y Rodríguez [2], [3].(Texto tomado de la fuente)
dc.description.abstractThe general objective of this thesis was to propose a methodology for the choice of extraction solvents using computer-aided molecular design (CAMD) as a tool and multi-objective optimization as a sequential decision criterion. The methodological design of the CAMD methodology includes the formulation of the optimization problem to be solved (Pre-design), the implementation of the algorithm (Design) and the experimental validation of the model for the case study of the extraction of the lactic acid-water systems and acetic acid-water. The proposed CAMD methodology formulates and solves a multi-objective optimization problem with three objectives (environmental, physicochemical, and economic), for a search space made up of aliphatic, aromatic, and heterocyclic compounds, and integrating aspects such as the availability of molecules in the market as optimization problem constraints. The solution of this optimization problem was conducted using the genetic algorithm MOHAEA, which allows flexibility for the representation of individuals, using Pareto optimization and the agglomeration distance as guidelines for the algorithm. The proposed methodology is an extension of earlier works, by authors such as Serrato [1] and Rodríguez [2], [3].
dc.format.extentxxxiv, 250 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc660 - Ingeniería química::661 - Tecnología de químicos industriales
dc.subject.ddc510 - Matemáticas::518 - Análisis numérico
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
dc.titleOptimización multiobjetivo aplicado en diseño molecular asistido por computadora para la selección de solventes de extracción.
dc.typeTrabajo de grado - Maestría
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicos
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Química
dc.description.researchareaOptimización de procesos en Ingeniería Química
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Nivel Nacional
dc.relation.referencesJ. C. Serrato, “Diseño computacional de agentes de extracción para la separación de compuestos orgánicos en corrientes acuosas. Aplicación al ácido láctico.”, Universidad Nacional de Colombia - Sede Bogotá, 2009. doi: 10.7202/1016404ar.
dc.relation.referencesK. A. Rodríguez, “Inclusion of toxicity and market availability in a Computer-Aided Molecular Design methodology”, 2019.
dc.relation.referencesK. Rodríguez, “Computer Aided Molecular Design : State-of-the-art and environmen- tally friendly product design”, p. 9, 2019.
dc.relation.referencesE. Stefanies, L. Constantinou, y C. Panayiotou, “A group-contribution method for predicting pure component properties of biochemical and safety interest”, Ind Eng Chem Res, vol. 43, núm. 19, pp. 6253–6261, 2004, doi: 10.1021/ie0497184.
dc.relation.referencesM. R. Eden, S. B. Jørgensen, R. Gani, y M. M. El-Halwagi, “A novel framework for simultaneous separation process and product design”, Chemical Engineering and Processing: Process Intensification, vol. 43, núm. 5, pp. 595–608, 2004, doi: 10.1016/j.cep.2003.03.002.
dc.relation.referencesJ. Marrero y R. Gani, “Group-contribution based estimation of pure component properties”, Fluid Phase Equilib, vol. 183–184, pp. 183–208, 2001, doi: 10.1016/S0378-3812(01)00431-9.
dc.relation.referencesJ. Rydberg, M. Cox, C. Musikas, y G. R. Choppin, Solvent Extraction Principles and Practice, vol. 2004.
dc.relation.referencesA. Tejada, R. M. Montesinos, y R. Guzmán, Bioseparaciones. 2014.
dc.relation.referencesM. L. van Delden, N. J. M. Kuipers, y A. B. de Haan, “Selection and evaluation of alternative solvents for caprolactam extraction”, Sep Purif Technol, vol. 51, núm. 2, pp. 219–231, 2006, doi: 10.1016/j.seppur.2006.02.003.
dc.relation.referencesG. W. Meindersma, A. Podt, y A. B. De Haan, “Selection of ionic liquids for the extraction of aromatic hydrocarbons from aromatic/aliphatic mixtures”, Fuel Processing Technology, vol. 87, núm. 1, pp. 59–70, 2005, doi: 10.1016/j.fuproc.2005.06.002.
dc.relation.referencesK. C. Sole, “Solvent extraction in the hydrometallurgical processing and purification of metals : process design and selected applications”, en Solvent Extraction and Liquid Membranes: Fundamentals and Applications in New Materials, 2018, pp. 141–200.
dc.relation.referencesN. Tik, E. Bayraktar, y U. Mehmetoglu, “In situ reactive extraction of lactic acid from fermentation media”, Journal of Chemical Technology and Biotechnology, vol. 76, núm. 7, pp. 764–768, 2001, doi: 10.1002/jctb.449.
dc.relation.referencesA. B. de Haan, “Affinity solvents for intensified organics extraction: Development challenges and prospects”, Tsinghua Sci Technol, vol. 11, núm. 2, pp. 171–180, 2006, doi: 10.1016/S1007-0214(06)70172-9.
dc.relation.referencesW. L. McCabe, J. C. Smith, y P. Harriott, Operaciones unitarias en Ingeniería Química. 1991.
dc.relation.referencesJ. Gmehling, M. Kleiber, B. Kolbe, y J. Rarey, Chemical Thermodynamics for Process Simulation. 2019. doi: 10.1002/9783527809479.
dc.relation.referencesJ. M. Smith, H. C. van Ness, y M. M. Abott, Introducción a la Termodinámica en Ingeniería Química. 2007. [En línea]. Disponible en: http://librosysolucionarios.net/
dc.relation.referencesR. E. Treybal, “Azeotropes”, A-to-Z Guide to Thermodynamics, Heat and Mass Transfer, and Fluids Engineering, 2008, doi: 10.1615/atoz.a.azeotropes.
dc.relation.referencesM. C. M. Cockrem, E. N. Lightfoot, y J. H. Flatt, “Solvent Selection for Extraction from Dilute Solution”, Sep Sci Technol, vol. 24, núm. 11, pp. 769–807, 1989, doi: 10.1080/01496398908049876.
dc.relation.referencesJ. Medina-Mora, “Optimización Multiobjetivo para la selección de solventes, aplicable a la Extracción Líquido-Líquido”, 2010.
dc.relation.referencesE. Brignole y S. Pereda, Phase equilibrium engineering principles, vol. 3. 2013. doi: 10.1016/B978-0-444-56364-4.00006-6.
dc.relation.referencesL. E. K. Achenie, R. Gani, y V. Venkatasubramanian, Computer Aided Molecular Design: Theory and Practice. 2003.
dc.relation.referencesN. G. Martín, Mariano Eden, Mario R. Chemmangattuvalappil, Tools for Chemical Product Design. 2017.
dc.relation.referencesH. Fruehbeis, R. Klein, y H. Wallmeier, “Computer-Assisted Molecular Design (CAMD) - An Overview”, ChemInform, vol. 18, núm. 35, pp. 403–418, 1987, doi: 10.1002/chin.198735397.
dc.relation.referencesL. A. Cisternas y E. D. Gálvez, “Principles for chemical products design”, Computer Aided Chemical Engineering, vol. 21, núm. C, pp. 1107–1112, 2006, doi: 10.1016/S1570-7946(06)80194-X.
dc.relation.referencesG. D. Moggridge y E. L. Cussler, “An introduction to chemical product design”, Chemical Engineering Research and Design, vol. 78, núm. 1, pp. 5–11, 2000, doi: 10.1205/026387600527022.
dc.relation.referencesA. K. Tula, D. K. Babi, J. Bottlaender, M. R. Eden, y R. Gani, “A computer-aided software-tool for sustainable process synthesis-intensification”, Comput Chem Eng, vol. 105, pp. 74–95, 2017, doi: 10.1016/j.compchemeng.2017.01.001.
dc.relation.referencesM. R. Eden, S. B. Jørgensen, R. Gani, y M. M. El-Halwagi, “A novel framework for simultaneous separation process and product design”, Chemical Engineering and Processing: Process Intensification, vol. 43, núm. 5, pp. 595–608, 2004, doi: 10.1016/j.cep.2003.03.002.
dc.relation.referencesL. Y. Ng, N. G. Chemmangattuvalappil, V. A. Dev, y M. R. Eden, Mathematical Principles of Chemical Product Design and Strategies, vol. 39. 2016. doi: 10.1016/B978-0-444-63683-6.00001-0.
dc.relation.referencesR. Gani, “Chemical product design: Challenges and opportunities”, Comput Chem Eng, vol. 28, núm. 12, pp. 2441–2457, 2004, doi: 10.1016/j.compchemeng.2004.08.010.
dc.relation.referencesL. Y. Ng, F. K. Chong, y N. G. Chemmangattuvalappil, “Challenges and opportunities in computer-aided molecular design”, Comput Chem Eng, vol. 81, pp. 115–129, 2015, doi: 10.1016/j.compchemeng.2015.03.009.
dc.relation.referencesS. S. Y. Wong, W. Luo, y K. C. C. Chan, “EvoMD: An algorithm for evolutionary molecular design”, IEEE/ACM Trans Comput Biol Bioinform, vol. 8, núm. 4, pp. 987–1003, 2011, doi: 10.1109/TCBB.2010.100.
dc.relation.referencesJ. Scheffczyk, L. Fleitmann, A. Schwarz, M. Lampe, A. Bardow, y K. Leonhard, “COSMO-CAMD: A framework for optimization-based computer-aided molecular design using COSMO-RS”, Chem Eng Sci, vol. 159, pp. 84–92, 2017, doi: 10.1016/j.ces.2016.05.038.
dc.relation.referencesC. C. Solvason, “Integrated Multiscale Chemical Product Design using Property Clustering and Decomposition Techniques in a Reverse Problem Formulation”, 2011.
dc.relation.referencesR. Gani, L. E. K. Achenie, y V. Venkatasubramanian, “Chapter 1: Introduction to CAMD”, en Computer Aided Molecular Design: Theory and Practice, 2003, pp. 3–21.
dc.relation.referencesN. D. Austin, N. V. Sahinidis, y D. W. Trahan, “Computer-aided molecular design: An introduction and review of tools, applications, and solution techniques”, Chemical Engineering Research and Design, vol. 116, núm., pp. 2–26, 2016, doi: 10.1016/j.cherd.2016.10.014.
dc.relation.referencesM. Harini, J. Adhikari, y K. Y. Rani, “A review on property estimation methods and computational schemes for rational solvent design: A focus on pharmaceuticals”, Ind Eng Chem Res, vol. 52, núm. 21, pp. 6869–6893, 2013, doi: 10.1021/ie301329y.
dc.relation.referencesP. M. Harper, R. Gani, P. Kolar, y T. Ishikawa, “Computer-aided molecular design with combined molecular modeling and group contribution”, Fluid Phase Equilib, vol. 158–160, pp. 337–347, 1999, doi: 10.1016/s0378-3812(99)00089-8.
dc.relation.referencesN. D. Austin, N. v. Sahinidis, y D. W. Trahan, “Computer-aided molecular design: An introduction and review of tools, applications, and solution techniques”, Chemical Engineering Research and Design, vol. 116, núm., pp. 2–26, 2016, doi: 10.1016/j.cherd.2016.10.014.
dc.relation.referencesT. Martin, User’s guide for T.E.S.T. (version 4.2) (Toxicity Estimation Software Tool) A program to estimate toxicity from molecular structure. 2016, p. 63.
dc.relation.referencesJ. Song y H. H. Song, “Computer-aided molecular design of environmentally friendly solvents for separation processes”, Chem Eng Technol, vol. 31, núm. 2, pp. 177–187, 2008, doi: 10.1002/ceat.200700233.
dc.relation.referencesJ. Y. Ten, M. H. Hassim, D. K. S. Ng, y N. G. Chemmangattuvalappil, “The Incorporation of Safety and Health Aspects as Design Criteria in a Novel Chemical Product Design Framework”, Computer Aided Chemical Engineering, vol. 39, pp. 197–220, 2016, doi: 10.1016/B978-0-444-63683-6.00007-1.
dc.relation.referencesR. Gani, B. Nielsen, y A. Fredenslund, “A group contribution approach to computer‐aided molecular design”, AIChE Journal, vol. 37, núm. 9, pp. 1318–1332, 1991, doi: 10.1002/aic.690370905.
dc.relation.referencesO. Odele y S. Macchietto, “Computer Aided Molecular Design: A Novel Method for Optimal Solvent Selection”, Fluid Phase Equilib, vol. 00226020, núm. 3, pp. 47–54, 1993.
dc.relation.referencesP. M. Harper y R. Gani, “A multi-step and multi-level approach for computer aided molecular design”, Comput Chem Eng, vol. 24, núm. 2–7, pp. 677–683, 2000, doi: 10.1016/S0098-1354(00)00410-5.
dc.relation.referencesB. C. Roughton, “Development of Computer-Aided Molecular Design Methods for Bioengineering Applications”, 2013.
dc.relation.referencesS. Cignitti, I. Rodriguez-Donis, J. Abildskov, X. You, N. Shcherbakova, y V. Gerbaud, “CAMD for entrainer screening of extractive distillation process based on new thermodynamic criteria”, Chemical Engineering Research and Design, vol. 147, pp. 721–733, 2019, doi: 10.1016/j.cherd.2019.04.038.
dc.relation.referencesB. van Dyk y I. Nieuwoudt, “Design of solvents for extractive distillation”, Ind Eng Chem Res, vol. 39, núm. 5, pp. 1423–1429, 2000, doi: 10.1021/ie9904753.
dc.relation.referencesN. Medina-Herrera, I. E. Grossmann, M. S. Mannan, y A. Jiménez-Gutiérrez, “An approach for solvent selection in extractive distillation systems including safety considerations”, Ind Eng Chem Res, vol. 53, núm. 30, pp. 12023–12031, 2014, doi: 10.1021/ie501205j.
dc.relation.referencesS. Kossack, K. Kraemer, R. Gani, y W. Marquardt, “A systematic synthesis framework for extractive distillation processes”, Chemical Engineering Research and Design, vol. 86, núm. 7, pp. 781–792, 2008, doi: 10.1016/j.cherd.2008.01.008.
dc.relation.referencesT. Zhou, Z. Song, X. Zhang, R. Gani, y K. Sundmacher, “Optimal Solvent Design for Extractive Distillation Processes: A Multiobjective Optimization-Based Hierarchical Framework”, Ind Eng Chem Res, vol. 58, núm. 15, pp. 5777–5786, 2019, doi: 10.1021/acs.iecr.8b04245.
dc.relation.referencesJ. Sun, H. Zhang, A. Zhou, Q. Zhang, y K. Zhang, “A new learning-based adaptive multi-objective evolutionary algorithm”, Swarm Evol Comput, vol. 44, núm. December 2017, pp. 304–319, 2019, doi: 10.1016/j.swevo.2018.04.009.
dc.relation.referencesA. T. Karunanithi, C. Acquah, L. E. K. Achenie, S. Sithambaram, y S. L. Suib, “Solvent design for crystallization of carboxylic acids”, Comput Chem Eng, vol. 33, núm. 5, pp. 1014–1021, 2009, doi: 10.1016/j.compchemeng.2008.11.003.
dc.relation.referencesV. Venkatasubramanian, K. Chan, y J. M. Caruthers, “Evolutionary Design of Molecules with Desired Properties Using the Genetic Algorithm”, J Chem Inf Comput Sci, vol. 35, núm. 2, pp. 188–195, 1995, doi: 10.1021/ci00024a003.
dc.relation.referencesM. Mattei, M. Hill, G. M. Kontogeorgis, y R. Gani, “Design of an emulsion-based personal detergent through a model-based chemical product design methodology”, Computer Aided Chemical Engineering, vol. 32, pp. 817–822, 2013, doi: 10.1016/B978-0-444-63234-0.50137-8.
dc.relation.referencesR. Gani, “Chapter 14 Case studies in chemical product design - use of CAMD techniques”, Computer Aided Chemical Engineering, vol. 23, núm. 1991, pp. 435–458, 2007, doi: 10.1016/S1570-7946(07)80017-4.
dc.relation.referencesK. Zhou Teng; Wang, Jiayuan; Mcbride, Kevin; Sundmacher, “Optimal Design of Solvents for Extractive Reaction Process”, AICHE Journal, vol. 61, núm. 3, pp. 857–866, 2015, doi: 10.1002/aic.
dc.relation.referencesM. Skiborowski, “Process synthesis and design methods for process intensification”, Curr Opin Chem Eng, vol. 22, pp. 216–225, 2018, doi: 10.1016/j.coche.2018.11.004.
dc.relation.referencesS. J. Patel, “Integrating Safety Issues in Optimizing Solven Selection and Porcess Design”, 2010.
dc.relation.referencesJ. Ooi, D. K. S. Ng, y N. G. Chemmangattuvalappil, “A Systematic Molecular Design Framework with the Consideration of Competing Solvent Recovery Processes”, Ind Eng Chem Res, vol. 58, núm. 29, pp. 13210–13226, 2019, doi: 10.1021/acs.iecr.9b01894.
dc.relation.referencesJ. E. Ourique y A. Silva Telles, “Computer-aided molecular design with simulated annealing and molecular graphs”, Comput Chem Eng, vol. 22, núm. SUPPL.1, pp. 0–3, 1998, doi: 10.1016/s0098-1354(98)00108-2.
dc.relation.referencesJ. Heintz, J. P. Belaud, N. Pandya, M. Teles Dos Santos, y V. Gerbaud, “Computer aided product design tool for sustainable product development”, Comput Chem Eng, vol. 71, pp. 362–376, 2014, doi: 10.1016/j.compchemeng.2014.09.009.
dc.relation.referencesJ. Heintz, “Systemic approach and decision process for sustainability in chemical engineering: Applcation to computer aided product design. PhD Thesis”, p. 256, 2012.
dc.relation.referencesJ. Y. Ten, M. H. Hassim, D. K. S. Ng, y N. G. Chemmangattuvalappil, “A molecular design methodology by the simultaneous optimisation of performance, safety and health aspects”, Chem Eng Sci, vol. 159, pp. 140–153, 2017, doi: 10.1016/j.ces.2016.03.026.
dc.relation.referencesJ. Devillers, Genetic Algorithms in Molecular Modeling, vol., núm. June. 2016. doi: 10.1016/b978-0-12-213810-2.x5000-2.
dc.relation.referencesB. Lin, S. Chavali, K. Camarda, y D. C. Miller, “Computer-aided molecular design using Tabu search”, Comput Chem Eng, vol. 29, núm. 2, pp. 337–347, 2005, doi: 10.1016/j.compchemeng.2004.10.008.
dc.relation.referencesA. S. Hukkerikar, B. Sarup, A. Ten Kate, J. Abildskov, G. Sin, y R. Gani, “Group-contribution+ (GC+) based estimation of properties of pure components: Improved property estimation and uncertainty analysis”, Fluid Phase Equilib, vol. 321, pp. 25–43, 2012, doi: 10.1016/j.fluid.2012.02.010.
dc.relation.referencesA. S. Hukkerikar, S. Kalakul, B. Sarup, D. M. Young, G. Sin, y R. Gani, “Estimation of environment-related properties of chemicals for design of sustainable processes: Development of group-contribution+ (GC +) property models and uncertainty analysis”, J Chem Inf Model, vol. 52, núm. 11, pp. 2823–2839, 2012, doi: 10.1021/ci300350r.
dc.relation.referencesA. S. Hukkerikar, G. Sin, J. Abildskov, B. Sarup, y R. Gani, Development of pure component property models for chemical product-process design and analysis, núm. September. 2013.
dc.relation.referencesR. L. Haupt y S. E. Haupt, Pratical Genetic Algotithms, vol. 2004.
dc.relation.referencesR. Kumar, Optimization: Algorithms and Applications, vol. CRC Press, 2015.
dc.relation.referencesZ. Dostál, Optimal Quadratic Programming Algorithms: With Applications to Variational Inequalities, vol. 23. 2009. doi: 10.1007/b138610.
dc.relation.referencesJ. A. Snyman y D. N. Wilke, Practical Mathematical Optimization, vol. 133. Cham, Switzerland, 2005. doi: 10.1007/b105200.
dc.relation.referencesK.-H. Chang, “Chapter 3 - Design Optimization”, en Design Theory and Methods Using CAD/CAE, 2015, pp. 103–210. doi: 10.1080/03772063.2020.1842159.
dc.relation.referencesJ. A. Caballero y I. E. Grossmann, “A review of the state of the art in optimization”, RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, vol. 4, núm. 1, pp. 5–23, 2007, doi: 10.1016/s1697-7912(07)70188-7.
dc.relation.referencesX.-S. Yang, Nature-Inspired Optimization Algorithms. 2020.
dc.relation.referencesC. A. C. Coello, “Introduccion a la Computacion Evolutiva”, núm. 16, p. 310, 2004.
dc.relation.referencesM. A. Iglesias-Solano y A. B. Iglesias-Carbonell, “La Computación Evolutiva y sus Paradigmas Paradigms of Evolutionary Computing”, Investigación y Desarrollo en TIC, vol. 2, pp. 29–38, 2011.
dc.relation.referencesN. Yusup, A. M. Zain, y S. Z. M. Hashim, “Evolutionary techniques in optimizing machining parameters: Review and recent applications (2007-2011)”, Expert Syst Appl, vol. 39, núm. 10, pp. 9909–9927, 2012, doi: 10.1016/j.eswa.2012.02.109.
dc.relation.referencesA. Menon, Frontiers of Evolutionary Computation, vol., núm. 2004.
dc.relation.referencesC. J. Correa-Villalón, “Diseño de un Algoritmo Evolutivo para atacar Problemas NP-Duros basado en la Técnica Transgénicas”, Universidad Autónoma de Aguascalientes (México), 2010. doi: -.
dc.relation.referencesD. E. Goldberg, “Genetic Algorithms in Search Optimization & Machine Learning”. p. 432, 1989.
dc.relation.referencesJ. H. Holland, “Genetic Algorithms - Computer programs that ‘evolve’ in ways that resemble natural selection can solve complex problems even their creators do not fully understand”, Scientific American. pp. 66–72, 1992.
dc.relation.referencesJ. H. Holland, C. Langton, y S. W. Wilson, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence. 1992.
dc.relation.referencesM. Pelikan, Hierarchical Bayesian Optimization Algorithm: Toward a New Generation of Evolutionary Algorithms, vol. 53, núm. 9. 2013. doi: 10.1017/CBO9781107415324.004.
dc.relation.referencesT. Bäck, “Evolutionary algorithms in theory and practice: Evolution strategies, evolutionary programming, genetic algorithms”. p. 315, 1996.
dc.relation.referencesZ. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, vol. 1, núm. 1996.
dc.relation.referencesD. A. Coley, “An Introduction to Genetic Algorithms for Scientists and Engineers”. p. 185, 1999.
dc.relation.referencesS. Kumar y P. J. Bentley, “Biologically Inspired Evolutionary Development”, ICES, vol., núm., pp. 57–68, 2003, doi: 10.1007/3-540-36553-2_6.
dc.relation.referencesD. Vasiljević, Classical and Evolutionary Algorithms in the Optimization of Optical Systems, vol., núm. 2006.
dc.relation.referencesM. Melanie, An introduction to genetic algorithms, vol. 1999. doi: 10.1016/S0898-1221(96)90227-8.
dc.relation.referencesS. N. Sivanandam y S. N. Deepa, Introduction to Genetic Algorithms, vol. 2008.
dc.relation.referencesD. Simon, Evolutionary Optimization Aglorithms: Biologically Inspired and Population-Based Approaches to Computer Intelligence, vol., núm. John Wiley & Sons, Inc., 2013.
dc.relation.referencesW.-H. Steeb, The nonlinear workbook: Chaos, Fractals, Celular Automata, Neural Networks, Genetic Algorithms, Fuzzy Logic with C++, Java, SymbolicC++ and Reduce Programs, vol. 1999.
dc.relation.referencesJ. Branke, Evolutionary optimization in dynamic environment, vol. 2002. doi: 10.1109/ICCP.2009.5284794.
dc.relation.referencesC. B. Lucasius y G. Kateman, “Understanding and using genetic algorithms Part 2. Representation, configuration and hybridization”, Chemometrics and Intelligent Laboratory Systems, vol. 25, pp. 99–145, 1994.
dc.relation.referencesF. Rothlauf, Representations for Genetic and Evolutionary Algorithms, vol. 2006.
dc.relation.referencesF. Corno, M. Sonza Reorda, y G. Squillero, “VEGA: a verification tool based on genetic algorithms”, Proceedings - IEEE International Conference on Computer Design: VLSI in Computers and Processors, pp. 321–326, 1998, doi: 10.1109/iccd.1998.727069.
dc.relation.referencesN. Srinivas y K. Deb, “Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms”, núm. 0, 1386.
dc.relation.referencesK. Deb, S. Agrawal, A. Pratap, y T. Meyarivan, “A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II”, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 1917, pp. 849–858, 2000, doi: 10.1007/3-540-45356-3_83.
dc.relation.referencesT. Murata y H. Ishibuchi, “MOGA: multi-objective genetic algorithms”, Proceedings of the IEEE Conference on Evolutionary Computation, vol. 1, pp. 289–294, 1995, doi: 10.1109/icec.1995.489161.
dc.relation.referencesE. Zitzler y L. Thiele, “Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach”, vol. 3, núm. 4, pp. 257–271, 1999.
dc.relation.referencesE. Zitzler, M. Laumanns, y L. Thiele, “SPEA2: Improving the Strength Pareto Evolutionary Algorithm”, TIK-Report 103 May, pp. 1–21, 2001, doi: 10.1007/978-3-319-11119-3_4.
dc.relation.referencesJ. Gomez, “Self adaptation of operator rates in evolutionary algorithms”, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3102, pp. 1162–1173, 2004, doi: 10.1007/978-3-540-24854-5_113.
dc.relation.referencesJ. Gómez, “Hybrid Adaptive Evolutionary Algorithm Hyper Heuristic”, pp. 1–5, 2014.
dc.relation.referencesC. R. Reeves y J. E. Rowe, Genetic algorithms: Principles and Perspectives - A Guide to GA Theory. 2002.
dc.relation.referencesS. Bandyopadhyay y S. K. Pal, Classification and Learning Using Genetic Algorithms: Applications in Bioinformatics and Web Intelligence, vol. 2007.
dc.relation.referencesL. Chambers, Practical Handbook of Genetic Algorithms - New Frontiers Volume II. 1995.
dc.relation.referencesD. B. Hibbert, “Genetic algorithms in Chemistry”, Chemometrics and Intelligent Laboratory Systems, vol. 19, núm. 8 SPEC., pp. 277–293, 1993, doi: 10.1016/S0010-4485(03)00002-2.
dc.relation.referencesL. Elliott, D. B. Ingham, A. G. Kyne, N. S. Mera, M. Pourkashanian, y C. W. Wilson, “Genetic algorithms for optimisation of chemical kinetics reaction mechanisms”, Progress in Enery and Combustion Science, vol. 30, pp. 297–328, 2004, doi: 10.1016/j.pecs.2004.02.002.
dc.relation.referencesC. B. Lucasius y G. Kateman, “Understanding and using genetic algorithms Part 1. Concepts, properties and context”, Chemometrics and Intelligent Laboratory Systems, vol. 19, núm. 1, pp. 1–33, 1993, doi: 10.1016/0169-7439(93)80079-W.
dc.relation.referencesL. Gosselin, M. Tye-Gingras, y F. Mathieu-Potvin, “Review of utilization of genetic algorithms in heat transfer problems”, Int J Heat Mass Transf, vol. 52, núm. 9–10, pp. 2169–2188, 2009, doi: 10.1016/j.ijheatmasstransfer.2008.11.015.
dc.relation.referencesJ. G. Andreasen, U. Larsen, T. Knudsen, L. Pierobon, y F. Haglind, “Selection and optimization of pure and mixed working fluids for low grade heat utilization using organic rankine cycles”, Energy, vol. 73. pp. 204–213, 2014. doi: 10.1016/j.energy.2014.06.012.
dc.relation.referencesZ. Kravanja y M. Bogataj, “26 European Symposium on Computer Aided Process Engineering-Elsevier”, Computer Aided Chemical Engineering, vol. 38, p. 588, 2016.
dc.relation.referencesM. Fan, J. Hu, R. Cao, W. Ruan, y X. Wei, “A review on experimental design for pollutants removal in water treatment with the aid of artificial intelligence”, Chemosphere, vol. 200, pp. 330–343, 2018, doi: 10.1016/j.chemosphere.2018.02.111.
dc.relation.referencesA. Maiocchi, “Genetic algorithms in molecular modelling: a review”, en Data Handling in Science and Technology, 2003, pp. 109–139. doi: 10.1016/S0922-3487(03)23004-5.
dc.relation.referencesT. Lisboa, “Multi-Objective Optimization”, Técnico Lisboa. pp. 148–173.
dc.relation.referencesA. Ramos, “Optimización Multicriterio”, Universidad Pontificia Comillas, núm. p. 16.
dc.relation.referencesC. A. C. Coello, “Aplicaciones de los Algoritmos Evolutivos Multiobjetivo”, núm. 2508, 2012.
dc.relation.referencesH. Massam, “Multi-criteria (MCDM) Decision Making Techniques in Planning”, Prog Plann, vol. 30, núm. Mcdm, pp. 1–84, 1988.
dc.relation.referencesP. L. Yu, “Multiple criteria decision making: Five basic concepts”, Handbooks in Operations Research and Management Science, vol. 1, núm. C, pp. 663–699, 1989, doi: 10.1016/S0927-0507(89)01011-X.
dc.relation.referencesC. A. C. Coello, G. B. Lamont, y D. A. Van Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems, vol. 2007. doi: 10.1080/00949659608811725.
dc.relation.referencesS. Chand y M. Wagner, “Evolutionary many-objective optimization: A quick-start guide”, Surveys in Operations Research and Management Science, vol. 20, núm. 2, pp. 35–42, 2015, doi: 10.1016/j.sorms.2015.08.001.
dc.relation.referencesR. T. Marler y J. S. Arora, “Survey of multi-objective optimization methods for engineering”, Structural and Multidisciplinary Optimization, vol. 26, núm. 6, pp. 369–395, 2004, doi: 10.1007/s00158-003-0368-6.
dc.relation.referencesC. Zopounidis y P. M. Pardalos, Handbook of Multicriteria Analysis. 2010.
dc.relation.referencesD. R. Insua, “Sobre soluciones optimas en problemas de optimizacion multiobjetivo”, Trabajos de Investigacion Operativa, vol. 2, núm. 1, pp. 49–67, 1987, doi: 10.1007/BF02888810.
dc.relation.referencesC. M. Subía, “Desarrollo de una Guía Metodologíca sobre Computación Evolutiva y Algoritmos Genéticos, para la Optimiziación Evolutiva Multiobjetivo”, 2014. doi: 10.4324/9781315853178.
dc.relation.referencesS. Hernández, “Del diseño convencional al diseño óptimo. Posibilidades y variantes”, Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, vol. 9, pp. 259–270, 1993.
dc.relation.referencesH. Mukai, “Algorithms for Multicriterion Optimization”, IEEE Trans Automat Contr, vol. 25, núm. 2, pp. 177–186, 1980, doi: 10.1109/TAC.1980.1102298.
dc.relation.referencesG. Giorgi, B. Jiménez, y V. Novo, “Approximate Karush–Kuhn–Tucker Condition in Multiobjective Optimization”, J Optim Theory Appl, vol. 171, núm. 1, pp. 70–89, 2016, doi: 10.1007/s10957-016-0986-y.
dc.relation.referencesE. Mezura-Montes y C. A. Coello Coello, “Conceptos de Optimización Multiobjetivo para el Manejo de Restricciones en Algoritmos Evolutivos: Un Estudio Comparativo”, Proceedings of the 1st Mexican Conference on Evolutionary Computation (COMCEV 2003), pp. 1–12, 2003.
dc.relation.referencesN. Riquelme, C. von Lücken, y B. Barán, “Performace metrics in multi-objective optimization”, en 2015 XLI Latin American Computing Conference (CLEI) Performance, 2015.
dc.relation.referencesB. A. Cuartas Torres, “Metodología para la optimización de múltiples objetivos basada en ag y uso de preferencias”, Universidad Nacional de Colombia - Sede Medellín, 2009. [En línea]. Disponible en: http://www.bdigital.unal.edu.co/2237/%5Cnhttp://www.bdigital.unal.edu.co/2237/1/43908352.2009.pdf
dc.relation.referencesN. Riquelme, C. Von Lücken, y B. Barán, “Performance metrics in multi-objective optimization”, Proceedings - 2015 41st Latin American Computing Conference, CLEI 2015, vol. 1, p. 11, 2015, doi: 10.1109/CLEI.2015.7360024.
dc.relation.referencesJ. A. Párraga, “Clustering difuso multi-objetivo de genes basado en información biológica externa y datos de expresión génica”, Universidad de Santiago de Chile, 2017. doi: 10.1088/1742-6596/134/1/012001.
dc.relation.referencesJ. C. Castro, “Modelo de optimización multiobjetivo para el algoritmo evolutivo HAEA (Hybrid Adaptative Evolutionary Algoritm)”, Universidad Nacional de Colombia, 2020.
dc.relation.referencesK. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, vol. John Wiley & Sons, 2001.
dc.relation.referencesR. T. Marler y J. S. Arora, “The weighted sum method for multi-objective optimization: New insights”, Structural and Multidisciplinary Optimization, vol. 41, núm. 6, pp. 853–862, 2010, doi: 10.1007/s00158-009-0460-7.
dc.relation.referencesA. Singh y S. Kumar, “Multiple Objectives Mathematical Programming Using Payoff Techniques”, vol. 9, núm. 1, pp. 39–46, 2012.
dc.relation.referencesS. Obayashi, D. Sasaki, y A. Oyama, “Finding tradeoffs by using multiobjective optimization algorithms”, Trans Jpn Soc Aeronaut Space Sci, vol. 47, núm. 155, pp. 51–58, 2004, doi: 10.2322/tjsass.47.51.
dc.relation.referencesM. Sakawa, Genetic algorithms and fuzzy multiobjective optimization, vol. 1, núm. 2002.
dc.relation.referencesR. Wang, R. C. Purshouse, y P. J. Fleming, “Preference-inspired co-evolutionary algorithms using weight vectors”, Eur J Oper Res, vol. 243, núm. 2, pp. 423–441, 2015, doi: 10.1016/j.ejor.2014.05.019.
dc.relation.referencesW. Wang, S. Ying, L. Li, Z. Wang, y W. Li, “An improved decomposition-based multiobjective evolutionary algorithm with a better balance of convergence and diversity”, Applied Soft Computing Journal, vol. 57, pp. 627–641, 2017, doi: 10.1016/j.asoc.2017.03.041.
dc.relation.referencesQ. Zhang, W. Zhu, B. Liao, X. Chen, y L. Cai, “A modified PBI approach for multi-objective optimization with complex Pareto fronts”, Swarm Evol Comput, vol. 40, núm. February, pp. 216–237, 2018, doi: 10.1016/j.swevo.2018.02.001.
dc.relation.referencesC. A. C. Coello, “Introducción a la Optimización Evolutiva Multiobjetivo”, Apuntes de clase: Introducción a la optimización multiobjetivo., vol., núm. 4. pp. 1–144, 2012.
dc.relation.referencesJ. D. Schaffer, “Multiple objective optimization with vector evaluated genetic algorithms”, The 1st international Conference on Genetic Algorithms, núm. JANUARY 1985, pp. 93–100, 1985.
dc.relation.referencesK. Deb, A. Pratap, S. Agarwal, y T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II”, IEEE Transactions on Evolutionary Computation, vol. 6, núm. 2, pp. 182–197, 2002, doi: 10.1109/4235.996017.
dc.relation.referencesC. A. Correa Flórez, R. Andrés Bolaños, y A. Molina Cabrera, “Algoritmo multiobjetivo NSGA-II aplicado al problema de la mochila.”, Scientia Et Technica, vol. 2, núm. 39, pp. 206–211, 2008.
dc.relation.referencesL. Lopez, R. A. Hincapié, y R. A. Gallego, “Planeamiento multi-objetivo de sistemas de distribución usando un algoritmo evolutivo NSGA-II”, Revista Escuela de Ingeniería de Antioquía, vol. 15, núm. 15, pp. 141–151, 2011.
dc.relation.referencesN. Dahmani, F. Clautiaux, S. Krichen, y E. G. Talbi, “Self-adaptive metaheuristics for solving a multi-objective 2-dimensional vector packing problem”, Applied Soft Computing Journal, vol. 16, pp. 124–136, 2014, doi: 10.1016/j.asoc.2013.12.006.
dc.relation.referencesL. Wang, A. H. C. Ng, y K. Deb, “Multi-objective Evolutionary Optimisation for Product Design and Manufacturing”, Assembly Automation, vol. 32, núm. 4, pp. 142–147, 2012, doi: 10.1108/aa.2012.03332daa.009.
dc.relation.referencesJ. Gomez, “Self adaptation of operator rates for multimodal optimization”, Proceedings of the 2004 Congress on Evolutionary Computation, CEC2004, vol. 2, pp. 1720–1726, 2004, doi: 10.1109/cec.2004.1331103.
dc.relation.referencesGECCO ’19, “MOHAEA: A Multi-objective Hybrid Adaptive Evolutionary Algorithm”, en GECCO ’19, July 13–17, 2019, 2019, pp. 1–3.
dc.relation.referencesJ. Horn, N. Nafpliotis, y D. E. Goldberg, “A niched Pareto genetic algorithm for multiobjective optimization”, en First IEEE Conference on Evolutionary Computation, 2002, pp. 82–87. doi: 10.1109/icec.1994.350037.
dc.relation.referencesC.-L. Hwang, Y.-J. Lai, y T.-Y. Liu, “A New Approach for Multiple Objective Decision Making”, Comput Oper Res, vol. 20, núm. 8, pp. 889–899, 1993.
dc.relation.referencesJ. G. Vlachogiannis y K. Y. Lee, “Multi-objective based on parallel vector evaluated particle swarm optimization for optimal steady-state performance of power systems”, Expert Syst Appl, vol. 36, núm. 8, pp. 10802–10808, 2009, doi: 10.1016/j.eswa.2009.02.079.
dc.relation.referencesL. C. Cagnina, “Optimización Mono y Multiobjetivo a través de una Heurística de Inteligencia Colectiva”, pp. 54–72, 2010.
dc.relation.referencesA. Lara López, “Un estudio de las Estrategias Evolutivas para problemas Multiobjetivo.”, pp. 23–25, 2003.
dc.relation.referencesN. A. Ramírez, “Una nueva propuesta para optimización multiobjetivo basada en búsqueda dispersa (Scatter Search)”, 2006.
dc.relation.referencesM. Gul, E. Celik, N. Aydin, A. Taskin Gumus, y A. F. Guneri, “A state of the art literature review of VIKOR and its fuzzy extensions on applications”, Applied Soft Computing Journal, vol. 46, pp. 60–89, 2016, doi: 10.1016/j.asoc.2016.04.040.
dc.relation.referencesY.-Z. Lu, Y.-W. Chen, M.-R. Chen, P. Chen, y G.-Q. Zeng, Extremal Optimization: Fundamentals, Algorithms, and Applications, vol. 2016.
dc.relation.referencesS. S. Santander-Jiménez, M. A. Vega-Rodríguez, J. A. Gómez-Pulido, y J. M. Sánchez-Pérez, “Una adaptación multiobjetivo y paralela del algoritmo Artificial Bee Colony aplicada a la inferencia filogenética”, 1996.
dc.relation.referencesC.-K. Goh y K. C. Tan, Evolutionary Multi-objective Optimization in Uncertain Environments: Issues and Algorithms, vol. 186. 2009. doi: 10.1007/978-3-540-95976-2.
dc.relation.referencesM. Macías Infantes, “Estudio Comparativo de Técnicas de Optimización para la Actualización de Modelos de Elementos Finitos”, 2016.
dc.relation.referencesL. C. Jain y N. M. Martin, Fusion of Neural Networks, Fuzzy Systems and Genetic Algorithms: Industrial Applications, vol. 1. 1998.
dc.relation.referencesG. Toscano, “Optimización Multiobjetivo usando un Micro Algoritmo Genético”, Universidad Veracurzana - LANIA, 2001.
dc.relation.referencesC. Almeida, N. Amarilla, y B. Barán, “Optimización Multiobjetivo en la Planificación de Centrales Telefónicas”, 2003.
dc.relation.referencesC. Castillo, “Aplicación de la Programacion Multiobjetivo en la Optimización del Tráfico Generado por un IDS/IPS”, Rev. Tecnol. - Journal of Technology, vol. 11, núm. 1, pp. 41–55, 2012.
dc.relation.referencesS. Ruiz, O. D. Castrillón, y W. A. Sarache, “Una metodología multiobjetivo para optimizar un ambiente job shop”, Informacion Tecnologica, vol. 23, núm. 1, pp. 35–46, 2012, doi: 10.4067/S0718-07642012000100005.
dc.relation.referencesM. Guzek, J. E. Pecero, B. Dorronsoro, y P. Bouvry, “Multi-objective evolutionary algorithms for energy-aware scheduling on distributed computing systems”, Applied Soft Computing Journal, vol. 24, pp. 432–446, 2014, doi: 10.1016/j.asoc.2014.07.010.
dc.relation.referencesC. Carnevale, G. Finzi, E. Pisoni, y M. Volta, “Multi-objective analysis to control ozone exposure”, en Developments in Environmental Science, 2007, pp. 96–108. doi: 10.1016/S1474-8177(07)06023-8.
dc.relation.referencesP. S. Moura y A. T. de Almeida, “Multi-objective optimization of a mixed renewable system with demand-side management”, Renewable and Sustainable Energy Reviews, vol. 14, núm. 5, pp. 1461–1468, 2010, doi: 10.1016/j.rser.2010.01.004.
dc.relation.referencesM. J. Bastidas, R. F. Bermúdez, G. P. Jaramillo, y F. Chejne, “Optimización termoeconómica y ambiental usando algoritmos genéticos multiobjetivo”, Informacion Tecnologica, vol. 21, núm. 4, pp. 35–44, 2010, doi: 10.1612/inf.tecnol.4384it.09.
dc.relation.referencesP. J. Copado-Méndez, C. Pozo, G. Guillén-Gosálbez, y L. Jiménez, “Enhancing the ε-constraint method through the use of objective reduction and random sequences: Application to environmental problems”, Comput Chem Eng, vol. 87, pp. 36–48, 2016, doi: 10.1016/j.compchemeng.2015.12.016.
dc.relation.referencesM. N. Naz, M. I. Mushtaq, M. Naeem, M. Iqbal, M. W. Altaf, y M. Haneef, “Multicriteria decision making for resource management in renewable energy assisted microgrids”, Renewable and Sustainable Energy Reviews, vol. 71, núm. December 2016, pp. 323–341, 2017, doi: 10.1016/j.rser.2016.12.059.
dc.relation.referencesR. T. F. Ah. King, K. Deb, y H. C. S. Rughooputh, “Comparison of NSGA-II and SPEA2 on the Multiobjective Environmental/Economic Dispatch Problem”, University of Mauritius Research Journal, vol. 16, núm. 1, pp. 485–511, 2010.
dc.relation.referencesL. Atmaniou et al., “A multiobjective genetic algorithm optimization framework for batch plant design”, Computer Aided Chemical Engineering, vol. 15, núm. C, pp. 400–405, 2003, doi: 10.1016/S1570-7946(03)80577-1.
dc.relation.referencesC. Gutérrez-Antonio, A. Briones-Ramírez, y A. Jiménez-Gutiérrez, “Optimization of Petlyuk sequences using a multi objective genetic algorithm with constraints”, Comput Chem Eng, vol. 35, núm. 2, pp. 236–244, 2011, doi: 10.1016/j.compchemeng.2010.10.007.
dc.relation.referencesA. I. Papadopoulos y P. Linke, “Multiobjective molecular design for integrated process-solvent systems synthesis”, AIChE Journal, vol. 52, núm. 3, pp. 1057–1070, 2006, doi: 10.1002/aic.10715.
dc.relation.referencesS. Ekins, J. D. Honeycutt, y J. T. Metz, “Evolving molecules using multi-objective optimization: Applying to ADME/Tox”, Drug Discov Today, vol. 15, núm. 11–12, pp. 451–460, 2010, doi: 10.1016/j.drudis.2010.04.003.
dc.relation.referencesL. Y. Ng, N. G. Chemmangattuvalappil, y D. K. S. Ng, “A multiobjective optimization-based approach for optimal chemical product design”, Ind Eng Chem Res, vol. 53, núm. 44, pp. 17429–17444, 2014, doi: 10.1021/ie502906a.
dc.relation.referencesP. Bigus, J. Namieśnik, y M. Tobiszewski, “Application of multicriteria decision analysis in solvent type optimization for chlorophenols determination with a dispersive liquid-liquid microextraction”, J Chromatogr A, vol. 1446, pp. 21–26, 2016, doi: 10.1016/j.chroma.2016.03.065.
dc.relation.referencesC. M. Fonseca y P. J. Fleming, “Genetic Algorithms for Multi-Objective Optimization: Formulation, discussion and generalization”, en Proceedings of the 5th International Conference on Genetic Algorithms, 1993, pp. 416–423. doi: 10.3156/jfuzzy.9.4_471_1.
dc.relation.referencesM. Garza-Fabre, G. T. Pulido, y C. A. C. Coello, “Ranking methods for many-objective optimization”, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5845 LNAI, pp. 633–645, 2009, doi: 10.1007/978-3-642-05258-3_56.
dc.relation.referencesK. Deb y H. Jain, “An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: Solving problems with box constraints”, IEEE Transactions on Evolutionary Computation, vol. 18, núm. 4, pp. 577–601, 2014, doi: 10.1109/TEVC.2013.2281535.
dc.relation.referencesH. Ishibuchi, N. Tsukamoto, y Y. Nojima, “Evolutionary many-objective optimization: A short review”, 2008 IEEE Congress on Evolutionary Computation, CEC 2008, pp. 2419–2426, 2008, doi: 10.1109/CEC.2008.4631121.
dc.relation.referencesH. Sato, “Pareto Partial Dominance MOEA in Many-Objective Optimization”, Search (Syd), núm. January, pp. 1–10, 2009.
dc.relation.referencesH. Aguirre y K. Tanaka, “Many-objective optimization by space partitioning and adaptive ∈-ranking on MNK-landscapes”, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5467 LNCS, pp. 407–422, 2010, doi: 10.1007/978-3-642-01020-0_33.
dc.relation.referencesC. H. Papadimitriou y M. Yannakakis, “On the approximability of trade-offs and optimal access of web sources”, Annual Symposium on Foundations of Computer Science - Proceedings, pp. 86–92, 2000, doi: 10.1109/sfcs.2000.892068.
dc.relation.referencesT. Erlebach, H. Kellerer, y U. Pferschy, “Approximating Multi-objective Knapsack Problems”, pp. 210–211, 2001.
dc.relation.referencesJ. Bader y E. Zitzler, “HypE : An algorithm for fast optimization”, Evol Comput, vol. 19, núm. 1, pp. 45–76, 2011.
dc.relation.referencesL. While, P. Hingston, L. Barone, y S. Huband, “A faster algorithm for calculating hypervolume”, IEEE Transactions on Evolutionary Computation, vol. 10, núm. 1, pp. 29–38, 2006, doi: 10.1109/TEVC.2005.851275.
dc.relation.referencesK. Bringmann y T. Friedrich, “Approximating the volume of unions and intersections of high-dimensional geometric objects”, Comput Geom, vol. 43, núm. 6–7, pp. 601–610, 2010, doi: 10.1016/j.comgeo.2010.03.004.
dc.relation.referencesX. Cai, H. Sun, y Z. Fan, “A diversity indicator based on reference vectors for many-objective optimization”, Inf Sci (N Y), vol. 430–431, pp. 467–486, 2018, doi: 10.1016/j.ins.2017.11.051.
dc.relation.referencesG. Dai, C. Zhou, M. Wang, y X. Li, “Indicator and reference points co-guided evolutionary algorithm for many-objective optimization problems”, Knowl Based Syst, vol. 140, pp. 50–63, 2018, doi: 10.1016/j.knosys.2017.10.025.
dc.relation.referencesM. Zhang y H. Li, “A reference direction and entropy based evolutionary algorithm for many-objective optimization”, Applied Soft Computing Journal, vol. 70, pp. 108–130, 2018, doi: 10.1016/j.asoc.2018.05.011.
dc.relation.referencesJ. Zou, C. Ji, S. Yang, Y. Zhang, J. Zheng, y K. Li, “A knee-point-based evolutionary algorithm using weighted subpopulation for many-objective optimization”, Swarm Evol Comput, vol. 47, núm. January, pp. 33–43, 2019, doi: 10.1016/j.swevo.2019.02.001.
dc.relation.referencesY. Liu, N. Zhu, K. K. Li, M. Li, J. Zheng, y K. Li, “An angle dominance criterion for evolutionary many-objective optimization”, Inf Sci (N Y), núm. xxxx, 2019, doi: 10.1016/j.ins.2018.12.078.
dc.relation.referencesL. Cai, S. Qu, y G. Cheng, “Two-archive method for aggregation-based many-objective optimization”, Inf Sci (N Y), vol. 422, pp. 305–317, 2018, doi: 10.1016/j.ins.2017.08.078.
dc.relation.referencesP. J. Fleming, R. C. Purshouse, y R. J. Lygoe, “Many-objective optimization: An engineering design perspective”, Lecture Notes in Computer Science, vol. 3410, pp. 14–32, 2005, doi: 10.1007/978-3-540-31880-4_2.
dc.relation.referencesA. Inselberg y B. Dimsdale, “Parallel coordinates: A tool for visualizing multi-dimensional geometry”, pp. 361–378, 1990, doi: 10.1007/978-4-431-68057-4_3.
dc.relation.referencesA. Pryke, S. Mostaghim, y A. Nazemi, “Heatmap visualization of population based multi objective algorithms”, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 4403 LNCS, pp. 361–375, 2007, doi: 10.1007/978-3-540-70928-2_29.
dc.relation.referencesD. J. Walker, R. M. Everson, y J. E. Fieldsend, “Visualizing mutually nondominating solution sets in many-objective optimization”, IEEE Transactions on Evolutionary Computation, vol. 17, núm. 2, pp. 165–184, 2013, doi: 10.1109/TEVC.2012.2225064.
dc.relation.referencesP. Hoffman y G. Grinstein, “Visualizations for High Dimensional Data Mining-Table Visualizations”, núm. August 2001, 1997.
dc.relation.referencesJ. B. Tenenbaum, V. De Silva, y J. C. Langford, “A global geometric framework for nonlinear dimensionality reduction”, Science (1979), vol. 290, núm. 5500, pp. 2319–2323, 2000, doi: 10.1126/science.290.5500.2319.
dc.relation.referencesJ. Zou, L. Fu, J. Zheng, S. Yang, G. Yu, y Y. Hu, “A many-objective evolutionary algorithm based on rotated grid”, Applied Soft Computing Journal, vol. 67, pp. 596–609, 2018, doi: 10.1016/j.asoc.2018.02.031.
dc.relation.referencesB. Khan, S. Hanoun, M. Johnstone, C. P. Lim, D. Creighton, y S. Nahavandi, “A scalarization-based dominance evolutionary algorithm for many-objective optimization”, Inf Sci (N Y), vol. 474, pp. 236–252, 2019, doi: 10.1016/j.ins.2018.09.031.
dc.relation.referencesJ. Zou, Y. Zhang, S. Yang, Y. Liu, y J. Zheng, “Adaptive neighborhood selection for many-objective optimization problems”, Applied Soft Computing Journal, vol. 64, pp. 186–198, 2018, doi: 10.1016/j.asoc.2017.11.041.
dc.relation.referencesM. Wagner y F. Neumann, “A Fast Approximation-Guided Evolutionary Multi-Objective Algorithm”, pp. 687–694.
dc.relation.referencesQ. Zhang, S. Member, y H. Li, “MOEA / D : A Multiobjective Evolutionary Algorithm Based on Decomposition”, vol. 11, núm. 6, pp. 712–731, 2007.
dc.relation.referencesI. Giagkiozis, R. C. Purshouse, y P. J. Fleming, “Generalized Decomposition and Cross Entropy Methods for Many-Objective Optimization”, Inf Sci (N Y), p. 2014, 2014, doi: 10.1016/j.ins.2014.05.045.
dc.relation.referencesH. Seada y K. Deb, “U-NSGA-III : A Unified Evolutionary Algorithm for Single , Multiple , and Many-Objective Optimization”, pp. 1–30.
dc.relation.referencesD. Weininger, “SMILES, a Chemical Language and Information System: 1: Introduction to Methodology and Encoding Rules”, J Chem Inf Comput Sci, vol. 28, núm. 1, pp. 31–36, 1988, doi: 10.1021/ci00057a005.
dc.relation.referencesL. Hornos, “Introducción a SMILES: Dibujando moléculas en el bloc de notas”, El problema de describir una estructura molecular con caracteres comunes, 2020.
dc.relation.referencesDaylight Chemical Information Systems Inc., “SMILES - A Simplified Chemical Language”, -, 2019.
dc.relation.referencesN. M. O. Boyle, “Towards a Universal SMILES representation - A standard method to generate canonical SMILES based on the InChI”, pp. 1–14, 2012.
dc.relation.referencesIUPAC, “Definición de compuestos anti aromáticos”. https://goldbook.iupac.org/terms/view/A00382
dc.relation.referencesA. T. M. G. Mostafa, J. M. Eakman, M. M. Montoya, y S. L. Yarbro, “Prediction of Heat Capacities of Solid Inorganic Salts from Group Contributions”, pp. 343–348, 1996.
dc.relation.referencesD. W. Van Krevelen, Properties of Polymers: Their Correlation with Chemical Structure; their Numerical Estimation and Prediction from Additive Group Contributions. 2009.
dc.relation.referencesD. Saracino, Abstract Algebra A First Course. 2008.
dc.relation.referencesJoseph A. Gallian, Contemporary Abstract Algebra. 2013.
dc.relation.referencesD. B. Fraleigh, A first course in abstract algebra. 2002.
dc.relation.referencesW. L. Kocay y D. L. Kreher, Graphs, Algorithms, and Optimization, vol. 1. Boca Raton, FL, USA: CRC Press, 2017.
dc.relation.referencesP. Fernández-Gallardo y J. L. Fernández-Pérez, “La Teoría de Pólya”, en El discreto encanto de la matemática, 2002, pp. 1133–1145.
dc.relation.referencesA. R. Matamala, “PÓLYA’S COMBINATORIAL METHOD AND THE ISOMER ENUMERATION PROBLEM”, Bol. Soc. Chil. Quím., 2002. https://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0366-16442002000200006#17
dc.relation.referencesS. Pevac y G. Crundwell, “Pólya’s Isomer Enumeration Method: A Unique Exercise in Group Theory and Combinatorial Analysis for Undergraduates”, J Chem Educ, vol. 77, núm. 10, pp. 1358–1360, 2000, doi: 10.1021/ed077p1358.
dc.relation.referencesR. L. Apodaca, “A Comprehensive Treatment of Aromaticity in the SMILES Language”, 2021. https://depth-first.com/articles/2020/02/10/a-comprehensive-treatment-of-aromaticity-in-the-smiles-language/
dc.relation.referencesDaylight Chemical Information Systems Inc., “SMILES Tutorial: Conventions”. https://www.daylight.com/meetings/summerschool98/course/dave/smiles-convent.htm
dc.relation.referencesJ. Marrero y R. Gani, “Group-contribution based estimation of pure component properties”, Fluid Phase Equilib, vol. 183–184, pp. 183–208, 2001, doi: 10.1016/S0378-3812(01)00431-9.
dc.relation.referencesE. C. Ihmels y J. Gmehling, “Extension and revision of the group contribution method GCVOL for the prediction of pure compound liquid densities”, Ind Eng Chem Res, vol. 42, núm. 2, pp. 408–412, 2003, doi: 10.1021/ie020492j.
dc.relation.referencesT. J. Sheldon, C. S. Adjiman, y J. L. Cordiner, “Pure component properties from group contribution: Hydrogen-bond basicity, hydrogen-bond acidity, Hildebrand solubility parameter, macroscopic surface tension, dipole moment, refractive index and dielectric constant”, Fluid Phase Equilib, vol. 231, núm. 1, pp. 27–37, 2005, doi: 10.1016/j.fluid.2004.12.017.
dc.relation.referencesJ. Gmehling, J. Lohmann, A. Jakob, J. Li, y R. Joh, “A modified UNIFAC (Dortmund) model. 4. Revision and extension”, Ind Eng Chem Res, vol. 37, núm. 12, pp. 4876–4882, 1998, doi: 10.1021/ie980347z.
dc.relation.referencesD. Constantinescu y J. Gmehling, “Further development of modified UNIFAC (Dortmund): Revision and extension 6”, J Chem Eng Data, vol. 61, núm. 8, pp. 2738–2748, 2016, doi: 10.1021/acs.jced.6b00136.
dc.relation.referencesA. Fredeslund, Russell L. Jones, y J. M. Prausnitz, “Group-Contri bution Estimation of Activity Coefficients in Nonideal Liquid Mixtures”, vol. 21, núm. 6, 1975.
dc.relation.referencesDortmund-Databank, “Published ParametersUnifac”. http://www.ddbst.com/published-parameters-unifac.html
dc.relation.referencesJ. J. Irwin y B. K. Shoichet, “ZINC - A free database of commercially available compounds for virtual screening”, J Chem Inf Model, vol. 45, núm. 1, pp. 177–182, 2005, doi: 10.1021/ci049714+.
dc.relation.referencesT. Sterling y J. J. Irwin, “ZINC 15 - Ligand Discovery for Everyone”, J Chem Inf Model, vol. 55, núm. 11, pp. 2324–2337, 2015, doi: 10.1021/acs.jcim.5b00559.
dc.relation.referencesEPA, “Distributed Structure-Searchable Toxicity (DSSTox) Database”, 2022. https://www.epa.gov/chemical-research/distributed-structure-searchable-toxicity-dsstox-database.
dc.relation.referencesTexas A&M University Libraries, “Chemical Pricing Database - Beta Version”, 2022. https://tamu.libguides.com/c.php?g=587308&p=5694124&url=L2V2LTI5ODk3NjIvZGIvNTUzNTQvdmlldy5hc3B4
dc.relation.referencesS&P Global, “Chemical Week by S&P Global”, 2022. https://chemweek.com/home
dc.relation.referencesRelx Inc., “ICIS Chemical Bussiness”, 2022. https://www.icis.com/subscriber/specialpublications/#_=_
dc.relation.referencesT. Group, G. All, I. N. D. Farm, P. F. F. Farm, y G. Smith, “Table 9 . Producer price indexes for commodity and service groupings and individual items , not seasonally adjusted [April 2022, Index base 1982=100, unless otherwise indicated]”, núm. April, pp. 1–58, 2022.
dc.relation.referencesS. Müller, “GitHub - Simon Müller - Fragmentation Algorithm Paper”, https://github.com/simonmb/fragmentation_algorithm_paper, 2023. https://github.com/simonmb/fragmentation_algorithm_paper (consultado el 8 de abril de 2023).
dc.relation.referencesS. Müller, “Flexible heuristic algorithm for automatic molecule fragmentation: Application to the UNIFAC group contribution model”, J Cheminform, vol. 11, núm. 1, 2019, doi: 10.1186/s13321-019-0382-3.
dc.relation.referencesK. Rodríguez, “Computer Aided Molecular Design : State-of-the-art and environmen- tally friendly product design”, p. 9, 2019.
dc.relation.referencesK. A. Rodríguez, “Inclusion of toxicity and market availability in a Computer-Aided Molecular Design methodology”, 2019.
dc.relation.referencesJ. Prieto y J. Gomez, “Hybrid Adaptive Evolutionary Algorithm for Multi-objective Optimization”, 2020, [En línea]. Disponible en: http://arxiv.org/abs/2004.13925
dc.relation.referencesK. Deb, A. Pratap, S. Agarwal, y T. Meyarivan, “A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II”, IEEE Transactions on Evolutionary Computation, vol. 6, núm. 2, pp. 182–197, 2002, doi: 10.1109/4235.996017.
dc.relation.referencesD. Constantinescu y J. Gmehling, “Further development of modified UNIFAC (Dortmund): Revision and extension 6”, J Chem Eng Data, vol. 61, núm. 8, pp. 2738–2748, 2016, doi: 10.1021/acs.jced.6b00136.
dc.relation.referencesDDBST GmbH, “Parameters of the Modified UNIFAC (Dortmund) Model”, 2022. http://unifac.ddbst.de/PublishedParametersUNIFACDO.html
dc.relation.referencesOEIS.org, “The On-Line Encyclopedia of Integer Sequences® (OEIS®)”, https://oeis.org/, 2023. https://oeis.org/ (consultado el 25 de julio de 2023).
dc.relation.referencesN. C. for B. I. NIH - National Library of Medicine, “PubChem: Explore Chemistry - Quickly find chemical information from authoritative sources”, 2023.
dc.relation.referencesJ. Gómez, “Hybrid Adaptive Evolutionary Algorithm Hyper Heuristic”, pp. 1–5.
dc.relation.referencesJ. Gomez, “Self adaptation of operator rates in evolutionary algorithms”, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 3102, pp. 1162–1173, 2004, doi: 10.1007/978-3-540-24854-5_113.
dc.relation.referencesD. Weininger, “SMILES, a Chemical Language and Information System: 1: Introduction to Methodology and Encoding Rules”, J Chem Inf Comput Sci, vol. 28, núm. 1, pp. 31–36, 1988, doi: 10.1021/ci00057a005.
dc.relation.referencesL. Hornos, “Introducción a SMILES: Dibujando moléculas en el bloc de notas”, El problema de describir una estructura molecular con caracteres comunes, 2020.
dc.relation.referencesDaylight Chemical Information Systems Inc., “SMILES - A Simplified Chemical Language”, -, 2019.
dc.relation.referencesInc. Daylight Chemical Information System, “SMARTS - A Language for Describing Molecular Patterns”, https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html, 2019. https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html (consultado el 8 de abril de 2023).
dc.relation.referencesU. H. ZBH - Center for Bioinformatics, “SMARTS PLUS”, https://smarts.plus/, 2023. https://smarts.plus/ (consultado el 8 de abril de 2023).
dc.relation.referencesU. Weidlich y J. Gmehling, “A Modified UNIFAC Model. 1. Prediction of VLE, hE, and 3∞”, Ind Eng Chem Res, vol. 26, núm. 7, pp. 1372–1381, 1987, doi: 10.1021/ie00067a018.
dc.relation.referencesA. Ag, Ε. Fredenslund, J. Gmehling, y P. Rasmussen, Vapor-liquid equilib using UNIFAC a group-contribution method Library ol Congress Cataloging in Publication Data. 1977.
dc.relation.referencesACD Labs, “ACD Labs ChemSketch”, https://www.acdlabs.com/resources/free-chemistry-software-apps/chemsketch-freeware/, 2023. https://www.acdlabs.com/resources/free-chemistry-software-apps/chemsketch-freeware/ (consultado el 13 de julio de 2022).
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembDisolventes
dc.subject.lembSolvents
dc.subject.lembComputadores electronicos digitales-diseño y construccion-procesamiento de datos
dc.subject.lembElectronic digital computers - Design and construction - Data processing
dc.subject.proposalOptimización multiobjetivo
dc.subject.proposalExtracción líquido-líquido
dc.subject.proposalDiseño asistido por computadora
dc.subject.proposalDiseño de producto
dc.subject.proposalMulti-objective optimization
dc.subject.proposalLiquid-liquid extraction
dc.subject.proposalComputer-aided molecular design
dc.subject.proposalProduct design
dc.title.translatedMulti-objective optimization applied in computer-aided molecular design for the selection of extraction solvents.
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.orcidRoa Gómez, Victor Alfonso [0000-0003-3325-2805]
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000041601
dc.contributor.scopushttps://www.scopus.com/authid/detail.uri?authorId=1018458793
dc.contributor.researchgatehttps://www.researchgate.net/profile/Victor-Roa


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito