Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorGarzón Alvarado, Diego Alexander
dc.contributor.authorSánchez Gutiérrez, Juan Felipe
dc.date.accessioned2024-02-26T19:10:45Z
dc.date.available2024-02-26T19:10:45Z
dc.date.issued2024-02
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85721
dc.descriptionilustraciones, diagramas
dc.description.abstractEn este trabajo se presentan tres capítulos con modelos in-silico desarrollados a través de ecuaciones diferenciales y solucionados computacionalmente, que proporcionan una perspectiva del acoplamiento entre el ciclo de remodelación ósea y las poblaciones tumorales. Comprender las dinámicas entre el tejido sano, las células que realizan el proceso de remodelación y las diferentes patologías, como el osteosarcoma o los tumores metastásicos, es fundamental para crear estrategias m´as personalizadas y especializadas para mitigar los efectos de estas enfermedades o curarlas por completo. Los modelos presentados proveen información mas detallada de la dinámica real de la remodelación ósea en pacientes por masas tumorales. Ofrecen un marco innovador y una base solida para el desarrollo de nuevos modelos, herramientas y técnicas que permitan el desarrollo de la medicina personalizada, con una perspectiva mas completa y controlada de los procesos fisiológicos y patológicos. Se espera que en el futuro, estos modelos sean aun mas robustos y versátiles, brindando un mayor apoyo para la toma de decisiones mas acertadas en cada caso clínico particular. (Texto tomado de la fuente).
dc.description.abstractThis work presents three chapters with in-silico models developed through differential equations and computationally solved, providing a perspective of the coupling between the bone remodeling cycle and tumor populations. Understanding the dynamics between healthy tissue, cells involved in the remodeling process, and different pathologies, such as osteosarcoma or metastatic tumors, is fundamental for creating more personalized and specialized strategies to mitigate the effects of these diseases or cure them completely. The models presented provide more detailed information about the real dynamics of bone remodeling in patients with tumor masses. They offer an innovative framework and a solid foundation for the development of new models, tools, and techniques that enable personalized medicine, with a more comprehensive and controlled perspective of physiological and pathological processes. It is expected that in the future, these models will become even more robust and versatile, providing greater support for making more accurate decisions in each specific clinical case.
dc.format.extentxvi, 103 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
dc.subject.ddc610 - Medicina y salud::616 - Enfermedades
dc.titleModelo y simulación de dinámica de crecimiento de mieloma
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Mecánica
dc.contributor.researchgroupGnum Grupo de Modelado y Métodos Numericos en Ingeniería
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería Mecánica
dc.description.researchareaIngeniería de diseño y biomecánica
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedBireme
dc.relation.references[Ait Oumghar et al., 2020] Ait Oumghar, I., Barkaoui, A., and Chabrand, P. (2020). Toward a mathematical modeling of diseases’ impact on bone remodeling: technical review. Frontiers in Bioengineering and Biotechnology, 8:584198.
dc.relation.references[Altrock et al., 2015] Altrock, P. M., Liu, L. L., and Michor, F. (2015). The mathematics of cancer: integrating quantitative models. Nature Reviews Cancer, 15(12):730–745.
dc.relation.references[Amat Villegas et al., 2009] Amat Villegas, I., Lobo Mor´an, C., Muro Carral, N., Larzabal Aramberri, M., Aranzadi Mart´ınez, M. J., and Vaquero P´erez, M. (2009). Metaplasia ´osea en relaci´on con una denocarcinoma de colon. Gastroenterol. hepatol.(Ed. impr.), pages 324–325.
dc.relation.references[Arias Moreno, 2011] Arias Moreno, A. J. (2011). Modelo computacional para simulaci´on del proceso de osteog´enesis y la curaci´on ´osea despu´es de la fractura. PhD thesis.
dc.relation.references[Atkinson and Delgado-Calle, 2019] Atkinson, E. G. and Delgado-Calle, J. (2019). The emerging role of osteocytes in cancer in bone. JBMR plus, 3(3):e10186.
dc.relation.references[Atuegwu et al., 2011] Atuegwu, N. C., Arlinghaus, L. R., Li, X., Welch, E. B., Chakravarthy, B. A., Gore, J. C., and Yankeelov, T. E. (2011). Integration of diffusion-weighted mri data and a simple mathematical model to predict breast tumor cellularity during neoadjuvant chemotherapy. Magnetic Resonance in Medicine, 66(6):1689–1696.
dc.relation.references[Ayati et al., 2010] Ayati, B. P., Edwards, C. M., Webb, G. F., and Wikswo, J. P. (2010). A mathematical model of bone remodeling dynamics for normal bone cell populations and myeloma bone disease. Biology direct, 5:1–17.
dc.relation.references[Barbolosi et al., 2016] Barbolosi, D., Ciccolini, J., Lacarelle, B., Barl´esi, F., and Andr´e, N. (2016). Computational oncology—mathematical modelling of drug regimens for precision medicine. Nature reviews Clinical oncology, 13(4):242–254.
dc.relation.references[Barkaoui et al., 2017] Barkaoui, A., Ben Kahla, R., Merzouki, T., and Hambli, R. (2017). Age and gender effects on bone mass density variation: finite elements simulation. Biomechanics and modeling in mechanobiology, 16(2):521–535.
dc.relation.references[Belfatto et al., 2015] Belfatto, A., Riboldi, M., Ciardo, D., Cecconi, A., Lazzari, R., Jereczek-Fossa, B. A., Orecchia, R., Baroni, G., and Cerveri, P. (2015). Adaptive mathematical model of tumor response to radiotherapy based on cbct data. IEEE journal of biomedical and health informatics, 20(3):802–809.
dc.relation.references[Bender et al., 2015] Bender, B. C., Schindler, E., and Friberg, L. E. (2015). Population pharmacokinetic–pharmacodynamic modelling in oncology: a tool for predicting clinical response. British journal of clinical pharmacology, 79(1):56–71.
dc.relation.references[Bethge et al., 2015] Bethge, A., Schumacher, U., and Wedemann, G. (2015). Simulation of metastatic progression using a computer model including chemotherapy and radiation therapy. Journal of biomedical informatics, 57:74–87.
dc.relation.references[Bokhari et al., 2012] Bokhari, K., Hameed, M., Ajmal, M., and Togoo, R. A. (2012). Benign osteoblastoma involving maxilla: a case report and review of the literature. Case Reports in Dentistry, 2012.
dc.relation.references[Bonfoh et al., 2008] Bonfoh, N., Bilasse, M., and Lipinski, P. (2008). Mod´elisation du remodelage osseux. Revue de, 1(10):717–726.
dc.relation.references[Botesteanu et al., 2016] Botesteanu, D.-A., Lipkowitz, S., Lee, J.-M., and Levy, D. (2016). Mathematical models of breast and ovarian cancers. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 8(4):337–362.
dc.relation.references[Bowen et al., 1984] Bowen, J. R., Foster, B. K., and Hartzell, C. R. (1984). Legg-calv´e-perthes disease. Clinical orthopaedics and related research, (185):97–108.
dc.relation.references[Brigle and Rogers, 2017] Brigle, K. and Rogers, B. (2017). Pathobiology and diagnosis of multiple myeloma. 33(3):225–236.
dc.relation.references[Burr, 2002] Burr, D. B. (2002). Targeted and nontargeted remodeling. Bone, 30(1):2–4.
dc.relation.references[Cher et al., 2003] Cher, M. L., Biliran Jr, H. R., Bhagat, S., Meng, Y., Che, M., Lockett, J., Abrams, J., Fridman, R., Zachareas, M., and Sheng, S. (2003). Maspin expression inhibits osteolysis, tumor growth, and angiogenesis in a model of prostate cancer bone metastasis. Proceedings of the National Academy of Sciences, 100(13):7847–7852.
dc.relation.references[Claret et al., 2009] Claret, L., Girard, P., Hoff, P. M., Van Cutsem, E., Zuideveld, K. P., Jorga, K., Fagerberg, J., and Bruno, R. (2009). Model-based prediction of phase iii overall survival in colorectal cancer on the basis of phase ii tumor dynamics. Journal of Clinical Oncology, 27(25):4103–4108.
dc.relation.references[Coelho et al., 2016] Coelho, R. M., Lemos, J. M., Alho, I., Valerio, D., Ferreira, A. R., Costa, L., and Vinga, S. (2016). Dynamic modeling of bone metastasis, microenvironment and therapy: Integrating parathyroid hormone (pth) effect, anti-resorptive and anti-cancer therapy. Journal of Theoretical Biology, 391:1–12.
dc.relation.references[Coleman, 2001] Coleman, R. (2001). Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer treatment reviews, 27(3):165–176.
dc.relation.references[Coleman, 2006] Coleman, R. E. (2006). Clinical features of metastatic bone disease and risk of skeletal morbidity. Clinical cancer research, 12(20):6243s–6249s.
dc.relation.references[Corre et al., 2020] Corre, I., Verrecchia, F., Crenn, V., Redini, F., and Trichet, V. (2020). The osteosarcoma microenvironment: a complex but targetable ecosystem. Cells, 9(4):976.
dc.relation.references[Dallas et al., 2002] Dallas, S. L., Rosser, J. L., Mundy, G. R., and Bonewald, L. F. (2002). Proteolysis of latent transforming growth factor-β (tgf-β)- binding protein-1 by osteoclasts: a cellular mechanism for release of tgf-β from bone matrix. Journal of Biological Chemistry, 277(24):21352–21360.
dc.relation.references[Datta et al., 2008] Datta, H., Ng, W., Walker, J., Tuck, S., and Varanasi, S. (2008). The cell biology of bone metabolism. Journal of clinical pathology, 61(5):577–587.
dc.relation.references[Davies et al., 2004] Davies, C. d. L., Lundstrøm, L. M., Frengen, J., Eikenes, L., Bruland, Ø. S., Kaalhus, O., Hjelstuen, M. H., and Brekken, C. (2004). Radiation improves the distribution and uptake of liposomal doxorubicin (caelyx) in human osteosarcoma xenografts. Cancer research, 64(2):547– 553.
dc.relation.references[De Buck et al., 2014] De Buck, S. S., Jakab, A., Boehm, M., Bootle, D., Juric, D., Quadt, C., and Goggin, T. K. (2014). Population pharmacokinetics and pharmacodynamics of byl 719, a phosphoinositide 3-kinase antagonist, in adult patients with advanced solid malignancies. British journal of clinical pharmacology, 78(3):543–555.
dc.relation.references[Della Corte et al., 2020] Della Corte, A., Giorgio, I., and Scerrato, D. (2020). A review of recent developments in mathematical modeling of bone remodeling. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 234(3):273–281.
dc.relation.references[Deutsch et al., 2004] Deutsch, A., B¨orner, U., and B¨ar, M. (2004). Cellular automaton modeling of pattern formation in interacting cell systems. In Advances in Parallel Computing, volume 13, pages 695–704. Elsevier.
dc.relation.references[Dingli et al., 2009] Dingli, D., Offord, C., Myers, R., Peng, K.-W., Carr, T. W., Josic, K., Russell, S. J., and Bajzer, Z. (2009). Dynamics of multiple myeloma tumor therapy with a recombinant measles virus. Cancer gene therapy, 16(12):873–882.
dc.relation.references[Durie, 2021] Durie, D. B. G. (2021). Bone disease.
dc.relation.references[Ferlay et al., 2021] Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Pi˜neros, M., Znaor, A., and Bray, F. (2021). Cancer statistics for the year 2020: An overview. International journal of cancer, 149(4):778–789.
dc.relation.references[Ferlay et al., 2018] Ferlay, J., Ervik, M., Lam, F., Colombet, M., Mery, L., Pi˜neros, M., Znaor, A., Soerjomataram, I., and Bray, F. (2018). Global cancer observatory: cancer today. lyon, france: international agency for research on cancer.
dc.relation.references[Fornetti et al., 2018] Fornetti, J., Welm, A. L., and Stewart, S. A. (2018). Understanding the bone in cancer metastasis. Journal of Bone and Mineral Research, 33(12):2099–2113.
dc.relation.references[Garz´on-Alvarado, 2012] Garz´on-Alvarado, D. A. (2012). A mathematical model for describing the metastasis of cancer in bone tissue. Computer methods in biomechanics and biomedical engineering, 15(4):333–346.
dc.relation.references[Gerber and Ferrara, 2000] Gerber, H.-P. and Ferrara, N. (2000). Angiogenesis and bone growth. Trends in cardiovascular medicine, 10(5):223–228.
dc.relation.references[Goltzman, 1997] Goltzman, D. (1997). Mechanisms of the development of osteoblastic metastases. Cancer: Interdisciplinary International Journal of the American Cancer Society, 80(S8):1581–1587.
dc.relation.references[Gu et al., 2006] Gu, G., Nars, M., Hentunen, T. A., Metsikk¨o, K., and V¨a¨an¨anen, H. K. (2006). Isolated primary osteocytes express functional gap junctions in vitro. Cell and tissue research, 323:263–271.
dc.relation.references[Guise et al., 2006] Guise, T. A., Mohammad, K. S., Clines, G., Stebbins, E. G., Wong, D. H., Higgins, L. S., Vessella, R., Corey, E., Padalecki, S., Suva, L., et al. (2006). Basic mechanisms responsible for osteolytic and osteoblastic bone metastases. Clinical cancer research, 12(20):6213s–6216s.
dc.relation.references[G¨unther and Schinke, 2000] G¨unther, T. and Schinke, T. (2000). Mouse genetics have uncovered new paradigms in bone biology. Trends in Endocrinology & Metabolism, 11(5):189–193.
dc.relation.references[Hadjidakis and Androulakis, 2006] Hadjidakis, D. J. and Androulakis, I. I. (2006). Bone remodeling. Annals of the New York academy of sciences, 1092(1):385–396.
dc.relation.references[Honore et al., 2000] Honore, P., Luger, N. M., Sabino, M. A. C., Schwei, M. J., Rogers, S. D., Mach, D. B., O’keefe, P. F., Ramnaraine, M. L., Clohisy, D. R., and Mantyh, P. W. (2000). Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nature medicine, 6(5):521–528.
dc.relation.references[Huybrechts et al., 2020] Huybrechts, Y., Mortier, G., Boudin, E., and Van Hul, W. (2020). Wnt signaling and bone: lessons from skeletal dysplasias and disorders. Frontiers in Endocrinology, 11:165.
dc.relation.references[Hajek. R and Adam, 2011] Hajek. R, M. Krejcı, L. P. and Adam, Z. (2011). Multiple myeloma. Klinicka onkologie : casopis Ceske a Slovenske onkologicke spolecnosti, 24.
dc.relation.references[Ihde et al., 2011] Ihde, L. L., Forrester, D. M., Gottsegen, C. J., Masih, S., Patel, D. B., Vachon, L. A., White, E. A., and Matcuk Jr, G. R. (2011). Sclerosing bone dysplasias: review and differentiation from other causes of osteosclerosis. Radiographics, 31(7):1865–1882.
dc.relation.references[Joshua et al., 2019] Joshua, D. E., Bryant, C., Dix, C., Gibson, J., and Ho, J. (2019). Biology and therapy of multiple myeloma. Medical Journal of Australia, 210(8):375–380.
dc.relation.references[K¨ahk¨onen et al., 2021] K¨ahk¨onen, T. E., Halleen, J. M., and Bernoulli, J. (2021). Osteoimmuno-oncology: Therapeutic opportunities for targeting immune cells in bone metastasis. Cells, 10(6):1529.
dc.relation.references[Kameo et al., 2020] Kameo, Y., Miya, Y., Hayashi, M., Nakashima, T., and Adachi, T. (2020). In silico experiments of bone remodeling explore metabolic diseases and their drug treatment. Science advances, 6(10):eaax0938.
dc.relation.references[Keller et al., 2001] Keller, E. T., Zhang, J., Cooper, C. R., Smith, P. C., McCauley, L. K., Pienta, K. J., and Taichman, R. S. (2001). Prostate carcinoma skeletal metastases: cross-talk between tumor and bone. Cancer and Metastasis Reviews, 20:333–349.
dc.relation.references[Kennecke et al., 2010] Kennecke, H., Yerushalmi, R., Woods, R., Cheang, M. C. U., Voduc, D., Speers, C. H., Nielsen, T. O., and Gelmon, K. (2010). Metastatic behavior of breast cancer subtypes. Journal of clinical oncology, 28(20):3271–3277.
dc.relation.references[Kim et al., 2018] Kim, C., Gao, R., Sei, E., Brandt, R., Hartman, J., Hatschek, T., Crosetto, N., Foukakis, T., and Navin, N. E. (2018). Chemoresistance evolution in triple-negative breast cancer delineated by single-cell sequencing. Cell, 173(4):879–893.
dc.relation.references[Kimmel, 2010] Kimmel, M. (2010). Evolution and cancer: a mathematical biology approach.
dc.relation.references[Komarova et al., 2003a] Komarova, S. V., Smith, R. J., Dixon, S. J., Sims, S. M., and Wahl, L. M. (2003a). Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling. Bone, 33(2):206–215.
dc.relation.references[Koyama et al., 2021] Koyama, L. K. S., Nagano, C. P., Vanini, J. V., Figueredo Jr, J. M., de Matos, L. L., Cernea, C. R., Coutinho-Camillo, C. M., and Louren¸co, S. V. (2021). Oral squamous cell carcinoma bone invasion: Possible roles of e-cadherin in osteoclastogenesis and bone infiltration. ORL, 83(5):354–361.
dc.relation.references[Kreps and Addison, 2021] Kreps, L. M. and Addison, C. L. (2021). Targeting intercellular communication in the bone microenvironment to prevent disseminated tumor cell escape from dormancy and bone metastatic tumor growth. International Journal of Molecular Sciences, 22(6):2911.
dc.relation.references[Kronik et al., 2010] Kronik, N., Kogan, Y., Elishmereni, M., Halevi-Tobias, K., Vuk-Pavlovi´c, S., and Agur, Z. (2010). Predicting outcomes of prostate cancer immunotherapy by personalized mathematical models. PloS one, 5(12):e15482.
dc.relation.references[Kular et al., 2012] Kular, J., Tickner, J., Chim, S. M., and Xu, J. (2012). An overview of the regulation of bone remodelling at the cellular level. Clinical biochemistry, 45(12):863–873.
dc.relation.references[Lamoureux et al., 2008] Lamoureux, F., Picarda, G., Rousseau, J., Gourden, C., Battaglia, S., Charrier, C., Pitard, B., Heymann, D., and Redini, F. (2008). Therapeutic efficacy of soluble receptor activator of nuclear factor- κb-fc delivered by nonviral gene transfer in a mouse model of osteolytic osteosarcoma. Molecular Cancer Therapeutics, 7(10):3389–3398.
dc.relation.references[Lamoureux et al., 2007] Lamoureux, F., Richard, P., Wittrant, Y., Battaglia, S., Pilet, P., Trichet, V., Blanchard, F., Gouin, F., Pitard, B., Heymann, D., et al. (2007). Therapeutic relevance of osteoprotegerin gene therapy in osteosarcoma: blockade of the vicious cycle between tumor cell proliferation and bone resorption. Cancer research, 67(15):7308–7318.
dc.relation.references[Martin and Ng, 1994] Martin, T. and Ng, K. (1994). Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity. Journal of cellular biochemistry, 56(3):357–366.
dc.relation.references[Medina, 2018] Medina, M. A. (2018). Mathematical modeling of cancer metabolism. Critical reviews in oncology/hematology, 124:37–40.
dc.relation.references[Momtazi-Borojeni et al., 2019] Momtazi-Borojeni, A. A., Nik, M. E., Jaafari, M. R., Banach, M., and Sahebkar, A. (2019). Potential anti-tumor effect of a nanoliposomal antipcsk9 vaccine in mice bearing colorectal cancer. Archives of Medical Science, 15(3):559–569.
dc.relation.references[Mundy, 2002] Mundy, G. R. (2002). Metastasis to bone: causes, consequences and therapeutic opportunities. Nature Reviews Cancer, 2(8):584–593.
dc.relation.references[Murray, 2002] Murray, J. D. (2002). Mathematical biology: I. An introduction. Springer.
dc.relation.references[Navet et al., 2018] Navet, B., Ando, K., Vargas-Franco, J. W., Brion, R., Amiaud, J., Mori, K., Yagita, H., Mueller, C. G., Verrecchia, F., Dumars, C., et al. (2018). The intrinsic and extrinsic implications of rankl/rank signaling in osteosarcoma: from tumor initiation to lung metastases. Cancers, 10(11):398.
dc.relation.references[Nørregaard et al., 2021] Nørregaard, K. S., J¨urgensen, H. J., G˚ardsvoll, H., Engelholm, L. H., Behrendt, N., and Søe, K. (2021). Osteosarcoma and metastasis associated bone degradation—a tale of osteoclast and malignant cell cooperativity. International Journal of Molecular Sciences, 22(13):6865.
dc.relation.references[Ollier et al., 2017] Ollier, E., Mazzocco, P., Ricard, D., Kaloshi, G., Idbaih, A., Alentorn, A., Psimaras, D., Honnorat, J., Delattre, J.-Y., Grenier, E., et al. (2017). Analysis of temozolomide resistance in low-grade gliomas using a mechanistic mathematical model. Fundamental & clinical pharmacology, 31(3):347–358.
dc.relation.references[Ovejero et al., 2022] Ovejero, D., Garcia-Giralt, N., Mart´ınez-Gil, N., Rabionet, R., Balcells, S., Grinberg, D., P´erez-Jurado, L. A., Nogu´es, X., and Etxebarria-Foronda, I. (2022). Clinical description and genetic analysis of a novel familial skeletal dysplasia characterized by high bone mass and lucent bone lesions. Bone, 161:116450.
dc.relation.references[Oyajobi, 2007] Oyajobi, B. O. (2007). Multiple myeloma/hypercalcemia. Arthritis research & therapy, 9(1):1–6.
dc.relation.references[Panaroni et al., 2017] Panaroni, C., Yee, A. J., and Raje, N. S. (2017). Myeloma and bone disease. Current osteoporosis reports, 15(5):483–498.
dc.relation.references[Panetta et al., 2008] Panetta, J. C., Schaiquevich, P., Santana, V. M., and Stewart, C. F. (2008). Using pharmacokinetic and pharmacodynamic modeling and simulation to evaluate importance of schedule in topotecan therapy for pediatric neuroblastoma. Clinical Cancer Research, 14(1):318–325.
dc.relation.references[Pang et al., 2019] Pang, X., Gong, K., Zhang, X., Wu, S., Cui, Y., and Qian, B.-Z. (2019). Osteopontin as a multifaceted driver of bone metastasis and drug resistance. Pharmacological research, 144:235–244.
dc.relation.references[Parfitt, 1994] Parfitt, A. M. (1994). Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. Journal of cellular biochemistry, 55(3):273–286.
dc.relation.references[Perron and Furnon, ] Perron, L. and Furnon, V. Or-tools
dc.relation.references[Raggatt and Partridge, 2010] Raggatt, L. J. and Partridge, N. C. (2010). Cellular and molecular mechanisms of bone remodeling. Journal of biological chemistry, 285(33):25103–25108.
dc.relation.references[Ramtani et al., 2023] Ramtani, S., Sanchez, J. F., Boucetta, A., Kraft, R., Vaca-Gonzalez, J. J., and Garz´on-Alvarado, D. A. (2023a). A coupled mathematical model between bone remodeling and tumors: a study of different scenarios using komarova’s model. Biomechanics and Modeling in Mechanobiology, pages 1–21.
dc.relation.references[Ramtani et al., 2023b] Ramtani, S., Toudji, L., Boucetta, A., Boukharouba, T., and Garzon-Alvarado, D. A. (2023b). Komarova’s bone remodeling type model revisited within the context of a new parameter affecting both production and removal activities of osteoblasts and osteoclasts. Journal of Mechanics in Medicine and Biology.
dc.relation.references[Rapisarda et al., 2019] Rapisarda, A. C., Della Corte, A., Drobnicki, R., Di Cosmo, F., and Rosa, L. (2019). A model for bone mechanics and remodeling including cell populations dynamics. Zeitschrift f¨ur angewandte Mathematik und Physik, 70(1):1–17.
dc.relation.references[Ren et al., 2015] Ren, G., Esposito, M., and Kang, Y. (2015). Bone metastasis and the metastatic niche. Journal of molecular medicine, 93:1203–1212.
dc.relation.references[Ribba et al., 2014] Ribba, B., Holford, N. H., Magni, P., Troc´oniz, I., Gueorguieva, I., Girard, P., Sarr, C., Elishmereni, M., Kloft, C., and Friberg, L. E. (2014). A review of mixed-effects models of tumor growth and effects of anticancer drug treatment used in population analysis. CPT: pharmacometrics & systems pharmacology, 3(5):1–10.
dc.relation.references[Ribba et al., 2012] Ribba, B., Kaloshi, G., Peyre, M., Ricard, D., Calvez, V., Tod, M., ˇCajavec-Bernard, B., Idbaih, A., Psimaras, D., Dainese, L., et al. (2012). A tumor growth inhibition model for low-grade glioma treated with chemotherapy or radiotherapya tumor growth inhibition model for low-grade glioma. Clinical Cancer Research, 18(18):5071–5080.
dc.relation.references[Rockne et al., 2010] Rockne, R., Rockhill, J., Mrugala, M., Spence, A., Kalet, I., Hendrickson, K., Lai, A., Cloughesy, T., Alvord, E., and Swanson, K. (2010). Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach. Physics in Medicine & Biology, 55(12):3271.
dc.relation.references[Ron and Holmgren, 2007] Ron, X. Y. and Holmgren, E. (2007). Endpoints for agents that slow tumor growth. Contemporary clinical trials, 28(1):18– 24.
dc.relation.references[Rowe et al., 2018] Rowe, P., Koller, A., and Sharma, S. (2018). Physiology, bone remodeling.
dc.relation.references[Ryser et al., 2010] Ryser, M. D., Komarova, S. V., and Nigam, N. (2010). The cellular dynamics of bone remodeling: a mathematical model. Siam journal on applied mathematics, 70(6):1899–1921.
dc.relation.references[Schaffler and Kennedy, 2012] Schaffler, M. B. and Kennedy, O. D. (2012). Osteocyte signaling in bone. Current osteoporosis reports, 10:118–125.
dc.relation.references[Simmons et al., 2017] Simmons, A., Burrage, P. M., Nicolau Jr, D. V., Lakhani, S. R., and Burrage, K. (2017). Environmental factors in breast cancer invasion: a mathematical modelling review. Pathology, 49(2):172– 180.
dc.relation.references[Sindhi and Erdek, 2019] Sindhi, V. and Erdek, M. (2019). Interventional treatments for metastatic bone cancer pain. Pain management, 9(3):307– 315.
dc.relation.references[Smith et al., 2005] Smith, M. R., Lee, W. C., Brandman, J., Wang, Q., Botteman, M., and Pashos, C. L. (2005). Gonadotropin-releasing hormone agonists and fracture risk: a claims-based cohort study of men with nonmetastatic prostate cancer. Journal of Clinical Oncology, 23(31):7897–7903.
dc.relation.references[Song et al., 2021] Song, C.-X., Liu, S.-Y., Zhu, W.-T., Xu, S.-Y., and Ni, G.- X. (2021). Excessive mechanical stretch-mediated osteoblasts promote the catabolism and apoptosis of chondrocytes via the wnt/β-catenin signaling pathway. Molecular Medicine Reports, 24(2):1–10.
dc.relation.references[Sung et al., 2021] Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., and Bray, F. (2021). Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3):209–249.
dc.relation.references[Swanson et al., 2008] Swanson, K., Rostomily, R., and Alvord, E. (2008). A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle. British journal of cancer, 98(1):113–119.
dc.relation.references[Teitelbaum, 2000] Teitelbaum, S. L. (2000). Bone resorption by osteoclasts. Science, 289(5484):1504–1508.
dc.relation.references[Ulam et al., 1952] Ulam, S. et al. (1952). Random processes and transformations. In Proceedings of the international congress on mathematics, volume 2, pages 264–275. Citeseer.
dc.relation.references[Valentim et al., 2023] Valentim, C. A., Rabi, J. A., and David, S. A. (2023). Cellular-automaton model for tumor growth dynamics: Virtualization of different scenarios. Computers in Biology and Medicine, 153:106481.
dc.relation.references[Von Neumann et al., 1951] Von Neumann, J. et al. (1951). The general and logical theory of automata. 1951, pages 1–41.
dc.relation.references[Wang et al., 2009] Wang, C. H., Rockhill, J. K., Mrugala, M., Peacock, D. L., Lai, A., Jusenius, K., Wardlaw, J. M., Cloughesy, T., Spence, A. M., Rockne, R., et al. (2009). Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model. Cancer research, 69(23):9133–9140.
dc.relation.references[Weinans et al., 1992] Weinans, H., Huiskes, R., and Grootenboer, H. (1992). The behavior of adaptive bone-remodeling simulation models. Journal of biomechanics, 25(12):1425–1441.
dc.relation.references[Weinans et al., 1994] Weinans, H., Huiskes, R., and Grootenboer, H. (1994). Effects of fit and bonding characteristics of femoral stems on adaptive bone remodeling.
dc.relation.references[Weis et al., 2015] Weis, J. A., Miga, M. I., Arlinghaus, L. R., Li, X., Abramson, V., Chakravarthy, A. B., Pendyala, P., and Yankeelov, T. E. (2015). Predicting the response of breast cancer to neoadjuvant therapy using a mechanically coupled reaction–diffusion model. Cancer research, 75(22):4697– 4707.
dc.relation.references[Weis et al., 2013] Weis, J. A., Miga, M. I., Arlinghaus, L. R., Li, X., Chakravarthy, A. B., Abramson, V., Farley, J., and Yankeelov, T. E. (2013). A mechanically coupled reaction–diffusion model for predicting the response of breast tumors to neoadjuvant chemotherapy. Physics in Medicine & Biology, 58(17):5851.
dc.relation.references[Wozniak and Giabbanelli, 2021] Wozniak, M. K. and Giabbanelli, P. J. (2021). Comparing implementations of cellular automata as images: A novel approach to verification by combining image processing and machine learning. In Proceedings of the 2021 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation, pages 13–25.
dc.relation.references[Yang et al., 2022] Yang, P., Qu, Y., Wang, M., Chu, B., Chen, W., Zheng, Y., Niu, T., and Qian, Z. (2022). Pathogenesis and treatment of multiple myeloma. MedComm, 3(2):e146.
dc.relation.references[Zanoletti et al., 2015] Zanoletti, E., Lovato, A., Stritoni, P., Martini, A., Mazzoni, A., and Marioni, G. (2015). A critical look at persistent problems in the diagnosis, staging and treatment of temporal bone carcinoma. Cancer treatment reviews, 41(10):821–826.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsmieloma múltiple
dc.subject.decsMultiple Myeloma
dc.subject.decsmodelos teóricos
dc.subject.decssimulación por ordenador
dc.subject.decsComputer Simulation
dc.subject.proposalRemodelación ósea
dc.subject.proposalCrecimiento tumoral
dc.subject.proposalTumor
dc.subject.proposalModelo de Komarova
dc.subject.proposalOsteoclastos
dc.subject.proposalOsteoblastos
dc.subject.proposalBone remodeling
dc.subject.proposalTumor Growth
dc.subject.proposalTumor
dc.subject.proposalCoupling tumor–bone
dc.subject.proposalKomarova’s model
dc.subject.proposalOsteoclasts
dc.subject.proposalOsteoblasts
dc.subject.proposalCoplamiento tumor hueso
dc.title.translatedModel and Simulation of dynamics of myeloma growth
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.orcidJUAN FELIPE SANCHEZ GUTIERREZ, [0000-0002-7821-5234]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito