Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorPiamba Tulcan, Oscar Edwin
dc.contributor.advisorOlaya Florez, Jhon Jairo
dc.contributor.authorPerez Cepeda, Jaime Andres
dc.date.accessioned2024-02-28T15:14:24Z
dc.date.available2024-02-28T15:14:24Z
dc.date.issued2024
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85733
dc.descriptionilustraciones, diagramas
dc.description.abstractEn el campo de los recubrimientos duros es frecuente encontrar aplicaciones que se vean sometidas a procesos de desgaste, por tal motivo, es importante analizar cómo la variación de niobio en el contenido del revestimiento de un electrodo aplicado en un proceso de soldadura por arco con electrodo revestido (shielded metal arc weldind, SMAW por sus siglas en inglés) afecta la microestructura,el desgaste abrasivo, corrosivo, el coeficiente de rozamiento, la dilución y la entrada de calor obtenido con diferentes condiciones eléctricas y numero de capas. Para la realización de este trabajo se aplicaron seis tipos diferentes de recubrimiento de con variaciones de 0, 2, 4, 6 y 8% de Niobio sobre sustratos de acero de baja aleación. Sobre ellos se realizaron ensayos de desgaste por deslizamiento de tipo esfera sobre disco (sphere on disk), desgaste corrosivo EIS (espectroscopia de impedancia Electroquimica), desgaste abrasivo (ASTM G65), medición de dilución en primera capa, obtención de la entrada de calor, donde se obtuvieron los correspondientes]. Además, se analizó la microestructura que se obtuvo de cada uno de los recubrimientos por medio de microscopia óptica y electrónica (SEM), respectivamente. A partir de los ensayos realizados se logró obtener que la mejor condición de aplicación se da con contenido de 2%Nb y parámetros de soldadura de 120 A y 3 capas. (Texto tomado de la fuente)
dc.description.abstractIn the field of hard coatings, applications often undergo wear processes, therefore, it is essential to analyze how the variation of niobium in the content of the electrode coating applied in a shielded metal arc welding (SMAW) process affects the microstructure, abrasive and corrosive wear, friction coefficient, dilution, and heat input under different electrical conditions and number of layers. This study applied six different types of coatings with variations of 0, 2, 4, 6, and 8% niobium on low-alloy steel substrates. Wear tests were conducted, including sphere-on-disk sliding wear, corrosive wear using Electrochemical Impedance Spectroscopy (EIS), and abrasive wear (ASTM G65). Dilution measurement in the first layer and heat input were also obtained. The microstructure of each coating was analyzed using optical and electron microscopy (SEM). The results showed that the best application condition is achieved with 2% Nb content and welding parameters of 120 A and 3 layers.
dc.format.extentxviii, 175 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas
dc.subject.ddc670 - Manufactura::672 - Hierro, acero, otras aleaciones ferrosas
dc.titleInfluencia de la adición de niobio sobre la resistencia al desgaste y a la corrosión de recubrimientos duros a base de hierro y alto cromo
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
dc.contributor.researchgroupGrupo de Investigación en Corrosión, Tribologia y Energía
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ingeniería
dc.description.researchareaSoldadura
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesA. Anderson, W. Arnold, and B. Avitzur, ASM Handbook Friction, Lubrication and Wear Technology. 1992.
dc.relation.referencesH. Alloy, “Stoody Hardfacing and High-Alloy Joining”.
dc.relation.referencesB. GERARD, Fundamentals of hardfacing by fusion welding.
dc.relation.referencesL. Fouilland, M. El Mansori, and A. Massaq, “Friction-induced work hardening of cobalt-base hardfacing deposits for hot forging tools,” J Mater Process Technol, vol. 209, no. 7, pp. 3366–3373, 2009, doi: 10.1016/j.jmatprotec.2008.07.039.
dc.relation.referencesS. Prabanjan, K. Karthick, J. Rejvin Kumar, S. Ramkumar, and A. Riswan Ahmed, “Wear behavior and metallurgical characteristics of particle reinforced metal matrix composites produced by hardfacing: A review,” Mater Today Proc, no. xxxx, 2020, doi: 10.1016/j.matpr.2020.05.527.
dc.relation.referencesAWS, Welding Handbook - Welding Processes. 1995.
dc.relation.referencesV. E. Buchanan, P. H. Shipway, and D. G. McCartney, “Microstructure and abrasive wear behaviour of shielded metal arc welding hardfacings used in the sugarcane industry,” Wear, vol. 263, pp. 99–110, 2007, doi: 10.1016/j.wear.2006.12.053.
dc.relation.referencesB. Srikarun, H. Z. Oo, S. Petchsang, and P. Muangjunburee, “The effects of dilution and choice of added powder on hardfacing deposited by submerged arc welding,” Wear, vol. 424–425, no. November 2018, pp. 246–254, 2019, doi: 10.1016/j.wear.2019.02.027.
dc.relation.referencesD. Liu, R. Liu, Y. Wei, Y. Ma, and K. Zhu, “Microstructure and wear properties of Fe–15Cr–2.5Ti–2C–xBwt.% hardfacing alloys,” Appl Surf Sci, vol. 271, pp. 253–259, Apr. 2013, doi: 10.1016/j.apsusc.2013.01.169.
dc.relation.referencesV. E. Buchanan, D. G. Mccartney, and P. H. Shipway, “A comparison of the abrasive wear behaviour of iron-chromium based hardfaced coatings deposited by SMAW and electric arc spraying,” vol. 264, pp. 542–549, 2008, doi: 10.1016/j.wear.2007.04.008
dc.relation.referencesK. Günther, J. P. Bergmann, and D. Suchodoll, “Hot wire-assisted gas metal arc welding of hypereutectic FeCrC hardfacing alloys: Microstructure and wear properties,” Surf Coat Technol, vol. 334, no. September 2017, pp. 420–428, 2018, doi: 10.1016/j.surfcoat.2017.11.059.
dc.relation.referencesA. Cruz-Crespo, A. Scotti, R. Fernandez Fuentes, and T. Ortiz Mendez, “Relationship of coating factor of coated tubular electrodes for hardfacing by SMAW process, with the consumption parameters and the geometry of the deposited metal,” Revista Tecnica De La Facultad De Ingenieria Universidad Del Zulia, vol. 35, no. 3, pp. 224–232, 2012
dc.relation.referencesA. Scotti, M. Gomes, and J. Pereira, “Use assessment of electronic power sources for SMAW,” Revista de Metalurgia, vol. 35, no. 2, pp. 84–90, 2010, doi: 10.3989/revmetalm.1999.v35.i2.610.
dc.relation.referencesS. Chatterjee and T. K. Pal, “Weld procedural effect on the performance of iron based hardfacing deposits on cast iron substrate,” J Mater Process Technol, vol. 173, no. 1, pp. 61–69, Mar. 2006, doi: 10.1016/j.jmatprotec.2005.10.025
dc.relation.referencesE. Badisch, R. Polak, and F. Franek, “The comparison of wear properties of different Fe- based hardfacing alloys in four kinds of testing methods,” Tribotest, vol. 14, pp. 225–233, 2008, doi: 10.1002/tt.
dc.relation.referencesF. Findik, “Latest progress on tribological properties of industrial materials,” Mater Des, vol. 57, pp. 218–244, May 2014, doi: 10.1016/j.matdes.2013.12.028.
dc.relation.referencesM. Rodríguez Ripoll, N. Ojala, C. Katsich, V. Totolin, C. Tomastik, and K. Hradil, “The role of niobium in improving toughness and corrosion resistance of high speed steel laser hardfacings,” Mater Des, vol. 99, pp. 509–520, 2016, doi: 10.1016/j.matdes.2016.03.081.
dc.relation.referencesJ. A. Pérez-Cepeda and J. J. Olaya-Flórez, “Influence of the type of electrode on the microstructure and coefficient of friction obtained by sliding test to hard coatings deposited by welding SMAW,” Ingeniería y Desarrollo, vol. 36, no. 2, pp. 327–342, Jul. 2018, doi: 10.14482/inde.36.2.10086.
dc.relation.referencesN. G. Chaidemenopoulos, P. P. Psyllaki, E. Pavlidou, and G. Vourlias, “Aspects on carbides transformations of Fe-based hardfacing deposits,” Surf Coat Technol, vol. 357, no. August 2018, pp. 651–661, 2019, doi: 10.1016/j.surfcoat.2018.10.061.
dc.relation.referencesP. de Sairre, A. Scotti, and J. Biasoli, “Interpretacion de la microestructira de recargues duros depositados por soldadura utilizando la superficie de Liquidus de Diagramas Fe-Cr-C,” Revista de soldadura CENIN, vol. 25, no. 4, pp. 199–207, 1995.
dc.relation.referencesR. Jackson, “The Austenite Liquidus Surface and Constitutional Diagram for the Fe-Cr-C Metastable System,” Iron and Steel Institute, pp. 163–167, 1970.
dc.relation.referencesS. Liu, Y. Zhou, X. Xing, J. Wang, Y. Yang, and Q. Yang, “Agglomeration model of (Fe,Cr)7C3 carbide in hypereutectic Fe-Cr-C alloy,” Mater Lett, vol. 183, pp. 272–276, 2016, doi: 10.1016/j.matlet.2016.07.135.
dc.relation.referencesJ. Hornung, A. Zikin, K. Pichelbauer, M. Kalin, and M. Kirchgaßner, “Influence of cooling speed on the microstructure and wear behaviour of hypereutectic Fe–Cr–C hardfacings,” Materials Science and Engineering: A, vol. 576, pp. 243–251, Aug. 2013, doi: 10.1016/j.msea.2013.04.029.
dc.relation.referencesL. Margarita, L. Sevilla, J. Carlos, G. Pineda, and A. Toro, “RELACIÓN MICROESTRUCTURA RESISTENCIA AL DESGASTE DE RECUBRIMIENTOS DUROS RICOS EN CROMO Y TUNGSTENO APLICADOS POR SOLDADURA ELECTRICA (SMAW),” Dyna (Medellin), vol. 144, pp. 165–171, 2004.
dc.relation.referencesL. Fedrizzi, S. Rossi, F. Bellei, and F. Deflorian, “Wear-corrosion mechanism of hard chromium coatings,” Wear, vol. 253, no. 11–12, pp. 1173–1181, 2002, doi: 10.1016/S0043-1648(02)00254-5.
dc.relation.referencesA. Zikin, I. Hussainova, C. Katsich, E. Badisch, and C. Tomastik, “Advanced chromium carbide-based hardfacings,” Surf Coat Technol, vol. 206, no. 19–20, pp. 4270–4278, 2012, doi: 10.1016/j.surfcoat.2012.04.039.
dc.relation.referencesN. Yüksel and S. Şahin, “Wear behavior–hardness–microstructure relation of Fe–Cr–C and Fe–Cr–C–B based hardfacing alloys,” Mater Des, vol. 58, pp. 491–498, Jun. 2014, doi: 10.1016/j.matdes.2014.02.032.
dc.relation.referencesG. D. Nelson, “The Influence Of Microstructure On The Corrosion And Wear Mechanisms Of High Chromium White Irons In Highly Caustic Solutions The University of Adelaide,” no. December, 2010.
dc.relation.referencesB. Venkatesh, K. Sriker, and V. S. V. Prabhakar, “Wear Characteristics of Hardfacing Alloys: State-of-the-art,” Procedia Materials Science, vol. 10, no. Cnt 2014, pp. 527–532, 2015, doi: 10.1016/j.mspro.2015.06.002.
dc.relation.referencesH. Berns and A. Fischer, “Microstructure of Fe-Cr-C hardfacing alloys with additions of Nb, Ti and, B,” Mater Charact, vol. 39, no. 2–5, pp. 499–527, 1997, doi: 10.1016/0026-0800(87)90017-6.
dc.relation.referencesF. Sadeghi, H. Najafi, and A. Abbasi, “The effect of Ta substitution for Nb on the microstructure and wear resistance of an Fe-Cr-C hardfacing alloy,” Surf Coat Technol, vol. 324, pp. 85–91, 2017, doi: 10.1016/j.surfcoat.2017.05.067.
dc.relation.referencesH. Liu et al., “Refinement mechanism of NbC by CeO 2 in hypereutectic Fe-Cr-C hardfacing coating,” J Alloys Compd, vol. 770, pp. 1016–1028, 2019, doi: 10.1016/j.jallcom.2018.08.162.
dc.relation.referencesJ. Gou, Y. Wang, J. Sun, and X. Li, “Bending strength and wear behavior of Fe-Cr-C-B hardfacing alloys with and without rare earth oxide nanoparticles,” Surf Coat Technol, vol. 311, pp. 113–126, 2017, doi: 10.1016/j.surfcoat.2016.12.104.
dc.relation.referencesA. Sadeghi, A. Moloodi, M. Golestanipour, and M. Mahdavi Shahri, “An investigation of abrasive wear and corrosion behavior of surface repair of gray cast iron by SMAW,” Journal of Materials Research and Technology, vol. 6, no. 1, pp. 90–95, 2017, doi: 10.1016/j.jmrt.2016.09.003.
dc.relation.referencesD. Pathak, R. P. Singh, S. Gaur, and V. Balu, “Influence of input process parameters on weld bead width of shielded metal arc welded joints for AISI 1010 plates,” Mater Today Proc, no. xxxx, 2020, doi: 10.1016/j.matpr.2020.05.516.
dc.relation.referencesM. Filipovic, Z. Kamberovic, M. Korac, and M. Gavrilovski, “Microstructure and mechanical properties of Fe-Cr-C-Nb white cast irons,” Mater Des, vol. 47, pp. 41–48, 2013, doi: 10.1016/j.matdes.2012.12.034.
dc.relation.referencesV. E. Buchanan, “Solidification and microstructural characterisation of iron-chromium based hardfaced coatings deposited by SMAW and electric arc spraying,” Surf Coat Technol, vol. 203, no. 23, pp. 3638–3646, 2009, doi: 10.1016/j.surfcoat.2009.05.051.
dc.relation.referencesA. Scotti and V. A. De Meneses, “Governing parameters affecting fume generation in short-circuit MAG welding,” pp. 367–376, 2014, doi: 10.1007/s40194-014-0122-2.
dc.relation.referencesG. R. C. Pradeep, A. Ramesh, and B. D. Prasad, “A Review Paper on Hardfacing Processes and Materials,” International Journal of Engineering Science and Technology, vol. 2, no. 11, pp. 6507–6510, 2010.
dc.relation.referencesW. Messler, Principles of welding.
dc.relation.referencesP. Jiluan, Arc Welding Control. 2003. doi: 10.1533/9781855738553
dc.relation.referencesA. S. M. International, Alloy Phase Diagrams. 2018. doi: 10.31399/asm.hb.v03.9781627081634.
dc.relation.referencesW. Forgeng and J. Forgeng, Metallography, Structure and Phase Diagrams, Metals Handbook, 8th ed. ASM International, 1973.
dc.relation.referencesD. T. Llewellyn and R. C. Hudd, “Steels: Metallurgy & Applications,” p. 403, 1998.
dc.relation.referencesJ. Wesley, “The Development of Fe-Cr-C Based Allooy for High Wear and High Impact Applications,” Oregon State University, 1975.
dc.relation.referencesT. Massalsky, Binary Alloy Phase Diagram, 2nd ed. ASM International, 1990.
dc.relation.referencesM. Durand-Charre, Microstructure of steel and cast irons. Springer US, 2004. doi: 10.1007/978-3-662-08729-9_4.
dc.relation.referencesM. C. Carvalho, Y. Wang, J. A. S. Souza, E. M. Braga, and L. Li, “Characterization of phases and defects in chromium carbide overlays deposited by SAW process,” Eng Fail Anal, vol. 60, pp. 374–382, 2016, doi: 10.1016/j.engfailanal.2015.11.058.
dc.relation.referencesH. Y. Liu, Z. L. Song, Q. Cao, S. P. Chen, and Q. Sen Meng, “Microstructure and Properties of Fe-Cr-C Hardfacing Alloys Reinforced with TiC-NbC,” Journal of Iron and Steel Research International, vol. 23, no. 3, pp. 276–280, Mar. 2016, doi: 10.1016/S1006-706X(16)30045-0.
dc.relation.referencesN. Yüksel and S. Şahin, “Wear behavior–hardness–microstructure relation of Fe–Cr–C and Fe–Cr–C–B based hardfacing alloys,” Mater Des, vol. 58, pp. 491–498, Jun. 2014, doi: 10.1016/j.matdes.2014.02.032.
dc.relation.referencesK. Bungardt, E. Kunze, and E. Horne, “Untersuchungen uber den Aufbau des Systems Eisen-Chrom-Kohlenstoff,” Archiv. Eisenhuttenwesen, vol. 29, pp. 193–203, 1958.
dc.relation.referencesN. Griffing, W. Forgeng, and W. Healy, “C-Cr-Fe Liquidus Surface,” Metall. Trans., pp. 148–159, 1962.
dc.relation.referencesV. Rivlin, “Critical review of constitution of carbon-chromium-iron and carbon-iron-manganese systems,” International Metals Reviews, vol. 29, pp. 299–327, 1984.
dc.relation.referencesW. Thorpe, “The Fe-Rich Corner of the Metastable C-Cr-Fe Liquidus Surface,” Metall.Tran., vol. 16, pp. 1541–1549, 1985.
dc.relation.referencesJ. Andersson, “A thermodinamyc Evaluation of the Fe-Cr-C System,” Metall.Tran., pp. 627–636, 1988.
dc.relation.referencesR. Kesri and M. Durand-Charre, “Metallurgical structure and phase diagram of the Fe-V-C system : comparison with other systems forming MC carbides,” Mater Sci. and Tech., vol. 4, pp. 692–700, 1988.
dc.relation.referencesU. Reisgen, U. Dilthey, B. Balashov, S. Kondapalli, and C. Geffers, “Investigation of wear resistance and microstructure of a newly developed chromium and vanadium containing iron-based hardfacing alloy,” Materwiss Werksttech, vol. 39, no. 6, pp. 379–384, Jun. 2008, doi: 10.1002/mawe.200800283.
dc.relation.referencesJ. Zhang, J. Wei, S. Wei, Z. Huang, W. Wei, and L. Xu, “Effect of cooling conditions on microstructure evolution and wear behavior of high chromium cast iron hardfacing layer,” Mater Lett, vol. 314, p. 131417, May 2022, doi: 10.1016/J.MATLET.2021.131417.
dc.relation.referencesV. Raghavan, “The C-Fe-V (Carbon-Iron-Vanadium) System,” Bull, of Alloy Phase Diagrams, vol. 5, no. 3, pp. 293–322, 1984.
dc.relation.referencesR. Kesri and M. Durand-Charre, “Phase equilibria, solidification and solid state transformations of white cast irons containing niobium,” Journal of Mater. Sci., vol. 22, pp. 2959–2964, 1987.
dc.relation.referencesF. Sadeghi, H. Najafi, and A. Abbasi, “The effect of Ta substitution for Nb on the microstructure and wear resistance of an Fe-Cr-C hardfacing alloy,” Surf Coat Technol, vol. 324, pp. 85–91, 2017, doi: 10.1016/j.surfcoat.2017.05.067.
dc.relation.referencesH. Holleck, Binare und ternare Carbid- und Nitridsysteme der Ubergangsmetalle. Berlin: Ed. G. Petzow, 1984.
dc.relation.referencesK. Inoue, N. Ishikawa, I. Ohnuma, H. Ohtani, and K. Ishida, “Calculation of phase equilibria between austenite and (Nb, Ti, V)(C, N) in microalloyed steels,” ISIJ International, vol. 41, no. 2, pp. 175–182, 2001, doi: 10.2355/isijinternational.41.175.
dc.relation.referencesL. Habraken and D. Brouwer, De ferri metallographia, Vol 1. Brussels: CNRM Presses Academiques Europeenne, 1966.
dc.relation.referencesC. Pollock and H. Stadelmaier, “Brussels,” Metall. Trans., vol. 1, pp. 767–770, 1970.
dc.relation.referencesP. Rogl, Phase Diagrams of Ternary Metal-Boron-Carbon Systems. OH, USA: ASM The Materials International Society, 1998.
dc.relation.referencesM. Woydt, S. Huang, J. Vleugels, H. Mohrbacher, and E. Cannizza, “Potentials of niobium carbide (NbC) as cutting tools and for wear protection,” Int J Refract Metals Hard Mater, vol. 72, no. January, pp. 380–387, 2018, doi: 10.1016/j.ijrmhm.2018.01.009.
dc.relation.referencesL. Margarita, L. Sevilla, J. Carlos, G. Pineda, and A. Toro, “RELACIÓN MICROESTRUCTURA RESISTENCIA AL DESGASTE DE RECUBRIMIENTOS DUROS RICOS EN CROMO Y TUNGSTENO APLICADOS POR SOLDADURA ELECTRICA (SMAW),” Dyna (Medellin), vol. 144, pp. 165–171, 2004.
dc.relation.referencesM. G. di V. Cuppari and S. F. Santos, “Physical properties of the NbC carbide,” Metals (Basel), vol. 6, no. 10, Oct. 2016, doi: 10.3390/MET6100250.
dc.relation.referencesA. I. Gusev, A. A. Rempel, and A. J. Magerl, Disorder and Order in Strongly Nonstoichiometric Compounds: Transition Metal Carbides, Nitrides and Oxides. 2001.
dc.relation.referencesR. Chotěborský, P. Hrabě, M. Müller, J. Savková, and M. Jirka, “Abrasive wear of high chromium Fe-Cr-C hardfacing alloys,” vol. 2008, no. 87, pp. 192–198, 2008.
dc.relation.referencesX. Zhi, J. Xing, H. Fu, and B. Xiao, “Effect of niobium on the as-cast microstructure of hypereutectic high chromium cast iron,” vol. 62, pp. 857–860, 2008, doi: 10.1016/j.matlet.2007.06.084.
dc.relation.referencesC. M. Chang, Y. C. Chen, and W. Wu, “Microstructural and abrasive characteristics of high carbon Fe-Cr-C hardfacing alloy,” Tribol Int, vol. 43, no. 5–6, pp. 929–934, 2010, doi: 10.1016/j.triboint.2009.12.045.
dc.relation.referencesH. Liu et al., “Refinement mechanism of NbC by CeO 2 in hypereutectic Fe-Cr-C hardfacing coating,” J Alloys Compd, vol. 770, pp. 1016–1028, 2019, doi: 10.1016/j.jallcom.2018.08.162.
dc.relation.referencesS. Pawar, A. K. Jha, and G. Mukhopadhyay, “Effect of different carbides on the wear resistance of Fe-based hardfacing alloys,” Int J Refract Metals Hard Mater, vol. 78, no. August 2018, pp. 288–295, 2019, doi: 10.1016/j.ijrmhm.2018.10.014.
dc.relation.referencesX. H. Wang, F. Han, X. M. Liu, S. Y. Qu, and Z. D. Zou, “Effect of molybdenum on the microstructure and wear resistance of Fe-based hardfacing coatings,” Materials Science and Engineering: A, vol. 489, no. 1–2, pp. 193–200, Aug. 2008, doi: 10.1016/j.msea.2007.12.020.
dc.relation.referencesS. Xing, S. Yu, Y. Deng, M. Dai, and L. Yu, “Effect of cerium on abrasive wear behaviour of hardfacing alloy,” Journal of Rare Earths, vol. 30, no. 1, pp. 69–73, Jan. 2012, doi: 10.1016/S1002-0721(10)60641-2.
dc.relation.referencesX. Zhou, Y. Chen, Y. Huang, Y. Mao, and Y. Yu, “Effects of niobium addition on the microstructure and mechanical properties of laser-welded joints of NiTiNb and Ti6Al4V alloys,” J Alloys Compd, vol. 735, pp. 2616–2624, 2018, doi: 10.1016/j.jallcom.2017.11.307.
dc.relation.referencesM. Rodríguez Ripoll, N. Ojala, C. Katsich, V. Totolin, C. Tomastik, and K. Hradil, “The role of niobium in improving toughness and corrosion resistance of high speed steel laser hardfacings,” Mater Des, vol. 99, pp. 509–520, 2016, doi: 10.1016/j.matdes.2016.03.081.
dc.relation.referencesN. G. Chaidemenopoulos, P. P. Psyllaki, E. Pavlidou, and G. Vourlias, “Aspects on carbides transformations of Fe-based hardfacing deposits,” Surf Coat Technol, vol. 357, no. August 2018, pp. 651–661, 2019, doi: 10.1016/j.surfcoat.2018.10.061.
dc.relation.referencesH. Y. Liu, Z. L. Song, Q. Cao, S. P. Chen, and Q. Sen Meng, “Microstructure and Properties of Fe-Cr-C Hardfacing Alloys Reinforced with TiC-NbC,” Journal of Iron and Steel Research International, vol. 23, no. 3, pp. 276–280, 2016, doi: 10.1016/S1006-706X(16)30045-0.
dc.relation.referencesA. Cruz-crespo, R. Fernández-fuentes, A. V. Ferraressi, R. A. Gonçalves, and A. Scotti, “Microstructure and Abrasion Resistance of Fe-Cr-C and Fe-Cr-C-Nb Hardfacing Alloys Deposited by S-FCAW and Cold Solid Wires,” vol. 21, no. 3, pp. 342–353, 2016.
dc.relation.referencesS.-L. Jeng and Y.-H. Chang, “The influence of Nb and Mo on the microstructure and mechanical properties of Ni–Cr–Fe GTAW welds,” Materials Science and Engineering: A, vol. 555, pp. 1–12, Jul. 2012, doi: 10.1016/j.msea.2012.06.017.
dc.relation.referencesE. O. Correa, N. G. Alcântara, L. C. Valeriano, N. D. Barbedo, and R. R. Chaves, “The effect of microstructure on abrasive wear of a Fe-Cr-C-Nb hardfacing alloy deposited by the open arc welding process,” Surf Coat Technol, vol. 276, pp. 479–484, 2015, doi: 10.1016/j.surfcoat.2015.06.026.
dc.relation.referencesJ. Wang et al., “Effect of nitrogen alloying on the microstructure and abrasive impact wear resistance of Fe-Cr-C-Ti-Nb hardfacing alloy,” Surf Coat Technol, vol. 309, pp. 1072–1080, 2016, doi: 10.1016/j.surfcoat.2016.10.029.
dc.relation.referencesJ. Yang, J. Huang, D. Fan, and S. Chen, “Microstructure and wear properties of Fe-6wt.%Cr-0.55wt.%C-Xwt.%Nb laser cladding coating and the mechanism analysis,” Mater Des, vol. 88, pp. 1031–1041, 2015, doi: 10.1016/j.matdes.2015.09.108.
dc.relation.referencesL. Zhang, D. Sun, and H. Yu, “Effect of niobium on the microstructure and wear resistance of iron-based alloy coating produced by plasma cladding,” vol. 490, pp. 57–61, 2008, doi: 10.1016/j.msea.2008.02.041.
dc.relation.referencesK. Yang, Y. Gao, K. Yang, Y. Bao, and Y. Jiang, “Microstructure and wear resistance of Fe-Cr13-C-Nb hardfacing alloy with Ti addition,” Wear, vol. 376–377, pp. 1091–1096, 2017, doi: 10.1016/j.wear.2016.12.062.
dc.relation.referencesY. K. Singla, N. Arora, D. K. Dwivedi, and V. Rohilla, “Influence of niobium on the microstructure and wear resistance of iron-based hardfacings produced by pre-placement technique—a novel approach,” International Journal of Advanced Manufacturing Technology, vol. 93, no. 5–8, pp. 2667–2674, 2017, doi: 10.1007/s00170-017-0708-0.
dc.relation.referencesS. Liu, Z. Wang, Z. Shi, Y. Zhou, and Q. Yang, “Experiments and calculations on refining mechanism of NbC on primary M7C3carbide in hypereutectic Fe-Cr-C alloy,” J Alloys Compd, vol. 713, pp. 108–118, 2017, doi: 10.1016/j.jallcom.2017.04.167.
dc.relation.referencesC. M. Allen and B. Boardman, “ASM Handbook , Volume 1 , Properties and Selection : Irons , Steels , and High Performance Alloys Section : Publication Information and Contributors Publication Information and Contributors,” 2005.
dc.relation.referencesP. F. Mendez et al., “Welding processes for wear resistant overlays,” J Manuf Process, vol. 16, no. 1, pp. 4–25, 2014, doi: 10.1016/j.jmapro.2013.06.011.
dc.relation.referencesG. Stachowiak, Ed., Wear Materials Mechanisms and Practice Tribology in Practice Series. Wiley, 2005.
dc.relation.referencesB. Bhushan, INTRODUCTION TO TRIBOLOGY. 2013.
dc.relation.referencesG. Straffelini, “Wear mechanisms,” Springer Tracts in Mechanical Engineering, vol. 11, pp. 85–113, 2015, doi: 10.1007/978-3-319-05894-8_4.
dc.relation.referencesJ. R. Davis, “Corrosion of Weldments,” ASM International, 2006.
dc.relation.referencesF. I. Corrosion and W. Microstructures, “Corrosion of Weld,” no. Ref 1, pp. 1–10, 2006.
dc.relation.referencesD. I. Pantelis and T. E. Tsiourva, Corrosion of weldments. Elsevier Ltd, 2017. doi: 10.1016/b978-0-08-101105-8.00010-3.
dc.relation.referencesP. R. Roberge, Handbook of Corrosion Engineering Library of Congress. 1999.
dc.relation.referencesS. ̧ Danişman and S. Savaş, “The effect of ceramic coatings on corrosion and wear behaviour,” Tribology in Industry, vol. 27, no. 3–4, pp. 41–48, 2005.
dc.relation.referencesP. Roberge, Corrosion and Wear Mechanism. McGraw-Hill Education, 2008.
dc.relation.referencesS. Pawar, A. K. Jha, and G. Mukhopadhyay, “Effect of different carbides on the wear resistance of Fe-based hardfacing alloys,” Int J Refract Metals Hard Mater, vol. 78, no. August 2018, pp. 288–295, 2019, doi: 10.1016/j.ijrmhm.2018.10.014.
dc.relation.referencesN. Chawla, K. K. Chawla, N. Chawla, and K. K. Chawla, “Wear and Corrosion,” in Metal Matrix Composites, 2013, pp. 311–324. doi: 10.1007/978-1-4614-9548-2_10.
dc.relation.referencesD. R. Askeland, The Science and Engineering of Materials, vol. 212, no. 1. Chapman and Hall, 1996. doi: 10.1016/j.msea.2008.04.012.
dc.relation.referencesW. Steckelmacher, “The materials science of thin films,” Vacuum, vol. 46, no. 1. p. 85, 1995.
dc.relation.referencesF. James, E. J. F. Shackelford, and W. Alexander, MATERIALS SCIENCE ENGINEERING, vol. 29, no. 3. in Books, vol. 29. Elsevier B.V., 2001. doi: 10.1016/j.msec.2008.08.021.
dc.relation.referencesW. F. Smith, Principles of materials science and engineering. McGraw-Hill, 1986.
dc.relation.referencesW. Plieth, Electrochemistry for Materials Science, 1st ed. Elsevier B.V., 2008. doi: 10.1016/B978-044452792-9.50009-9.
dc.relation.referencesM. Alizadeh and S. Bordbar, “The influence of microstructure on the protective properties of the corrosion product layer generated on the welded API X70 steel in chloride solution,” Corros Sci, vol. 70, pp. 170–179, 2013, doi: 10.1016/j.corsci.2013.01.026.
dc.relation.referencesU. C. 3 de Madrid, “Tema 5. Cinética química, termodinámica y equilibrio (IV),” Curso Virtual.
dc.relation.referencesS. Parker, Principles and Practice, vol. 32, no. 3. 2006. doi: 10.1177/0340035206070163.
dc.relation.referencesB. Venkatesh, K. Sriker, and V. S. V. Prabhakar, “Wear Characteristics of Hardfacing Alloys: State-of-the-art,” Procedia Materials Science, vol. 10, no. Cnt 2014, pp. 527–532, 2015, doi: 10.1016/j.mspro.2015.06.002.
dc.relation.referencesJ. F. Archard, “Contact and rubbing of flat surfaces,” J Appl Phys, vol. 24, no. 8, pp. 981–988, 1953, doi: 10.1063/1.1721448.
dc.relation.referencesASTM A36, “Standard Specification for Carbon Structural Steel,” Standards, pp. 1–4, 2005, doi: 10.1520/A0036.
dc.relation.referencesV. Jankauskas and R. Kreivaitis, “Analysis of abrasive wear performance of arc welded hard layers,” Wear, 2008, doi: 10.1016/j.wear.2008.03.022.
dc.relation.referencesS.-L. Jeng and Y.-H. Chang, “Microstructure and flow behavior of Ni–Cr–Fe welds with Nb and Mo additions,” Materials Science and Engineering: A, vol. 560, pp. 343–350, Jan. 2013, doi: 10.1016/j.msea.2012.09.077.
dc.relation.referencesC. Zhao, Y. Zhou, X. Xing, S. Liu, X. Ren, and Q. Yang, “Investigation on the relationship between NbC and wear-resistance of Fe matrix composite coatings with different C contents,” Appl Surf Sci, vol. 439, pp. 468–474, 2018, doi: 10.1016/j.apsusc.2018.01.034.
dc.relation.referencesX. H. Zhi and J. X. Wang, “Effect of niobium on primary carbides of hypereutectic high chromium cast iron,” Ironmaking and Steelmaking, vol. 41, no. 5, pp. 394–399, 2014, doi: 10.1179/1743281213Y.0000000166.
dc.relation.referencesW. Theisen, S. Siebert, and S. Huth, “Wear resistant steels and casting alloys containing niobium carbide,” Steel Res Int, vol. 78, no. 12, pp. 921–928, 2007, doi: 10.1002/srin.200706307.
dc.relation.referencesA. C. Crespo, A. Scotti, and M. R. Pérez, “Operational behavior assesment of coated tubular electrodes for SMAW hardfacing,” J Mater Process Technol, vol. 199, no. 1, pp. 265–273, 2008, doi: 10.1016/j.jmatprotec.2007.07.048.
dc.relation.referencesS. De Cali, “UNIVERSIDAD AUTONOMA DE OCCIDENTE FACULTAD DE INGENIERIA DEPARTAMENTO DE ENERGÉTICA Y MECÁNICA PROGRAMA INGENIERÍA MECÁNICA,” 2005.
dc.relation.referencesT. Hir, A. Oka, N. B. Sano, and Y. Likio Matsushita, “Electrochemical Measurement of the Standard Free Energies of Formation of Niobium Oxides*.”
dc.relation.referencesL. L. Zhang, Y. Zhou, L. J. Zhang, J. Ning, Y. J. Sun, and S. J. Na, “Effect of niobium on the mechanical strength of the laser beam welding joints of molybdenum,” Int J Refract Metals Hard Mater, vol. 113, Jun. 2023, doi: 10.1016/j.ijrmhm.2023.106207.
dc.relation.referencesS. E. Ziemniak, L. M. Anovitz, R. A. Castelli, and W. D. Porter, “Thermodynamics of Cr2O3, FeCr2O4, ZnCr2O4, and CoCr2O4,” Journal of Chemical Thermodynamics, vol. 39, no. 11, pp. 1474–1492, Nov. 2007, doi: 10.1016/j.jct.2007.03.001.
dc.relation.referencesJ. Perez, J. Gutierrez, J. Olaya, O. Piamba, and A. Scotti, “The Effect of Niobium Addition on the Operational and Metallurgical Behavior of Fe-Cr-C Hardfacing Deposited by Shielded Metal Arc Welding,” Journal of Manufacturing and Materials Processing, vol. 8, no. 1, p. 38, Feb. 2024, doi: 10.3390/jmmp8010038.
dc.relation.referencesAishwarya, A. Jain, and P. Khanna, “Mathematical modeling to predict the weld dilution in FCA welding of stainless steel 301 plates,” Mater Today Proc, vol. 56, pp. 755–759, Jan. 2022, doi: 10.1016/j.matpr.2022.02.250.
dc.relation.referencesS. Aggarwal, M. Dwivedi, and P. Khanna, “Mathematical modelling to predict the dilution in FCA welded low carbon steel plates,” Mater Today Proc, vol. 56, pp. 3512–3519, Jan. 2022, doi: 10.1016/j.matpr.2021.11.226.
dc.relation.referencesX. Zhi, J. Xing, H. Fu, and B. Xiao, “Effect of niobium on the as-cast microstructure of hypereutectic high chromium cast iron,” Mater Lett, vol. 62, no. 6–7, pp. 857–860, Mar. 2008, doi: 10.1016/j.matlet.2007.06.084.
dc.relation.referencesJ. N. Lemke, L. Rovatti, M. Colombo, and M. Vedani, “Interrelation between macroscopic, microscopic and chemical dilution in hardfacing alloys,” Mater Des, vol. 91, pp. 368–377, 2016, doi: 10.1016/j.matdes.2015.11.117.
dc.relation.referencesV. Jankauskas, M. Antonov, V. Varnauskas, R. Skirkus, and D. Goljandin, “Effect of WC grain size and content on low stress abrasive wear of manual arc welded hardfacings with low-carbon or stainless steel matrix,” Wear, vol. 328–329, pp. 378–390, 2015, doi: 10.1016/j.wear.2015.02.063.
dc.relation.referencesA. Cruz-Crespo, R. Fernández Fuentes, and A. Scotti, “Efecto sobre la dilución de la granulometría de la ferroaleación en el alma de electrodos tubulares revestidos bajo la influencia de la composición del revestimiento,” Soldagem & Inspeção, vol. 16, no. 1, pp. 79–85, 2011, doi: 10.1590/s0104-92242011000100010.
dc.relation.referencesJ. J. Coronado, H. F. Caicedo, and A. L. Gómez, “The effects of welding processes on abrasive wear resistance for hardfacing deposits,” Tribol Int, vol. 42, pp. 745–749, 2009, doi: 10.1016/j.triboint.2008.10.012.
dc.relation.referencesK. Yamamoto, S. Inthidech, N. Sasaguri, and Y. Matsubara, “In fl uence of Mo and W on High Temperature Hardness of M 7 C 3 Carbide in High Chromium White Cast Iron + 1,” J Alloys Compd, vol. 55, no. 4, pp. 684–689, 2014, doi: 10.2355/isijinternational.52.2200.
dc.relation.referencesJ. J. Coronado, H. F. Caicedo, and A. L. Gómez, “The effects of welding processes on abrasive wear resistance for hardfacing deposits,” Tribol Int, vol. 42, no. 5, pp. 745–749, May 2009, doi: 10.1016/j.triboint.2008.10.012.
dc.relation.referencesN. Ojala et al., “Effects of composition and microstructure on the abrasive wear performance of quenched wear resistant steels,” Wear, vol. 317, no. 1–2, pp. 225–232, Sep. 2014, doi: 10.1016/j.wear.2014.06.003.
dc.relation.referencesA. Gualco and L. A. de Vedia, “EFECTO DE LOS PARÁMETROS DE SOLDADURA SOBRE LA MICROESTRUCTURA Y LA RESISTENCIA AL DESGASTE DE RECARGUES MARTENSÍTICOS DEPOSITADOS CON ALAMBRES TUBULARES METAL-CORED,” Universidad de Buenos Aires, 2011.
dc.relation.referencesM. F. Buchely, J. C. Gutierrez, L. M. Le, and A. Toro, “The effect of microstructure on abrasive wear of hardfacing alloys,” Wear, vol. 259, pp. 52–61, 2005, doi: 10.1016/j.wear.2005.03.002.
dc.relation.referencesJ. Perez and E. Espejo, “INFLUENCIA DE LA MICROESTRUCTURA EN EL COMPORTAMIENTO A DESGASTE ABRASIVO EVALUADO BAJO NORMA ASTM G 65 DE DEPÓSITOS DE SOLDADURA ANTIDESGASTE APLICADOS SOBRE SUSTRATOS DE ACERO DE BAJA ALEACIÓN Y BAJO CARBONO,” Universidad Nacional de Colombia, 2011.
dc.relation.referencesP. Balsamo, A. Scotti, and J. Mello, “Interpretacion de la microestructura de recargues duros depositados por soldadura utilizando la superficie de liquidus de diagramas Fe-Cr-C,” Soldadura, vol. 25, no. 4, pp. 199–207, 1995.
dc.relation.referencesG. S. Sandhu, R. Singh, I. Singh, and F. Khan, “Effect of Chromium Content Variation on Wear Resistance of Rotavator Blades,” International Research Journal of Engineering and Technology(IRJET), vol. 4, no. 5, pp. 1038–1043, 2017, [Online]. Available: https://www.irjet.net/archives/V4/i5/IRJET-V4I5202.pdf
dc.relation.referencesH. Pourasiabi and J. D. Gates, “Effects of niobium macro-additions to high chromium white cast iron on microstructure, hardness and abrasive wear behaviour,” Mater Des, vol. 212, p. 110261, Dec. 2021, doi: 10.1016/J.MATDES.2021.110261.
dc.relation.referencesA. Bedolla-Jacuinde, F. Guerra, I. Mejia, and U. Vera, “Niobium additions to a 15%cr–3%c white iron and its effects on the microstructure and on abrasive wear behavior,” Metals (Basel), vol. 9, no. 12, Dec. 2019, doi: 10.3390/MET9121321.
dc.relation.referencesM. Woydt and H. Mohrbacher, “The tribological and mechanical properties of niobium carbides (NbC) bonded with cobalt or Fe3Al,” Wear, vol. 321, pp. 1–7, 2014, doi: 10.1016/j.wear.2014.09.007.
dc.relation.referencesF. R. Morales, A. D. Scott, M. R. Pérez, E. M. Díaz Cedré, and J. A. Pozo Morejón, “Energía Calorífica Necesaria, Durante la Soldadura en Servicio de tuberías para el transporte de petróleo,” Soldagem e Inspecao, vol. 14, no. 1, pp. 47–57, 2009.
dc.relation.referencesT. Melfi, “New code requirements for calculating heat input,” Welding Journal (Miami, Fla), vol. 89, no. 6, pp. 61–63, 2010.
dc.relation.referencesH. Iván, M. Gil, J. Enrique, and G. Barrada, “EFECTO DEL AMPERAJE EN LAS PROPIEDADES DE RECUBRIMIENTOS DUROS RESISTENTES A LA ABRASIÓN APLICADOS POR SOLDADURA,” Dyna (Medellin), vol. 144, no. 2, pp. 151–163, 2004.
dc.relation.referencesAMERICAN SOCIETY FOR TESTING AND MATERIALS, “Astm G99-17,” Standard Test Method for Wear Testing with a Pin-on- Disk Apparatus, vol. 05, no. 2016, pp. 1–6, 2017, doi: 10.1520/G0099-17.Copyright.
dc.relation.referencesH. Durmuş, N. Çömez, C. Gül, M. Yurddaşkal, and M. Yurddaşkal, “Wear performance of Fe-Cr-C-B hardfacing coatings: Dry sand/rubber wheel test and ball-on-disc test,” Int J Refract Metals Hard Mater, vol. 77, no. July, pp. 37–43, 2018, doi: 10.1016/j.ijrmhm.2018.07.006.
dc.relation.referencesH. Wang and S. Yu, “Influence of heat treatment on microstructure and sliding wear resistance of high chromium cast iron electroslag hardfacing layer,” Surf Coat Technol, vol. 319, pp. 182–190, 2017, doi: 10.1016/j.surfcoat.2017.04.013.
dc.relation.referencesZ. Brytan, J. Niagaj, and Reiman, “Corrosion studies using potentiodynamic and EIS electrochemical techniques of welded lean duplex stainless steel UNS S82441,” Appl Surf Sci, vol. 388, pp. 160–168, 2016, doi: 10.1016/j.apsusc.2016.01.260.
dc.relation.referencesA. Lasia, Electrochemical impedance spectroscopy and its applications, vol. 9781461489. 2014. doi: 10.1007/978-1-4614-8933-7.
dc.relation.referencesD. Cai, S. Han, S. Zheng, Z. Luo, Y. Zhang, and K. Wang, “Microstructure and corrosion resistance of Al5083 alloy hybrid plasma-MIG welds,” J Mater Process Technol, vol. 255, no. December 2017, pp. 530–535, 2018, doi: 10.1016/j.jmatprotec.2017.12.033.
dc.relation.referencesD. Loveday, P. Peterson, and B. Rodgers, “Evaluation of organic coatings with electrochemical impedance spectroscopy: Part 1: Fundamentals of electrochemical impedance spectroscopy,” CoatingsTech, vol. 1, no. 8, pp. 46–52, 2004.
dc.relation.referencesD. Loveday, P. Peterson, and B. Rodgers, “Evaluation of organic coatings with electrochemical impedance spectroscopy: Part 2: Application of EIS to Coatings,” CoatingsTech, vol. 1, no. 8, pp. 46–52, 2004.
dc.relation.referencesM. Shamir, M. Junaid, F. N. Khan, A. A. Taimoor, and M. N. Baig, “A comparative study of electrochemical corrosion behavior in Laser and TIG welded Ti-5Al-2.5Sn alloy,” Journal of Materials Research and Technology, vol. 8, no. 1, pp. 87–98, 2019, doi: 10.1016/j.jmrt.2017.09.006.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembNiobio
dc.subject.lembNiobium
dc.subject.lembSurfaces (technology) - Analysis
dc.subject.lembSuperficies (Tecnologia)-Analisis
dc.subject.lembAdherencia
dc.subject.lembAdhesion
dc.subject.proposalSoldadura
dc.subject.proposalWelding
dc.subject.proposalHardfacing
dc.subject.proposalNiobium
dc.subject.proposalSMAW
dc.subject.proposalRecubrimientos duros
dc.subject.proposalNiobio
dc.subject.proposalDesgaste
dc.subject.proposalWear
dc.subject.proposalCorrosión
dc.subject.proposalAbrasión
dc.subject.proposalEntrada de calor
dc.subject.proposalDilución
dc.title.translatedInfluence of the addition of niobium on the wear resistance and corrosion resistance of hard coatings based on iron and high chrome
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.orcidPerez, Jaime [0000000172978663]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito