Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorVega Castro, Nohora Angélica
dc.contributor.advisorUmaña Pérez, Yadi Adriana
dc.contributor.authorRodríguez Vargas, Ariadna Lorena
dc.date.accessioned2024-03-19T16:05:34Z
dc.date.available2024-03-19T16:05:34Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85817
dc.descriptionilustraciones, fotografias, diagramas
dc.description.abstractEn el veneno de serpientes cascabel predomina la actividad neurotóxica de las fosfolipasas tipo A2 (PLA2) y las miotoxinas de bajo peso molecular, además de los efectos hemocitotóxicos relacionados con proteasas. Se evaluaron las diferencias bioquímicas y biológicas en los venenos de Crotalus durissus cumanensis de tres ecorregiones de Colombia: Magdalena Medio (MM), Caribe (CA) y Orinoquía (OR). Se realizaron SDSPAGE y HPLC, letalidad, desfibrinación, procoagulación y actividades enzimáticas. Se realizó el reconocimiento de los antivenenos, mediante determinación de dosis efectiva (ED), Western blotting (WB) y ELISA. En los tres venenos, se encontraron proteasas y PLA2, incluida la subunidad básica de crotoxina. Solo se detectó crotamina en el veneno de CA. Hubo mayor letalidad, actividad coagulante, actividad fosfolipasa A2 y actividad hialuronidasa para el veneno de MM. Se encontraron diferencias en el reconocimiento de los antivenenos de uso comercial, colombiano y mexicano, por WB e inmunoafinidad. Existe variabilidad intraespecífica, considerando las diferencias en la abundancia e intensidad de los componentes, además de la actividad y respuesta a los antivenenos. La lectina tipo C (CTL) del veneno pudo ser aislada parcialmente y aparece unida a una serinoproteasa, al parecer por efecto de su glicosilación. Esta CTL mostró un efecto proliferativo sobre líneas celulares. Se purificó crotamina y se modeló su estructura tridimensional. Se demostró su efecto sobre la línea celular de cáncer de pulmón A549, mostrando un interesante efecto pro-apoptótico. Además, se hizo un docking molecular con una canal de potasio dependiente de voltaje, que también estaría involucrado en su efecto citotóxico. (Texto tomado de la fuente)
dc.description.abstractIn rattlesnake venom, the neurotoxic activity of phospholipase A2 (PLA2) and low molecular weight myotoxins predominates, in addition to protease-related hemocytotoxic effects. Biochemical and biological differences in Crotalus durissus cumanensis venoms from three ecoregions of Colombia: Magdalena Medio (MM), Caribe (CA) and Orinoquía (OR) were evaluated. SDS-PAGE and HPLC, lethality, defibrination, procoagulation, and enzymatic activities were performed. Recognition of antivenoms was achieved by determination of effective dose (ED), Western blotting (WB) and ELISA. In all three venoms, proteases and PLA2, including the basic crotoxin subunit, were found. Crotamine was only detected in CA venom. There was higher lethality, coagulant activity, phospholipase A2 activity, and hyaluronidase activity for the MM venom. Differences were found in the recognition of commercially used antivenoms, Colombian and Mexican, by WB and immunoaffinity. There is intraspecific variability, considering the differences in the abundance and intensity of the components, as well as the activity and response to antivenoms. The C-type lectin (CTL) of the venom could be partially isolated and appears bound to a serineprotease, apparently due to its glycosylation. This CTL showed a proliferative effect on cell lines. Crotamine was purified and its three-dimensional structure was modeled. Its effect on the A549 lung cancer cell line was demonstrated, showing an interesting pro-apoptotic effect. In addition, a molecular docking with a voltage-gated potassium channel was made, which would also be involved in its cytotoxic effect.
dc.description.sponsorshipMinciencias | Ministerio de Ciencia Tecnología e Innovación
dc.description.sponsorshipColfuturo
dc.format.extentxxvii, 292 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc570 - Biología::572 - Bioquímica
dc.titleCaracterización bioquímica, funcional y biológica del veneno de Crotalus durissus cumanensis colombiana
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Bioquímica
dc.contributor.researchgroupGrupo de Investigación en Proteinas Grip
dc.description.degreelevelDoctorado
dc.description.degreenameDoctora en Ciencias - Bioquímica
dc.description.researchareaEstudio de lectinas de venenos animales
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAcosta-Peña, A., Núñez, V., Pereañez, J., & Rey-Suárez, P. (2022). Immunorecognition and Neutralization of Crotalus durissus cumanensis Venom by a Commercial Antivenom Produced in Colombia. Toxins, 14(235), 1–14.
dc.relation.referencesAdade, C., Carvalho, A., Tomaz, M., Costa, T., Godinho, J., Melo, P., Lima, A. P., Rodrigues, J., Zingali, R., & Souto-Padrón, T. (2014). Crovirin, a Snake Venom Cysteine-Rich Secretory Protein (CRISP) with Promising Activity against Trypanosomes and Leishmania. PLoS Neglected Tropical Diseases, 8(10), 1–12. https://doi.org/10.1371/journal.pntd.0003252
dc.relation.referencesAgarwal, J. R., Griesinger, F., Stühmer, W., & Pardo, L. A. (2010). The potassium channel Ether à go-go is a novel prognostic factor with functional relevance in acute myeloid leukemia. Molecular Cancer, 9(1), 18. https://doi.org/10.1186/1476-4598-9-18
dc.relation.referencesAguilar, I., Guerrero, B., Salazar, A. M., Giro, M. E., Peez, J. C., Sachez, E. E., & Rodrıuez-Acosta, A. (2007). Individual venom variability in the South American rattlesnake Crotalus durissus cumanensis. Toxicon, 50, 214–224.
dc.relation.referencesAlam Rojas, S. N. (2022). Purificación y evaluacion de la actividad biologica de la lectina del veneno de Crotalus durissus cumanensis. Universidad Nacional de Colombia.
dc.relation.referencesAlexander, G., Grothusen, J., Zepeda, H., & Schwartzman, R. J. (1988). Gyroxin, a toxin from the venom of Crotalus durissus terrificus, is a thrombin-like enzyme. Toxicon : Official Journal of the International Society on Toxinology, 26(10), 953–960. https://doi.org/10.1016/0041-0101(88)90260-7
dc.relation.referencesAlmeida, J., Resende, L., Watanabe, R., Corassola, V., Huancahuire-Vega, S., Caldeira, C., Coutinho-Neto, A., Soares, A., Vale, N., Gomes, P., Marangoni, S., Calderon, L., & Da Silva, S. (2016). Snake venom peptides and low mass proteins: Molecular tools and therapeutic agents. Current Medicinal Chemistry, 23, 1–29.
dc.relation.referencesAltschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
dc.relation.referencesAlvarez-Flores, M. P., Faria, F., de Andrade, S. A., & Chudzinski-Tavassi, A. M. (2017). Snake Venom Components Affecting the Coagulation System. In Snake Venoms (Issue February 2019, pp. 5–6). https://doi.org/10.1007/978-94-007-6410-1
dc.relation.referencesAlves, B. F. A., & Ferreira, R. S. (2022). Antineoplastic properties and pharmacological applications of Crotalus durissus terrificus snake venom. Revista Da Sociedade Brasileira de Medicina Tropical, 55(August), 1–10. https://doi.org/10.1590/0037- 8682-0323-2022
dc.relation.referencesAmazonas, D. R., Portes-Junior, J. A., Nishiyama-Jr, M. Y., Nicolau, C. A., Chalkidis, H. M., Mourão, R. H. V., Grazziotin, F. G., Rokyta, D. R., Gibbs, H. L., Valente, R. H., Junqueira-de-Azevedo, I. L. M., & Moura-da-Silva, A. M. (2018). Molecular mechanisms underlying intraspecific variation in snake venom. Journal of Proteomics, 181, 60–72. https://doi.org/10.1016/j.jprot.2018.03.032
dc.relation.referencesAndrade-Silva, D., Ashline, D., Tran, T., Lopes, A. S., Cardoso, S. R. T., Da Silva Reis, M., Zelanis, A., Serrano, S. M. T., & Reinhold, V. (2018). Structures of N-glycans of bothrops venoms revealed as molecular signatures that contribute to venom phenotype in viperid snakes. Molecular and Cellular Proteomics, 17(7), 1261–1284. https://doi.org/10.1074/mcp.RA118.000748
dc.relation.referencesAndrade-Silva, D., Zelanis, A., Kitano, E. S., Junqueira-De-Azevedo, I. L. M., Reis, M. S., Lopes, A. S., & Serrano, S. M. T. (2016). Proteomic and glycoproteomic profilings reveal that post-translational modifications of toxins contribute to venom phenotype in snakes. Journal of Proteome Research, 15(8), 2658–2675. https://doi.org/10.1021/acs.jproteome.6b00217
dc.relation.referencesAndrade-Silva, D., Zelanis, A., Travaglia-Cardoso, S. R., Nishiyama-Jr, M. Y., & Serrano, S. M. T. (2021). Venom Profiling of the Insular Species Bothrops alcatraz: Characterization of Proteome, Glycoproteome, and N-Terminome Using Terminal Amine Isotopic Labeling of Substrates. Journal of Proteome, 20, 1341–1358.
dc.relation.referencesAndrew, S. M., & Titus, J. A. (2001). Fragmentation of Immunoglobulin G. In Current Protocols in Immunology (Vol. 21, Issue 1, pp. 2.8.1-2.8.10). John Wiley & Sons, Ltd. https://doi.org/10.1002/0471142735.im0208s21
dc.relation.referencesAngulo, Y., Castro, A., Lomonte, B., Rucavado, A., Fernández, J., Calvete, J., & Gutiérrez, J. M. (2014). Isolation and characterization of four medium-size disintegrins from the venoms of Central American viperid snakes of the genera Atropoides, Bothrops, Cerrophidion and Crotalus. Biochimie, 107, 376–384. https://doi.org/10.1016/j.biochi.2014.10.010
dc.relation.referencesAngulo, Y., & Lomonte, B. (2009). Biochemistry and toxicology of toxins purified from the venom of the snake Bothrops asper. Toxicon, 54, 949–957.
dc.relation.referencesAntúnez, J., Fernández, J., Lomonte, B., Angulo, Y., Sanz, L., Pérez, A., Calvete, J., & Gutiérrez, J. M. (2010). Antivenomics of Atropoides mexicanus and Atropoides picadoi snake venoms: Relationship to the neutralization of toxic and enzymatic activities. Journal of Venom Research, 1, 8–17.
dc.relation.referencesAragón-Ortiz, F., Mentele, R., & Auerswald, E. A. (1996). Amino acid sequence of a lectin-like protein from Lachesis muta stenophyrs venom. Toxicon : Official Journal of the International Society on Toxinology, 34(7), 763–769. https://doi.org/10.1016/0041-0101(96)00011-6
dc.relation.referencesAranda-Souza, M. A., Rossato, F. A., Costa, R. A. P., Figueira, T. R., Castilho, R. F., Guarniere, M. C., Nunes, E. S., Coelho, L. C. B. B., Correia, M. T. S., & Vercesi, A. E. (2014). A lectin from Bothrops leucurus snake venom raises cytosolic calcium levels and promotes B16-F10 melanoma necrotic cell death via mitochondrial permeability transition. Toxicon, 82, 97–103.
dc.relation.referencesArbuckle, K. (2017). Evolutionary Context of Venom in Animals. In P Gopalakrishnakone & A. Malhotra (Eds.), Evolution of Venomous Animals and Their Toxins (1st ed., pp. 3–31). Springer. https://doi.org/10.1007/978-94-007-6458-3_16
dc.relation.referencesArévalo-Páez, M., Rada-Vargas, E., Betancur-Hurtado, C., Renjifo, J. M., & Renjifo- Ibáñez, C. (2017). Neuromuscular effect of venoms from adults and juveniles of Crotalus durissus cumanensis (Humboldt, 1811) from Guajira, Colombia. Toxicon, 139, 41–44.
dc.relation.referencesArlinghaus, F. T., & Eble, J. A. (2012). C-type lectin-like proteins from snake venoms. Toxicon, 60, 512–519.
dc.relation.referencesArnaud, G., García-de León, F. J., Beltrán, L. F., & Carbajal-Saucedo, A. (2021). Proteomic comparison of adult and juvenile Santa Catalina rattlesnake (Crotalus catalinensis) venom. Toxicon, 193(December 2020), 55–62. https://doi.org/10.1016/j.toxicon.2021.01.014
dc.relation.referencesAyerbe, S. (2009). Ofidismo en Colombia. Enfoque, diagnóstico y tratamiento. In R. Ordóñez, Carlos; Ferrada, Ricardo; Buitrago (Ed.), Cuidado intensivo y trauma (2nd ed., pp. 1143–1168). Distribuna.
dc.relation.referencesBaaten, B. J. G., Li, C. R., & Bradley, L. M. (2010). Multifaceted regulation of T cells by CD44. Communicative and Integrative Biology, 3(6), 508–512. https://doi.org/10.4161/cib.3.6.13495
dc.relation.referencesBaaten, B. J. G., Tinoco, R., Chen, A. T., & Bradley, L. M. (2012). Regulation of antigen-experienced T cells: Lessons from the quintessential memory marker CD44. Frontiers in Immunology, 3(FEB), 1–12. https://doi.org/10.3389/fimmu.2012.00023
dc.relation.referencesBachmann, M., Costa, R., Peruzzo, R., Prosdocimi, E., Checchetto, V., & Leanza, L. (2018). Targeting Mitochondrial Ion Channels to Fight Cancer. International Journal of Molecular Sciences, 19(7). https://doi.org/10.3390/ijms19072060
dc.relation.referencesBaines, M. G., & Thorpe, R. (1992). Purification of immunoglobulin g (IgG). Methods inMolecular Biology (Clifton, N.J.), 80, 79–104. https://doi.org/10.1385/0-89603-204-3:79
dc.relation.referencesBanerjee, A., Lee, A., Campbell, E., & MacKinnon, R. (2013). Structure of a pore-blocking toxin in complex with a eukaryotic voltage-dependent K+ channel. ELife, 2013(2), 1–22. https://doi.org/10.7554/eLife.00594
dc.relation.referencesBarros, L. C., Soares, A. M., Costa, F. L., Rodrigues, V. M., Fuly, A. L., Giglio, J. R., Gallacci, M., Thomazini-Santos, I. A., Barraviera, S., Barraviera, B., & Ferreira Junior, R. S. (2011). Biochemical and biological evaluation of gyroxin isolated from Crotalus durissus terrificus venom. In Journal of Venomous Animals and Toxins including Tropical Diseases (Vol. 17). scielo .
dc.relation.referencesBatista da Cunha, D., Pupo Silvestrini, A. V., Gomes da Silva, A. C., Maria de Paula Estevam, D., Pollettini, F. L., de Oliveira Navarro, J., Alves, A. A., Remédio Zeni Beretta, A. L., Annichino Bizzacchi, J. M., Pereira, L. C., & Mazzi, M. V. (2018). Mechanistic insights into functional characteristics of native crotamine. Toxicon, 146, 1–12. https://doi.org/10.1016/j.toxicon.2018.03.007
dc.relation.referencesBatuwangala, T., Leduc, M., Gibbins, J. M., Bon, C., & Jones, E. Y. (2004). Structure of the snake-venom toxin convulxin. Acta Crystallographica Section D: Biological Crystallography, 60(1), 46–53. https://doi.org/10.1107/S0907444903021620
dc.relation.referencesBaudou, F. G., Litwin, S., Lanari, L. C., Laskowicz, R. D., Damin, C. F., Chippaux, J. P., & de Roodt, A. R. (2017). Antivenom against Crotalus durissus terrificus venom: Immunochemical reactivity and experimental neutralizing capacity. Toxicon, 140, 11– 17.
dc.relation.referencesBerman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
dc.relation.referencesBhattacharjee, E., Mitra, J., & Bhattacharyya, D. (2017). L-Amino Acid Oxidase from Venoms. In Ponnampalam Gopalakrishnakone, L. J. Cruz, & S. Luo (Eds.), Toxins and drug discovery (1st ed., pp. 295–320). Springer.
dc.relation.referencesBickler, P. (2020). Amplification of Snake Venom Toxicity by Endogenous Signaling Pathways. Toxins, 12(68), 1–26.
dc.relation.referencesBioclon. (2016). Full Prescribing Information (FPI) Antivipmyn®Tri. Instituto Bioclon, S.A. de C.V. https://archiveansm.integra.fr/afssaps/content/download/149311/1964979/version/2/file/FINAL_Antivipmyn+Tri+IPP-A_sep2016_ENG.pdf
dc.relation.referencesBlair, C., & Sánchez-Ramírez, S. (2016). Diversity-dependent cladogenesis throughout western Mexico: Evolutionary biogeography of rattlesnakes (Viperidae: Crotalinae: Crotalus and Sistrurus). Molecular Phylogenetics and Evolution, 97, 145–154. https://doi.org/10.1016/j.ympev.2015.12.020
dc.relation.referencesBocian, A., Urbanik, M., Hus, K., Łyskowski, A., Petrilla, V., Andrejčáková, Z., Petrillová, M., & Legáth, J. (2016). Proteomic analyses of Agkistrodon contortrix contortrix venom using 2D electrophoresis and MS techniques. Toxins, 8(12). https://doi.org/10.3390/toxins8120372
dc.relation.referencesBoldrini-França, J., Cologna, C. T., Pucca, M. B., Bordon, K. de C. F., Amorim, F. G., Anjolette, F. A. P., Cordeiro, F. A., Wiezel, G. A., Cerni, F. A., Pinheiro-Junior, E. L., Shibao, P. Y. T., Ferreira, I. G., de Oliveira, I. S., Cardoso, I. A., Arantes, E. C., De Castro, K., Bordon, F., Amorim, F. G., Pino Anjolette, F. A., ... Au-Gusto Cerni, F. (2017). Minor snake venom proteins: Structure, function and potential applications. Biochimica et Biophysica Acta (BBA), 1861(4), 824–838. https://doi.org/10.1016/j.bbagen.2016.12.022
dc.relation.referencesBoldrini-França, J., Corrêa-Netto, C., Silva, M. M. S., Rodrigues, R. S., De La Torre, P., Pérez, A., Soares, A. M., Zingali, R. B., Nogueira, R. A., Rodrigues, V. M., Sanz, L., & Calvete, J. (2010). Snake venomics and antivenomics of Crotalus durissus subspecies from Brazil: Assessment of geographic variation and its implication on snakebite management. Journal of Proteomics, 73, 1758–1776. https://doi.org/10.1016/j.jprot.2010.06.001
dc.relation.referencesBollag, D. M., & Edelstein, S. J. (1991). Isoelectric focusing and two dimensional gel electrophoresis. In D. M. Bollag, M. D. Roziycki, & S. J. Edelstein (Eds.), Protein method (pp. 161–174). Wiley-Liss a John Wiley & sons, INK.
dc.relation.referencesBonnardel, F., Mariethoz, J., Salentin, S., Robin, X., Schroeder, M., Perez, S., Lisacek, F., & Imberty, A. (2019). UniLectin3D, a database of carbohydrate binding proteins with curated information on 3D structures and interacting ligands. Nucleic Acids Research, 47(D1), D1236–D1244. https://doi.org/10.1093/nar/gky832
dc.relation.referencesBordon, K. C. F., Perino, M. G., Giglio, J. R., & Arantes, E. C. (2012). Isolation, enzymatic characterization and antiedematogenic activity of the first reported rattlesnake hyaluronidase from Crotalus durissus terrificus venom. Biochimie, 94, 2740–2748. https://doi.org/10.1016/j.biochi.2012.08.014
dc.relation.referencesBorja, M., Neri-Castro, E., Pérez-Morales, R., Strickland, J., Ponce-López, R., Parkinson, C., Espinosa-Fematt, J., Sáenz-Mata, J., Flores-Martínez, E., Alagón, A., & Castañeda-Gaytán, G. (2018). Ontogenetic change in the venom of mexican blacktailed rattlesnakes (Crotalus molossus nigrescens). Toxins, 10(12).
dc.relation.referencesBoyer, R. F., & Boyer, R. (2006). Biochemistry laboratory: modern theory and techniques. Benjamin Cummings San Francisco.
dc.relation.referencesBray, F., Ren, J., Masuyer, E., & Ferlay, J. (2013). Estimates of global cancer prevalence for 27 sites in the adult population in 2008. Int J Cancer., 132(5), 1133–1145.
dc.relation.referencesBrissett, N. C., & Perkins, S. J. (1996). The protein fold of the hyaluronate-binding proteoglycan tandem repeat domain of link protein, aggrecan and CD44 is similar to that of the C-type lectin superfamily. FEBS Letters, 388(2–3), 211–216. https://doi.org/https://doi.org/10.1016/0014-5793(96)00576-5
dc.relation.referencesBurnette, W. N. (1981). “Western Blotting”: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Analytical Biochemistry, 112(2), 195–203. https://doi.org/10.1016/0003-2697(81)90281-5
dc.relation.referencesCalderon, L. A., Sobrinho, J. C., Zaqueo, K. D., de Moura, A. A., Grabner, A. N., Mazzi, M. V, Marcussi, S., Nomizo, A., Fernandes, C. F., Zuliani, J. P., Carvalho, B. M., da Silva, S. L., Stabeli, R. G., & Soares, A. M. (2014). Antitumoral activity of snake venom proteins: new trends in cancer therapy. Biomed Res Int, 2014, 1–19.
dc.relation.referencesCalvete, J. (2013). Snake venomics: From the inventory of toxins to biology. Toxicon, 75, 44–62. https://doi.org/10.1016/j.toxicon.2013.03.020
dc.relation.referencesCalvete, J. (2017). Venomics: integrative venom proteomics and beyond. Biochemical Journal, 474(5). https://doi.org/10.1042/BCJ20160577
dc.relation.referencesCalvete, J., Fasoli, E., Sanz, L., Boschetti, E., & Righetti, P. G. (2009). Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches. Journal of Proteome Research, 8(6), 3055–3067.
dc.relation.referencesCalvete, J., Sanz, L., Angulo, Y., Lomonte, B., Gutiérrez, J. M., & De La Rosa, M. (2009). Venoms, venomics, antivenomics. FEBS Letters, 583, 1736–1743.
dc.relation.referencesCalvete, J., Sanz, L., Cid, P., De La Torre, P., Flores-Díaz, M., dos Santos, M., Borges, A., Bremo, A., Angulo, Y., Lomonte, B., Alape-Girón, A., & Gutiérrez, J. M. (2010). Snake Venomics of the Central American Rattlesnake Crotalus simus and the South American Crotalus durissus Complex Points to Neurotoxicity as an Adaptive Paedomorphic Trend along Crotalus Dispersal in South America. Journal of Proteome Research, 9, 528–544.
dc.relation.referencesCampbell, J., & Lamar, W. (2004). The venomous reptiles of the western hemisphere. Comstock Press.
dc.relation.referencesCampeiro, J. D., Marinovic, M. P., Carapeto, F. C., Dal Mas, C., Monte, G. G., Carvalho Porta, L., Nering, M. B., Oliveira, E. B., & Hayashi, M. A. F. (2018). Oral treatment with a rattlesnake native polypeptide crotamine efficiently inhibits the tumor growth with no potential toxicity for the host animal and with suggestive positive effects on animal metabolic profile. Amino Acids, 50(2), 267–278. https://doi.org/10.1007/s00726-017-2513-3
dc.relation.referencesCarbajal-Márquez, R. A., Cedeño-Vázquez, J. R., Martínez-Arce, A., Neri-Castro, E., & Machkour- M’Rabet, S. C. (2020). Accessing cryptic diversity in Neotropical rattlesnakes (Serpentes: Viperidae: Crotalus) with the description of two new species. Zootaxa, 4729(4), 451–481.
dc.relation.referencesCarvalho, D. D., Marangoni, S., Oliveira, B., & Novello, J. C. (1998). Isolation and Characterization of a New Lectin From the Venom of the Snake Bothrops jararacussu. Biochemistry and Molecular Biology International, 44(5), 933–938.
dc.relation.referencesCarvalho, E. V. M. M., Oliveira, W. F., Coelho, L. C. B. B., & Correia, M. T. S. (2018). Lectins as mitosis stimulating factors: Briefly reviewed. Life Sciences, 207(April), 152–157. https://doi.org/10.1016/j.lfs.2018.06.003
dc.relation.referencesCasewell, N. R., Jackson, T. N. W., Laustsen, A. H., & Sunagar, K. (2020). Causes and Consequences of Snake Venom Variation. Trends in Pharmacological Sciences, 41(8), 570–581. https://doi.org/10.1016/j.tips.2020.05.006
dc.relation.referencesCastaño, S. (2019). Informe del Evento: Accidente Ofídico, Colombia, 2019. Report. https://www.ins.gov.co/buscador-eventos/Informesdeevento/ACCIDENTE_OFÍDICIO_2019.pdf
dc.relation.referencesCastro, H. C., Zingali, R. B., Albuquerque, M. G., Pujol-Luz, M., & Rodrigues, C. R. (2004). Snake venom thrombin-like enzymes: from reptilase to now. Cellular and Molecular Life Sciences : CMLS, 61(7–8), 843–856. https://doi.org/10.1007/s00018- 003-3325-z
dc.relation.referencesCéspedes, N., Castro, F., Jiménez, E., Montealegre, L., Castellanos, A., Cañas, C., Arévalo-Herrera, M., & Herrera, S. (2010). Biochemical comparison of venoms from young Colombian Crotalus durissus cumanensis and their parents. Journal of Venomous Animals and Toxins Including Tropical Diseases, 16(2), 268–284.
dc.relation.referencesCevallos, M. A., Navarro-Duque, C., Varela-Julia, M., & Alagon, A. C. (1992). Molecular mass determination and assay of venom hyaluronidases by sodium dodecyl sulfate- polyacrylamide gel electrophoresis. Toxicon, 30(8), 925–930. https://doi.org/10.1016/0041-0101(92)90392-I
dc.relation.referencesChen, E., & Yates, J. (2007). Cancer proteomics by quantitative shotgun proteomics. Molecular Oncology, 1(2), 144–159. https://doi.org/https://doi.org/10.1016/j.molonc.2007.05.001
dc.relation.referencesChen, P., De Schutter, K., Van Damme, E. J. M., & Smagghe, G. (2021). Can Plant Lectins Help to Elucidate Insect Lectin-Mediated Immune Response? Insects, 12(6). https://doi.org/10.3390/insects12060497
dc.relation.referencesChin, L. S., Park, C. C., Zitnay, K. M., Sinha, M., DiPatri, A. J. J., Perillán, P., & Simard, J. M. (1997). 4-Aminopyridine causes apoptosis and blocks an outward rectifier K+ channel in malignant astrocytoma cell lines. Journal of Neuroscience Research, 48(2), 122–127.
dc.relation.referencesChippaux, J. P., & Goyffon, M. (1998). Venoms, antivenoms and immunotherapy. Toxicon, 36(6), 823–846.
dc.relation.referencesChippaux, J. P., Williams, V., & White, J. (1991). Snake Venom Variability: Methods of Study, results and interpretation. Toxicon, 29(11), 1279–1303.
dc.relation.referencesChippaux, Jean Philippe. (2010). Guidelines for the production, control and regulation of snake antivenom immunoglobulins. Biologie Aujourd’hui, 204(1), 87–91. https://doi.org/10.1051/jbio/2009043
dc.relation.referencesClement, H., Corrales-García, L. L., Bolaños, D., Corzo, G., & Villegas, E. (2019). Immunogenic properties of recombinant enzymes from bothrops ammodytoides towards the generation of neutralizing antibodies against its own venom. Toxins, 11(12), 1–14. https://doi.org/10.3390/toxins11120702
dc.relation.referencesClemetson, K. J., & Sci-, A. (2009). Snake Venom and Receptor Crosslinking . BLOOD, 114(22), SCI-37. https://doi.org/10.1182/blood.V114.22.SCI-37.SCI-37
dc.relation.referencesClemetson, K., Morita, T., & Kini, M. (2009). Classification and nomenclature of snake venom C-type lectins and related proteins. Toxicon, 54(1), 83.
dc.relation.referencesClemetson, K., Navdaev, A., Dörmann, D., Du, X.-Y., & Clemetson, J. M. (2001). Multifunctional Snake C-Type Lectins Affecting Platelets. Haemostasis, 31, 148–154.
dc.relation.referencesCollection, A. T. C. (2012). Thawing, Propagating, and Cryopreserving Protocol NCI- PBCFHTB132 (MDA-MB-468) Breast Adenocarcinoma. American Type Culture Collection, 26, 1–25.
dc.relation.referencesCoronado, A., Georgieva, D., Buck, F., Azat, H., Ullah, A., Spencer, P. J., Arni, R. K., & Betzel, C. (2012). Purification , crystallization and preliminary X-ray diffraction analysis of crotamine , a myotoxic polypeptide from the Brazilian snake Crotalus durissus terrificus. 1052–1054. https://doi.org/10.1107/S1744309112032721
dc.relation.referencesCosta, B. A., Sanches, L., Gomide, A. B., Bizerra, F., Dal Mas, C., Oliveira, E. B., Perez, K. R., Itri, R., Oguiura, N., & Hayashi, M. A. F. (2014). Interaction of the Rattlesnake Toxin Crotamine with Model Membranes. The Journal of Physical Chemistry B, 118(20), 5471–5479. https://doi.org/10.1021/jp411886u
dc.relation.referencesCoutinho-Neto, A., Caldeira, C. A. S., Souza, G. H. M. F., Zaqueo, K. D., Kayano, A. M., Silva, R. S., Zuliani, J. P., Soares, A. M., Stábeli, R. G., & Calderon, L. A. (2013). ESI-MS/MS identification of a bradykinin-potentiating peptide from Amazon Bothrops atrox Snake Venom using a hybrid Qq-oaTOF mass spectrometer. Toxins, 5, 327– 335.
dc.relation.referencesCristina, R. ., Kocsis, R., Tulcan, C., Alexa, E., Boldura, O. ., Hulea, C. ., Dumitrescu, E., Radulov, I., & Muselin, F. (2020). Protein structure of the venom in nine species of snake: from bio-compounds to possible healing agents. Brazilian Journal of Medical and Biological Research, 53(1), 1–7.
dc.relation.referencesCummings, R., & Etzler, M. (2009). Antibodies and Lectins in Glycan Analysis. In A. Varki, R. Cummings, & J. Esko (Eds.), Essentials of Glycobiology (2nd editio). Cold Spring Harbor Laboratory Press. https://www.ncbi.nlm.nih.gov/books/NBK1919/
dc.relation.referencesDal Mas, C., Moreira, J. T., Pinto, S., Monte, G. G., Nering, M. B., Oliveira, E. B., Gazarini, M. L., Mori, M. A., & Hayashi, M. A. F. (2016). Anthelmintic effects of a cationic toxin from a South American rattlesnake venom. Toxicon : Official Journal of the International Society on Toxinology, 116, 49–55.
dc.relation.referencesDaltry, J. C., Wüster, W., & Thorpe, R. S. (1996). Diet and snake venom evolution. Nature, 379(6565), 537–542. https://doi.org/10.1038/379537a0
dc.relation.referencesde Araújo, A. L., & Radvanyi, F. (1987). Determination of phospholipase A2activity by a colorimetric assay using a pH indicator. Toxicon, 25(11), 1181–1188. https://doi.org/10.1016/0041-0101(87)90136-X
dc.relation.referencesde Azevedo, M., Hering, S., & Cupo, P. (2009). Accidente Crotálico. In J. Cardoso, F. de Siqueira, F. Wen, C. Sant ́Ana, & V. Haddad (Eds.), Animais Peçonhentos no Brasil2 (2nd ed., pp. 108–115). Sarvier.
dc.relation.referencesde Fátima, M., Furtado, D., Cardoso, S. T., Soares, O. E., Pereira, A. Pietro, Fernandes, D. S., Tambourgi, D. V., & Sant ’anna, O. A. (2009). Antigenic cross-reactivity and immunogenicity of Bothrops venoms from snakes of the Amazon region. Toxicon, 55, 881–887.
dc.relation.referencesde Navarro, Y., & Pérez, G. (1978). Normalización del método de migración capilar para evaluar eritroaglutinación. Revista Colombiana de Química, 8, 15–23. http://www.bdigital.unal.edu.co/15564/1/10195-18887-1-PB.pdf
dc.relation.referencesDe Roodt, A. R., Dolab, J. A., Hajos, S. E., Gould, E., Dinápoli, H., Troiano, J. C., Gould, J., Dokmetjian, J. C., Carfagnini, J. C., Fernández, T., Amoroso, M., Segre, L., & Vidal, J. C. (2000). Some toxic and enzymatic activities of Bothrops ammodytoides (yarara nata) venom. Toxicon, 38(1), 49–61. https://doi.org/10.1016/S0041- 0101(99)00126-9
dc.relation.referencesDesgrosellier, J. S., & Cheresh, D. (2010). Integrins in cancer: biological implications and therapeutic opportunities. Nature Reviews. Cancer, 10(1), 9–22. https://doi.org/10.1038/nrc2748
dc.relation.referencesDominguez, C., Boelens, R., & Bonvin, A. M. J. J. (2003). HADDOCK: A Protein−Protein Docking Approach Based on Biochemical or Biophysical Information. Journal of the American Chemical Society, 125(7), 1731–1737. https://doi.org/10.1021/ja026939x
dc.relation.referencesDrickamer, K. (1999). C-type lectin-like domains. Current Opinion in Structural Biology, 9(5), 585–590. https://doi.org/10.1016/s0959-440x(99)00009-3
dc.relation.referencesDyer, R. R., Ford, K. I., & Robinson, R. A. S. (2019). Chapter Twenty-One - The roles of S-nitrosylation and S-glutathionylation in Alzheimer’s disease. In B. A. B. T.-M. in E. Garcia (Ed.), Post-translational Modifications That Modulate Enzyme Activity (Vol. 626, pp. 499–538). Academic Press. https://doi.org/https://doi.org/10.1016/bs.mie.2019.08.004
dc.relation.referencesEarl, S. T. H., Robson, J., Trabi, M., de Jersey, J., Masci, P. P., & Lavin, M. F. (2011). Characterisation of a mannose-binding C-type lectin from Oxyuranus scutellatus snake venom. Biochimie, 93(3), 519–527. https://doi.org/10.1016/j.biochi.2010.11.006
dc.relation.referencesEble, J. (2019). Structurally robust and functionally highly versatile—C-type lectin (- related) proteins in snake venoms. Toxins, 11(3). https://doi.org/10.3390/toxins11030136
dc.relation.referencesEble, J. a, Niland, S., Dennes, A., Schmidt-Hederich, A., Bruckner, P., & Brunner, G. (2002). Rhodocetin antagonizes stromal tumor invasion in vitro and other alpha2beta1 integrin-mediated cell functions. Matrix Biology : Journal of the International Society for Matrix Biology, 21, 547–558.
dc.relation.referencesEl-Aziz, T. M. A., Soares, A. G., & Stockand, J. D. (2019). Snake venoms in drug discovery: Valuable therapeutic tools for life saving. Toxins, 11(10), 1–25. https://doi.org/10.3390/toxins11100564
dc.relation.referencesEl Chamy Maluf, S., Dal Mas, C., Oliveira, E. B., Melo, P. M., Carmona, A. K., Gazarini, M. L., & Hayashi, M. A. F. (2016). Inhibition of malaria parasite Plasmodium falciparum development by crotamine, a cell penetrating peptide from the snake venom. Peptides, 78, 11–16. https://doi.org/10.1016/j.peptides.2016.01.013
dc.relation.referencesElífio-Esposito, S., P, H., A, M., LOPES- FERREIRA, M., C, R., M, S., F, H.-Z., J, B., & L, P. (2007). A C-TYPE LECTIN FROM Bothrops jararacussu VENOM CAN ADHERE TO EXTRACELLULAR MATRIX PROTEINS AND INDUCE THE ROLLING OF LEUKOCYTES. J. Venom.Anim. Toxins. Trop.Dis, 13(4), 782–799.
dc.relation.referencesEngmark, M., Lomonte, B., Gutiérrez, J. M., Laustsen, A. H., De Masi, F., Andersen, M. R., & Lund, O. (2017). Cross-recognition of a pit viper (Crotalinae) polyspecific antivenom explored through high-density peptide microarray epitope mapping. PLoS Neglected Tropical Diseases, 11(7), 1–23.
dc.relation.referencesEspino-Solis, G. P., Riaño-Umbarila, L., Becerril, B., & Possani, L. D. (2009). Antidotes against venomous animals: State of the art and prospectives. Journal of Proteomics, 72(2), 183–199. https://doi.org/10.1016/j.jprot.2009.01.020
dc.relation.referencesFadel, V., Bettendorff, P., Herrmann, T., de Azevedo, W. F. J., Oliveira, E. B., Yamane, T., & Wüthrich, K. (2005). Automated NMR structure determination and disulfide bond identification of the myotoxin crotamine from Crotalus durissus terrificus. Toxicon : Official Journal of the International Society on Toxinology, 46(7), 759–767. https://doi.org/10.1016/j.toxicon.2005.07.018
dc.relation.referencesFalcao, C. B., & Radis-Baptista, G. (2020). Crotamine and crotalicidin, membrane active peptides from Crotalus durissus terrificus rattlesnake venom, and their structurally- minimized fragments for applications in medicine and biotechnology. Peptides, 126(December 2019), 170234. https://doi.org/10.1016/j.peptides.2019.170234
dc.relation.referencesFaure, G., Porowinska, D., & Saul, F. (2017). Crotoxin from Crotalus durissus terrificus and Crotoxin-Related Proteins: Structure and Function Relationship. In Ponnampalam Gopalakrishnakone, L. J. Cruz, & S. Luo (Eds.), Toxins and drug discovery (1st ed., pp. 3–20). Springer.
dc.relation.referencesFerlay J, Ervik M, Lam F, Colombet M, Mery L, P. M. (2020). Global Cancer Observatory: Cancer Today. International Agency for Research on Cancer. https://gco.iarc.fr
dc.relation.referencesFerlay, J., Soerjomataram, I., Ervik, M., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D., Forman, D., & Bray, F. (2013). GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC Cancer Base No. 11 Lyon, France. International Agency for Research on Cancer.
dc.relation.referencesFerraz, C. R., Arrahman, A., Xie, C., Casewell, N. R., Lewis, R. J., Kool, J., & Cardoso, F. C. (2019). Multifunctional toxins in snake venoms and therapeutic implications: From pain to hemorrhage and necrosis. Frontiers in Ecology and Evolution, 7(JUN), 1–19. https://doi.org/10.3389/fevo.2019.00218
dc.relation.referencesFletcher, J. E., Hubert, M., Wieland, S. J., Gong, Q.-H., & Jiang, M.-S. (1996). Similarities and differences in mechanisms of cardiotoxins, melittin and other myotoxins. Toxicon, 34(11), 1301–1311. https://doi.org/https://doi.org/10.1016/S0041- 0101(96)00105-5
dc.relation.referencesForman, D., & Sierra, M. S. (2016). Cancer in Central and South America: Introduction. Cancer Epidemiology, S3–S10.
dc.relation.referencesFox, J. W. (2013). A brief review of the scientific history of several lesser-known snake venom proteins: L-amino acid oxidases, hyaluronidases and phosphodiesterases. Toxicon, 62, 75–82. https://doi.org/10.1016/j.toxicon.2012.09.009
dc.relation.referencesFox, J. W., & Serrano, S. M. T. (2008). Insights into and speculations about snake venom metalloproteinase (SVMP) synthesis, folding and disulfide bond formation and their contribution to venom complexity. The FEBS Journal, 275(12), 3016–3030. https://doi.org/10.1111/j.1742-4658.2008.06466.x
dc.relation.referencesFrancischetti, I. M. B., Saliou, B., Leduc, M., Carlini, C. R., Hatmi, M., Randon, J., Faili, A., & Cassian, B. (1997). Convulxin, a potent platelet-aggregating protein from crotalus durissus terrificus venom, specifically binds to platelets. Toxicon, 35(8), 1217–1228. https://doi.org/10.1016/S0041-0101(97)00021-4
dc.relation.referencesFry, B. (2005). From genome to “venome”: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Research, 15(3), 403–420.
dc.relation.referencesFujimoto, Z., Tateno, H., & Hirabayashi, J. (2014). Lectin structures: classification based on the 3-D structures. Methods in Molecular Biology (Clifton, N.J.), 1200, 579–606. https://doi.org/10.1007/978-1-4939-1292-6_46
dc.relation.referencesFurtado, M. F. D., Santos, M. C., & Kamiguti, A. S. (2003). Age-related biological activity of South American rattlesnake (Crotalus durissus terrificus) venom. Journal of Venomous Animals and Toxins Including Tropical Diseases, 9(2), 186–201. https://doi.org/10.1590/S1678-91992003000200005
dc.relation.referencesFusco, L., Acosta, O., & Leiva, L. (2010). Comparación de protocolos de inmunización en la produccion de antiveneno crotálico. Universidad Tecnológica Nacional, 2–6.
dc.relation.referencesFusco, L. S., Neto, E. B., Francisco, A. F., Alfonso, J., Soares, A., Pimenta, D. C., & Leiva, L. C. (2020). Fast venomic analysis of Crotalus durissus terrificus from northeastern Argentina. Toxicon: X, 7(March), 100047. https://doi.org/10.1016/j.toxcx.2020.100047
dc.relation.referencesGarrido Cavalcante, W. L., Ponce-Soto, L. A., Marangoni, S., & Gallacci, M. (2015). Neuromuscular effects of venoms and crotoxin-like proteins from Crotalus durissus ruruima and Crotalus durissus cumanensis. Toxicon, 96, 46–49. https://doi.org/10.1016/j.toxicon.2015.01.006
dc.relation.referencesGartner, T. K., & Ogilvie, M. L. (1984). Isolation and characterization of three Ca2+- dependent β-galactoside-specific lectins from snake venoms. Biochemical Journal, 224, 301–307.
dc.relation.referencesGartner, T. K., Stocker, K., & Williams, D. C. (1980). Thrombolectin: a lectin isolated from Bothrops atrox venom. FEBS Letters, 117(1), 13–16. https://doi.org/10.1016/0014- 5793(80)80902-1
dc.relation.referencesGavel, Y., & von Heijne, G. (1990). Sequence differences between glycosylated and non- glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Engineering, 3(5), 433–442. https://doi.org/10.1093/protein/3.5.433
dc.relation.referencesGeyer, A., Fitzpatrick, T. B., Pawelek, P. D., Kitzing, K., Vrielink, A., Ghisla, S., & Macheroux, P. (2001). Structure and characterization of the glycan moiety of L- amino-acid oxidase from the Malayan pit viper Calloselasma rhodostoma. European Journal of Biochemistry, 268(14), 4044–4053. https://doi.org/10.1046/j.1432- 1327.2001.02321.x
dc.relation.referencesGlyTech, I. (2018). Glycans and Cells. https://www.glytech-inc.com/hello_glycan/glycans- and-cells/
dc.relation.referencesGómez-Cardona, J., Gómez-Cabal, C., & Gómez-Cabal, M. L. (2017). Sueros Antiofídicos En Colombia: Análisis De La Producción, Abastecimiento Y Recomendaciones Para El Mejoramiento De La Red De Producción. Biosalud, 16(2), 96–116.
dc.relation.referencesGómez, J. (2021). Informe del Evento: Accidente Ofídico, Colombia, 2021. Report. https://www.ins.gov.co/buscador-eventos/Informesdeevento/ACCIDENTE OFIDICO INFORME 2021.pdf
dc.relation.referencesGómez, J. (2022). Accidente ofídico, período epidemiológico XIII de 2022, Colombia. https://www.ins.gov.co/buscador-eventos/Paginas/Info-Evento.aspx
dc.relation.referencesGonçalves-Machado, L., Pla, D., Sanz, L., Jorge, R. J. B., Leitão-De-Araújo, M., Alves, M. L. M., Alvares, D. J., De Miranda, J., Nowatzki, J., de Morais-Zani, K., Fernandes, W., Tanaka-Azevedo, A. M., Fernández, J., Zingali, R. B., Gutiérrez, J. M., Corrêa- Netto, C., & Calvete, J. (2016). Combined venomics, venom gland transcriptomics, bioactivities, and antivenomics of two Bothrops jararaca populations from geographic isolated regions within the Brazilian Atlantic rainforest. Journal of Proteomics, 135, 73–89. https://doi.org/10.1016/j.jprot.2015.04.029
dc.relation.referencesGuimarães-Gomes, V., Oliveira-Carvalho, A. L., Junqueira-de-Azevedo, I., Dutra, D. L., Pujol-Luz, M., Castro, H. C., Lee Ho, P., & Zingali, R. B. (2004). Cloning, characterization, and structural analysis of a C-type lectin from Bothrops insularis (BiL) venom. Archives of Biochemistry and Biophysics, 432(1), 1–11. https://doi.org/10.1016/j.abb.2004.08.018
dc.relation.referencesGulbins, E., Sassi, N., Grassmè, H., Zoratti, M., & Szabò, I. (2010). Role of Kv1.3 mitochondrial potassium channel in apoptotic signalling in lymphocytes. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1797(6), 1251–1259. https://doi.org/https://doi.org/10.1016/j.bbabio.2010.01.018
dc.relation.referencesGupta, K. C., Sahni, M. K., Rathaur, B. S., Narang, C. K., & Mathur, N. K. (1979). Gel filtration medium derived from guar gum. Journal of Chromatography, 169, 183–190.
dc.relation.referencesGupta, R., & Brunak, S. (2002). Prediction of glycosylation across the human proteome and the correlation to protein function. Pac Symp Biocomput, 310–322. https://services.healthtech.dtu.dk/services/NetNGlyc-1.0/
dc.relation.referencesGutiérrez, J. M., Calvete, J., Habib, A., Harrison, R., Williams, D., & Warrell, D. (2017). Snakebite envenoming. Nature Reviews. Disease Primers, 3(17063), 1–20.
dc.relation.referencesGutiérrez, J. M., Escalante, T., & Rucavado, A. (2009). Experimental pathophysiology of systemic alterations induced by Bothrops asper snake venom. Toxicon, 54, 976– 987.
dc.relation.referencesGutiérrez, J. M., Escalante, T., Rucavado, A., & Herrera, C. (2016). Hemorrhage caused by snake venom metalloproteinases: A journey of discovery and understanding. Toxins, 8(93), 1–19. https://doi.org/10.3390/toxins8040093
dc.relation.referencesGutiérrez, J. M., Escalante, T., Rucavado, A., Herrera, C., & Fox, J. W. (2016). A comprehensive view of the structural and functional alterations of extracellular matrix by snake venom metalloproteinases (SVMPs): Novel perspectives on the pathophysiology of envenoming. Toxins, 8(10). https://doi.org/10.3390/toxins8100304
dc.relation.referencesGutiérrez, J. M., León, G., & Burnouf, T. (2011). Antivenoms for the treatment of snakebite envenomings: The road ahead. Biologicals, 39, 129–142.
dc.relation.referencesGutiérrez, J. M., Lomonte, B., León, G., Alape-Girón, A., Flores-Díaz, M., Sanz, L., Angulo, Y., & Calvete, J. (2009). Snake venomics and antivenomics: Proteomic tools in the design and control of antivenoms for the treatment of snakebite envenoming. Journal of Proteomics, 72, 165–182. https://doi.org/10.1016/j.jprot.2009.01.008
dc.relation.referencesGutiérrez, J. M., Lomonte, B., Sanz, L., Calvete, J., & Pla, D. (2014). Immunological profile of antivenoms: Preclinical analysis of the efficacy of a polyspecific antivenom through antivenomics and neutralization assays. Journal of Proteomics, 105, 340– 350.
dc.relation.referencesGutiérrez, J. M., Rojas, G., & Rica, U. D. C. (2009). El envenenamiento por mordedura de serpiente en Centroamérica. In Facultad de Microbiología. Instituto Clodomiro Picado.
dc.relation.referencesHamako, J., Suzuki, Y., Hayashi, N., Kimura, M., Ozeki, Y., Hashimoto, K., & Matsui, T. (2007). Amino acid sequence and characterization of C-type lectin purified from the snake venom of Crotalus ruber. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 146(3), 299–306.
dc.relation.referencesHammouda, M. B., Riahi-Chebbi, I., Souid, S., Othman, H., Aloui, Z., Srairi-Abid, N., Karoui, H., Gasmi, A., Magnenat, E. M., Wells, T. N. C., Clemetson, K. J., Rodríguez-López, J. N., & Essafi-Benkhadir, K. (2018). Macrovipecetin, a C-type lectin from Macrovipera lebetina venom, inhibits proliferation migration and invasion of SK-MEL-28 human melanoma cells and enhances their sensitivity to cisplatin. Biochimica et Biophysica Acta - General Subjects, 1862(3), 600–614. https://doi.org/10.1016/j.bbagen.2017.11.019
dc.relation.referencesHanley, B. (2020). Meta-analysis of venom toxicity of 167 most lethal ophidian species provides a basis for estimating human lethal doses. Research Square, Under Revi, 1–31.
dc.relation.referencesHayashi, M. A. F., Nascimento, F. D., Kerkis, A., Oliveira, V., Oliveira, E. B., Pereira, A., Rádis-Baptista, G., Nader, H. B., Yamane, T., Kerkis, I., & Tersariol, I. L. S. (2008). Cytotoxic effects of crotamine are mediated through lysosomal membrane permeabilization. Toxicon, 52(3), 508–517. https://doi.org/10.1016/j.toxicon.2008.06.029
dc.relation.referencesHermanson, G. T., Mallia, A. K., & Smith, P. K. (1992). Immobilized affinity ligand techniques. San Diego (Calif.) : Academic press. http://lib.ugent.be/catalog/rug01:000302240
dc.relation.referencesHeussen, C., & Dowdle, E. B. (1980). Electrophoretic analysis of plasminogen activators in polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Analytical Biochemistry, 102(1), 196–202. https://doi.org/10.1016/0003- 2697(80)90338-3
dc.relation.referencesHirohashi, S., Clausen, H., Yamada, T., Shimosato, Y., & Hakomori, S. (1985). Blood group A cross-reacting epitope defined by monoclonal antibodies NCC-LU-35 and - 81 expressed in cancer of blood group O or B individuals: its identification as Tn antigen. Proceedings of the National Academy of Sciences of the United States of America, 82(20), 7039–7043. https://doi.org/10.1073/pnas.82.20.7039
dc.relation.referencesHiu, J. J., & Yap, M. K. K. (2020). Cytotoxicity of snake venom enzymatic toxins: phospholipase A2 and l-amino acid oxidase. Biochemical Society Transactions, 48(2), 719–731. https://doi.org/10.1042/BST20200110
dc.relation.referencesHuang, L., Li, B., Li, W., Guo, H., & Zou, F. (2009). ATP-sensitive potassium channels control glioma cells proliferation by regulating ERK activity. Carcinogenesis, 30(5), 737–744. https://doi.org/10.1093/carcin/bgp034
dc.relation.referencesICP. (2007). Determinación de Actividades Tóxicas de Venenos de Serpientes y Neutralización por Antivenenos. Manual de métodos de laboratorio. Universidad de Costa Rica. http://www.icp.ucr.ac.cr/es/material/manual-de-procedimientos- determinacion-actividades-toxicas-de-venenos-de-serpientes-y-su
dc.relation.referencesImberty, A., Bonnardel, F., & Lisacek, F. (2021). UniLectin, A One-Stop-Shop to Explore and Study Carbohydrate-Binding Proteins. Current Protocols, 1(11). https://doi.org/10.1002/cpz1.305
dc.relation.referencesINC. (2011). Cáncer en cifras. http://www.cancer.gov.co/cancer_en_cifras
dc.relation.referencesINS. (2017). Suero Antiofídico Polivalente INS. Medication Package Insert; Instituto Nacional de Salud. https://www.ins.gov.co/lineas-de- accion/Produccion/SiteAssets/Paginas/suero-antiofidico-polivalente/Inserto Suero Antiofídico Polivalente.pdf
dc.relation.referencesInstituto Bioclon. (n.d.). Antivipmyn Tri.
dc.relation.referencesINVIMA. (n.d.). Consulta Datos de Producto. Retrieved May 8, 2017, from http://farmacovigilancia.invima.gov.co:8082/Consultas/consultas/consreg_encabcum. jsp
dc.relation.referencesIsbister, G. K. (2010). Antivenom efficacy or effectiveness: The Australian experience. Toxicology, 268, 148–154.
dc.relation.referencesIsmail, M; Abd-Elsalam, A. (1998). Pharmacokinetics Of 125 I -Labelled IgG , F(ab’) 2 And Fab Fractions Of Scorpion And Snake Antivenins : Merits And Potential For Therapeutic Use. Toxicon, 36(11), 1523–1528.
dc.relation.referencesJehle, J., Schweizer, P. A., Katus, H. A., & Thomas, D. (2011). Novel roles for hERG K + channels in cell proliferation and apoptosis. Cell Death and Disease, 2(8), e193-8. https://doi.org/10.1038/cddis.2011.77
dc.relation.referencesJenkins, T. P., Fryer, T., Dehli, R. I., Jürgensen, J. A., Fuglsang-Madsen, A., Føns, S., & Laustsen, A. H. (2019). Toxin neutralization using alternative binding proteins. Toxins, 11(1), 1–28. https://doi.org/10.3390/toxins11010053
dc.relation.referencesJohnson, M. T. J., Carpenter, E. J., Tian, Z., Bruskiewich, R., Burris, J. N., Carrigan, C. T., Chase, M. W., Clarke, N. D., Covshoff, S., dePamphilis, C. W., Edger, P. P., Goh, F., Graham, S., Greiner, S., Hibberd, J. M., Jordon-Thaden, I., Kutchan, T. M., Leebens- Mack, J., Melkonian, M., ... Wong, G. K.-S. (2012). Evaluating Methods for Isolating Total RNA and Predicting the Success of Sequencing Phylogenetically Diverse Plant Transcriptomes. PLOS ONE, 7(11), e50226. https://doi.org/10.1371/journal.pone.0050226
dc.relation.referencesJones, J., Krag, S. S., & Betenbaugh, M. J. (2005). Controlling N-linked glycan site occupancy. Biochimica et Biophysica Acta, 1726(2), 121–137. https://doi.org/10.1016/j.bbagen.2005.07.003
dc.relation.referencesJorge, R. J. B., Monteiro, H. S. A., Gonçalves-Machado, L., Guarnieri, M. C., Ximenes, R. M., Borges-Nojosa, D. M., Luna, K. P. de O., Zingali, R. B., Corrêa-Netto, C., Gutiérrez, J. M., Sanz, L., Calvete, J., & Pla, D. (2015). Venomics and antivenomics of Bothrops erythromelas from five geographic populations within the Caatinga ecoregion of northeastern Brazil. Journal of Proteomics, 114, 93–114. https://doi.org/10.1016/j.jprot.2014.11.011
dc.relation.referencesKalil, J., & Fan, H. W. (2017). Production and Utilization of Snake. In P Gopalakrishnakone, L. J. Cruz, & S. Luo (Eds.), Toxins and drug discovery (1st ed., pp. 81–102). Springer.
dc.relation.referencesKang, T. S., Georgieva, D., Genov, N., Murakami, M. T., Sinha, M., Kumar, R. P., Kaur, P., Kumar, S., Dey, S., Sharma, S., Vrielink, A., Betzel, C., Takeda, S., Arni, R. K., Singh, T. P., & Kini, R. M. (2011). Enzymatic toxins from snake venom: Structural characterization and mechanism of catalysis. FEBS Journal, 278, 4544–4576.
dc.relation.referencesKärber, G. (1931). Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Naunyn-Schmiedebergs Archiv Für Experimentelle Pathologie Und Pharmakologie, 162(4), 480–483. https://doi.org/10.1007/BF01863914
dc.relation.referencesKasheverov, I. E., & Tsetlin, V. I. (2017). Snake Venom Components as Basis for Biologically Active Synthetic Peptides. In P Gopalakrishnakone, L. J. Cruz, & S. Luo (Eds.), Toxins and drug discovery (1st ed., pp. 103–128). Springer.
dc.relation.referencesKasturiratne, A., Wickremasinghe, A. R., De Silva, N., Gunawardena, N. K., Pathmeswaran, A., Premaratna, R., Savioli, L., Lalloo, D. G., & De Silva, H. J. (2008). The global burden of snakebite: A literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Medicine, 5(11), 1591–1604. https://doi.org/10.1371/journal.pmed.0050218
dc.relation.referencesKaufmann, D., Tietze, A. A., & Tietze, D. (2019). In silico analysis of the subtype selective blockage of KCNA ion channels through the μ-conotoxins PIIIA, SIIIA, and GIIIa. Marine Drugs, 17(3), 8–13. https://doi.org/10.3390/md17030180
dc.relation.referencesKerkis, I., Hayashi, M. A. F., Prieto Da Silva, A. R. B., Pereira, A., De Sá Júnior, P. L., Zaharenko, A. J., Rádis-Baptista, G., Kerkis, A., & Yamane, T. (2014). State of the art in the studies on crotamine, a cell penetrating peptide from South American rattlesnake. BioMed Research International.
dc.relation.referencesKerkis, I., Silva, F. D. S., Pereira, A., Kerkis, A., & Rádis-Baptista, G. (2010). Biological versatility of crotamine - A cationic peptide from the venom of a South American rattlesnake. Expert Opinion on Investigational Drugs, 19(12), 1515–1525. https://doi.org/10.1517/13543784.2010.534457
dc.relation.referencesKishi, T., Kato, M., Shimizu, T., Kato, K., Matsumoto, K., Yoshida, S., Shiosaka, S., & Hakoshima, T. (1999). Crystal structure of neuropsin, a hippocampal protease involved in kindling epileptogenesis. The Journal of Biological Chemistry, 274(7), 4220–4224. https://doi.org/10.1074/jbc.274.7.4220
dc.relation.referencesKobayashi, M., Sawada, K., & Kimura, T. (2017). Potential of Integrin Inhibitors for Treating Ovarian Cancer: A Literature Review. Cancers, 9(83), 1–10. https://doi.org/10.3390/cancers9070083
dc.relation.referencesKolatkart, A. R., Leung, A. K., Isecke, R., Brossmer, R., Drickamer, K., & Weis, W. I. (1998). Mechanism of N-acetylgalactosamine binding to a C-type animal lectin carbohydrate-recognition domain. Journal of Biological Chemistry, 273(31), 19502– 19508. https://doi.org/10.1074/jbc.273.31.19502
dc.relation.referencesLaemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.
dc.relation.referencesLambeau, G. érard, & Lazdunski, M. (1999). Receptors for a growing family of secreted phospholipases A2. Trends in Pharmacological Sciences, 20, 162–170.
dc.relation.referencesLamiable, A., Thévenet, P., Rey, J., Vavrusa, M., Derreumaux, P., & Tufféry, P. (2016). PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Research, 44(W1), W449-54. https://doi.org/10.1093/nar/gkw329
dc.relation.referencesLang, F., & Stournaras, C. (2014). Ion channels in cancer: Future perspectives and clinical potential. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1638), 1–8. https://doi.org/10.1098/rstb.2013.0108
dc.relation.referencesLangthaler, S., Rienmüller, T., Scheruebel, S., Pelzmann, B., Shrestha, N., Zorn-Pauly, K., Schreibmayer, W., Koff, A., & Baumgartner, C. (2021). A549 in-silico 1.0: A first computational model to simulate cell cycle dependent ion current modulation in the human lung adenocarcinoma. PLoS Computational Biology, 17(6), 1–28. https://doi.org/10.1371/journal.pcbi.1009091
dc.relation.referencesLannoo, N., & Van Damme, E. J. M. (2015). Review/N-glycans: The making of a varied toolbox. Plant Science : An International Journal of Experimental Plant Biology, 239, 67–83. https://doi.org/10.1016/j.plantsci.2015.06.023
dc.relation.referencesLaustsen, A. H., María Gutiérrez, J., Knudsen, C., Johansen, K. H., Bermúdez-Méndez, E., Cerni, F. A., Jürgensen, J. A., Ledsgaard, L., Martos-Esteban, A., Øhlenschlæger, M., Pus, U., Andersen, M. R., Lomonte, B., Engmark, M., & Pucca, M. B. (2018). Pros and cons of different therapeutic antibody formats for recombinant antivenom development. Toxicon, 146. https://doi.org/10.1016/j.toxicon.2018.03.004
dc.relation.referencesLazarovici, P., Marcinkiewicz, C., & Lelkes, P. I. (2019). From snake venom’s disintegrins and C-type lectins to anti-platelet drugs. Toxins, 11(5), 1–15. https://doi.org/10.3390/toxins11050303
dc.relation.referencesLedsgaard, L., Jenkins, T. P., Davidsen, K., Krause, K. E., Martos-Esteban, A., Engmark, M., Andersen, M. R., Lund, O., & Laustsen, A. H. (2018). Antibody cross-reactivity in antivenom research. Toxins, 10(10), 1–19. https://doi.org/10.3390/toxins10100393
dc.relation.referencesLee-Sundlov, M. M., Stowell, S. R., & Hoffmeister, K. M. (2020). Multifaceted role of glycosylation in transfusion medicine, platelets, and red blood cells. Journal of Thrombosis and Haemostasis, 18(7), 1535–1547. https://doi.org/https://doi.org/10.1111/jth.14874
dc.relation.referencesLekshmi, A., Varadarajan, S. N., Lupitha, S. S., Indira, D., Mathew, K. A., Chandrasekharan Nair, A. Prasad T, Sekar H, Kochucherukkan Gopalakrishnan A, Murali, Santhoshkumar, T. R. (2017). A quantitative real-time approach for discriminating apoptosis and necrosis. Cell Death Discovery, 316101.
dc.relation.referencesLeón, G., Vargas, M., Segura, Á., Herrera, M., Villalta, M., Sánchez, A., Solano, G., Gómez, A., Sánchez, M., Estrada, R., & Gutiérrez, J. M. (2018). Current technology for the industrial manufacture of snake antivenoms. Toxicon, 151. https://doi.org/10.1016/j.toxicon.2018.06.084
dc.relation.referencesLewis, R. J., & Garcia, M. L. (2003). Therapeutic potential of venom peptides. Nature Reviews. Drug Discovery, 2(10), 790–802. https://doi.org/10.1038/nrd1197
dc.relation.referencesLi, Z., Jaroszewski, L., Iyer, M., Sedova, M., & Godzik, A. (2020). FATCAT 2.0: towards a better understanding of the structural diversity of proteins. Nucleic Acids Research, 48(W1), W60–W64. https://doi.org/10.1093/nar/gkaa443
dc.relation.referencesLimam, I., Bazaa, A., Srairi-Abid, N., Taboubi, S., Jebali, J., Zouari-Kessentini, R., Kallech-Ziri, O., Mejdoub, H., Hammami, A., El Ayeb, M., Luis, J., & Marrakchi, N. (2010). Leberagin-C, A disintegrin-like/cysteine-rich protein from Macrovipera lebetina transmediterranea venom, inhibits alphavbeta3 integrin-mediated cell adhesion. Matrix Biology, 29, 117–126.
dc.relation.referencesLin, C.-W., Chen, J.-M., Wang, Y.-M., Wu, S.-W., Tsai, I.-H., & Khoo, K.-H. (2011). Terminal disialylated multiantennary complex-type N-glycans carried on acutobin define the glycosylation characteristics of the Deinagkistrodon acutus venom. Glycobiology, 21(4), 530–542. https://doi.org/10.1093/glycob/cwq195
dc.relation.referencesLin, P., Ye, X., & Ng, T. B. (2008). Purification of melibiose-binding lectins from two cultivars of Chinese black soybeans. Acta Biochimica et Biophysica Sinica, 40(12), 1029–1038. https://doi.org/https://doi.org/10.1111/j.1745-7270.2008.00488.x
dc.relation.referencesLiu, H., Sadygov, R. G., & Yates, J. R. 3rd. (2004). A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Analytical Chemistry, 76(14), 4193–4201. https://doi.org/10.1021/ac0498563
dc.relation.referencesLodovicho, M. E., Costa, T. R., Bernardes, C. P., Menaldo, D. L., Zoccal, K. F., Carone, S. E., Rosa, J. C., Pucca, M. B., Cerni, F. A., Arantes, E. C., Tytgat, J., Faccioli, L. H., Pereira-Crott, L. S., & Sampaio, S. V. (2017). Investigating possible biological targets of Bj-CRP, the first cysteine-rich secretory protein (CRISP) isolated from Bothrops jararaca snake venom. Toxicology Letters, 265, 156–169.
dc.relation.referencesLomonte, B., & Calvete, J. (2017). Strategies in “snake venomics” aiming at an integrative view of compositional, functional, and immunological characteristics of venoms. Journal of Venomous Animals and Toxins Including Tropical Diseases, 23(26), 1–12.
dc.relation.referencesLomonte, B., & Rangel, J. (2012). Snake venom Lys49 myotoxins: From phospholipases A 2 to non-enzymatic membrane disruptors. Toxicon, 60(4), 520–530. https://doi.org/10.1016/j.toxicon.2012.02.007
dc.relation.referencesLonngren, J., & Goldstein, I. J. (1976). Cross-linked guaran: a versatile immunosorbent for D-galactopyranosyl binding lectins. FEBS Letters, 68(1), 31–34. https://doi.org/10.1016/0014-5793(76)80397-3
dc.relation.referencesLoureiro, L. R., Carrascal, M. A., Barbas, A., Ramalho, J. S., Novo, C., Delannoy, P., & Videira, P. A. (2015). Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. In Biomolecules (Vol. 5, Issue 3, pp. 1783–1809). https://doi.org/10.3390/biom5031783
dc.relation.referencesLourenço, A., Zorzella Creste, C. F., Curtolo de Barros, L., Delazari dos Santos, L., Pimenta, D. C., Barraviera, B., & Ferreira, R. S. (2013). Individual venom profiling of Crotalus durissus terrificus specimens from a geographically limited region: Crotamine assessment and captivity evaluation on the biological activities. Toxicon, 69, 75–81. https://doi.org/10.1016/j.toxicon.2013.01.006
dc.relation.referencesLucena, S., Castro, R., Lundin, C., Hofstetter, A., Alaniz, A., Suntravat, M., & Anchez, E. S. (2015). Inhibition of pancreatic tumoral cells by snake venom disintegrins. Toxicon, 93, 136–143.
dc.relation.referencesLynch, J. (2012). El contexto de las serpientes de Colombia con un análisis de las amenazas en contra de su conservación. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 36(140), 435–449.
dc.relation.referencesLynch, J., Angarita-Sierra, T., & Ruiz Gomez, F. (2014). Programa Nacional para la Conservación de las Serpientes Presentes en Colombia (U. nacional de Colombia. (Ed.); Corantioqu, Issue January). Ministerio de Ambiente y Desarrollo Sostenible; Universidad Nacional de Colombia, Instituto Nacional de Salud. https://www.ins.gov.co/Comunicaciones/Infografias/PROGRAMA NACIONAL SERPIENTES.pdf
dc.relation.referencesMackessy, S. (2008). Venom Composition in Rattlesnakes: Trends and Biological Significance. In W. K. Hayes, K. R. Beaman, M. D. Cardwell, & S. P. Bush (Eds.), The Biology of Rattlesnakes (pp. 495–510). Loma Linda University Press.
dc.relation.referencesMackessy, S. (2010). Handbook of Venoms and Toxins of Reptiles (S. Mackessy (Ed.)). CRC Press.
dc.relation.referencesMackessy, S. (2011). Thrombin-Like Enzymes in Snake Venoms. In M. Kini, K. Clemetson, F. Markland, M. A. McLane, & M. Takashi (Eds.), Toxins and Hemostasis: From Bench to Bedside (pp. 519–557). Springer. https://doi.org/10.1007/978-90-481-9295-3
dc.relation.referencesMackessy, S. P., Leroy, J., Mociño-Deloya, E., Setser, K., Bryson, R. W., & Saviola, A. J. (2018). Venom ontogeny in the mexican lance-headed rattlesnake (Crotalus polystictus). Toxins, 10(7). https://doi.org/10.3390/toxins10070271
dc.relation.referencesMarinovic, M., Dal Mas, C., Monte, G., Felix, D., Campeiro, J., & Hayashi, M. (2017). Crotamine: Function Diversity and Potential Applications. In P Gopalakrishnakone, H. Inagaki, C. Vogel, A. Mukherjee, & T. Rahmy (Eds.), Snake Venoms. Toxinology (pp. 265–293). Springer.
dc.relation.referencesMarkland, F. S. (1998). Snake venoms and the hemostatic system. Toxicon : Official Journal of the International Society on Toxinology, 36(12), 1749–1800. https://doi.org/10.1016/s0041-0101(98)00126-3
dc.relation.referencesMarques, O., & Sazima, I. (2009). História Natural das Serpentes. In V. Cardoso, J.; de Siqueira, F.; Wen, F.; Sant ́Ana, C.; Haddad (Ed.), Animais Peçonhentos no Brasil (2nd ed., pp. 71–80). Sarvier.
dc.relation.referencesMartin Young, N., Van Faassen, H., Watson, D. C., & Mackenzie, C. R. (2011). Specificity analysis of the C-type lectin from rattlesnake venom, and its selectivity towards Gal- or GalNAc-terminated glycoproteins. Glycoconjugate Journal, 28(6), 427–435. https://doi.org/10.1007/s10719-011-9342-5
dc.relation.referencesMartins, M.; Lamar, W. (2010). Crotaluss durissus. The IUCN Red List of Threatened Species. http://www.iucnredlist.org/details/full/178477/0
dc.relation.referencesMatavel, A. C. S., Ferreira-Alves, D. L., Beirão, P. S. L., & Cruz, J. S. (1998). Tension generation and increase in voltage-activated Na+ current by crotamine. European Journal of Pharmacology, 348(2), 167–173. https://doi.org/https://doi.org/10.1016/S0014-2999(98)00152-6
dc.relation.referencesMedeiros, J. M., Oliveira, I. S., Ferreira, I. G., Alexandre-Silva, G. M., Cerni, F. A., Zottich, U., & B. Pucca, M. (2020). Fatal Rattlesnake Envenomation in Northernmost Brazilian Amazon: A Case Report and Literature Overview. Reports — Medical Cases, Images, and Videos, 3(2), 9. https://doi.org/10.3390/reports3020009
dc.relation.referencesMejía-Sánchez, M. A., Clement, H., Corrales-García, L. L., Olamendi-Portugal, T., Carbajal, A., & Corzo, G. (2022). Crotoxin B: Heterologous Expression, Protein Folding, Immunogenic Properties, and Irregular Presence in Crotalid Venoms. Toxins, 14(382), 1–18.
dc.relation.referencesMelani, R. D., Araujo, G. D. T., Carvalho, P. C., Goto, L., Nogueira, F. C. S., Junqueira, M., & Domont, G. B. (2015). Seeing beyond the tip of the iceberg: A deep analysis of the venome of the Brazilian Rattlesnake, Crotalus durissus terrificus. EuPA Open Proteomics, 8, 144–156. https://doi.org/10.1016/j.euprot.2015.05.006
dc.relation.referencesMelgarejo, R. (2009). Serpentes Peçonhentas do Brasil. In J. Cardoso, F. de Siqueira, F. Wen, C. Sant ́Ana, & V. Haddad (Eds.), Animais Peçonhentos no Brasil (2nd ed., pp. 42–70). Sarvier.
dc.relation.referencesMemar, B., Jamili, S., Shahbazzadeh, D., & Bagheri, P. K. (2016). The first report on coagulation and phospholipase A2 activities of Persian Gulf lionfish, Pterois russelli, an Iranian venomous fish. Toxicon, 113, 25–31.
dc.relation.referencesMendes, T. M., Oliveira, D., Figueiredo, L. F. M., Machado-de-Avila, R. A., Duarte, C. G., Dias-Lopes, C., Guimarães, G., Felicori, L., Minozzo, J. C., & Chávez-Olortegui, C. (2013). Generation and characterization of a recombinant chimeric protein (rCpLi) consisting of B-cell epitopes of a dermonecrotic protein from Loxosceles intermedia spider venom. Vaccine, 31(25), 2749–2755. https://doi.org/10.1016/j.vaccine.2013.03.048
dc.relation.referencesMendonça-Franqueiro, E. D. P., Alves-Paiva, R. D. M., Sartim, M. A., Callejon, D. R., Paiva, H. H., Antonucci, G. A., Rosa, J. C., Cintra, A. C. O., Franco, J. J., Arantes, E., Dias-Baruffi, M., & Vilela Sampaio, S. (2011). Isolation, functional, and partial biochemical characterization of galatrox, an acidic lectin from Bothrops atrox snake venom. Acta Biochimica et Biophysica Sinica, 43(3), 181–192. https://doi.org/10.1093/abbs/gmr003
dc.relation.referencesMontecucco, C., Gutiérrez, J. M., & Lomonte, B. (2008). Cellular pathology induced by snake venom phospholipase A2 myotoxins and neurotoxins: Common aspects of their mechanisms of action. Cellular and Molecular Life Sciences, 65(18), 2897– 2912. https://doi.org/10.1007/s00018-008-8113-3
dc.relation.referencesMora Valverde, D., Lai Jwo, T., & Estrada Umaña, R. (2014). Productividad antiofídica de equinos destinados a la industria inmunobiológica en Costa Rica. Nutrición Animal Tropical, 8(1), 44–54.
dc.relation.referencesMosmann, T. (1983). Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays. Journal OflmmunologicalMethods, 65, 55–63.
dc.relation.referencesMunawar, A., Ali, S. A., Akrem, A., & Betzel, C. (2018). Snake venom peptides: Tools of biodiscovery. Toxins, 10(11), 1–29. https://doi.org/10.3390/toxins10110474
dc.relation.referencesMunawar, A., Zahid, A., Negm, A., Akrem, A., Spencer, P., & Betzel, C. (2016). Isolation and characterization of Bradykinin potentiating peptides from Agkistrodon bilineatus venom. Proteome Science, 14(1), 1–9.
dc.relation.referencesMurakami, M. T., Zela, S. P., Gava, L. M., Michelan-Duarte, S., Cintra, A. C. O., & Arni, R. K. (2003). Crystal structure of the platelet activator convulxin, a disulfide-linked α4β4 cyclic tetramer from the venom of Crotalus durissus terrificus. Biochemical and Biophysical Research Communications, 310(2), 478–482. https://doi.org/10.1016/j.bbrc.2003.09.032
dc.relation.referencesMurphy, M. P. (2009). How mitochondria produce reactive oxygen species. The Biochemical Journal, 417(1), 1–13. https://doi.org/10.1042/BJ20081386
dc.relation.referencesNascimento, F. D., Sancey, L., Pereira, A., Rome, C., Oliveira, V., Oliveira, E. B., Nader, H. B., Yamane, T., Kerkis, I., Tersariol, I. L. S., Coll, J. L., & Hayashi, M. A. F. (2012). The natural cell-penetrating peptide crotamine targets tumor tissue in vivo and triggers a lethal calcium-dependent pathway in cultured cells. Molecular Pharmaceutics, 9(2), 211–221. https://doi.org/10.1021/mp2000605
dc.relation.referencesNeri-Castro, E., Lomonte, B., Gutiérrez, M. del C., Alagón, A., & Gutiérrez, J. (2013). Intraspecies variation in the venom of the rattlesnake Crotalus simus from Mexico: Different expression of crotoxin results in highly variable toxicity in the venoms of three subspecies. Journal of Proteomics, 87, 103–121.
dc.relation.referencesNeri-Castro, E., & Ponce-López, R. (2018). Variación ontogénica en el veneno de Crotalus simus en México. Árido-Ciencia, 3(1), 42–47.
dc.relation.referencesNicastro, G., Franzoni, L., De Chiara, C., Mancin, A. C., Giglio, J. R., & Spisni, A. (2003). Solution structure of crotamine, a Na+ channel affecting toxin from Crotalus durissus terrificus venom. European Journal of Biochemistry, 270(9), 1969–1979. https://doi.org/10.1046/j.1432-1033.2003.03563.x
dc.relation.referencesNing, W., Yuanyuan, L., Lipeng, Z., Xiang, L., & Chunhong, H. (2020). Targeted identification of C-type lectins in snake venom by 2DE and Western blot. Toxicon, 185, 57–63. https://doi.org/https://doi.org/10.1016/j.toxicon.2020.06.010
dc.relation.referencesNunes, E., de Souza, M., de Melo Vaz, A., Santana, G., Soares, F., Breitenbach, L., Guedes, P., da Silva, R., Silva-Lucca, R., Vilela, M., Camargo, M., & dos Santos, M. (2011). Purification of a lectin with antibacterial activity from Bothrops leucurus snake venom. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, Part B 159, 57–63. https://doi.org/1096-4959
dc.relation.referencesNunes, E. S., Souza, M. A. A., Vaz, A. F. M., Silva, T. G., Aguiar, J. S., Batista, A. M., Guerra, M. M. P., Guarnieri, M. C., Coelho, L. C. B. B., & Correia, M. T. S. (2012). Cytotoxic effect and apoptosis induction by Bothrops leucurus venom lectin on tumor cell lines. Toxicon, 59, 667–671. https://doi.org/10.1016/j.toxicon.2012.03.002
dc.relation.referencesNúñez, V., Cid, P., Sanz, L., De La Torre, P., Angulo, Y., Lomonte, B., Gutiérrez, J. M., & Calvete, J. (2009). Snake venomics and antivenomics of Bothrops atrox venoms from Colombia and the Amazon regions of Brazil, Perú and Ecuador suggest the occurrence of geographic variation of venom phenotype by a trend towards paedomorphism. Journal of Proteomics, 73, 57–78. https://doi.org/10.1016/j.jprot.2009.07.013
dc.relation.referencesOgilive, M. L., Dockter, M. E., Wenz, L., & Gartner, T. K. (1986). Isolation and characterization of lactose-binding lectins from the venoms of the snakes Lachesis inuta and Dendroaspis jamesonii. Journal of Biochemistry, 100(6), 1425–1431. https://doi.org/10.1093/oxfordjournals.jbchem.a121848
dc.relation.referencesOguiur, N., Camargo, M. E., da Silva, A. R., & Horton, D. S. (2000). Quantification of crotamine, a small basic myotoxin, in South American rattlesnake (Crotalus durissus terrificus) venom by enzyme-linked immunosorbent assay with parallel-lines analysis. Toxicon : Official Journal of the International Society on Toxinology, 38(3), 443–448. https://doi.org/10.1016/s0041-0101(99)00157-9
dc.relation.referencesOguiura, N., Boni-Mitake, M., & Rádis-Baptista, G. (2005). New view on crotamine, a small basic polypeptide myotoxin from South American rattlesnake venom. Toxicon, 46, 363–370.
dc.relation.referencesOguiura, N., Collares, M. A., Furtado, M. F. D., Ferrarezzi, H., & Suzuki, H. (2009). Intraspecific variation of the crotamine and crotasin genes in Crotalus durissus rattlesnakes. Gene, 446, 35–40. http://dx.doi.org/10.1016/j.gene.2009.05.015
dc.relation.referencesOlaoba, O. T., Karina dos Santos, P., Selistre-de-Araujo, H. S., & Ferreira de Souza, D. H. (2020). Snake Venom Metalloproteinases (SVMPs): A structure-function update. Toxicon: X, 7, 100052. https://doi.org/10.1016/j.toxcx.2020.100052
dc.relation.referencesOrtiz-Prado, E., Yeager, J., Andrade, F., Schiavi-Guzman, C., Abedrabbo-Figueroa, P., Terán, E., Gómez-Barreno, L., Simbaña-Rivera, K., & Izquierdo-Condoy, J. S. (2021). Snake antivenom production in Ecuador: Poor implementation, and an unplanned cessation leads to a call for a renaissance. Toxicon, 202(September), 90– 97. https://doi.org/10.1016/j.toxicon.2021.09.014
dc.relation.referencesOtero-Patiño, R., Silva-Hadad, J., Barona, M., Toro, M., Quintana, J., Díaz, A., Vásquez, I., Rodríguez, V., Delgado, C., Fernández, M., Ayala, S., Conrado, N., Marín, C., Ramírez, C., Arrieta, A., Córdoba, E., Ruiz, T., García, M., Aguirre, A., ... Otero- patiño, R; Silva-haad, J; Barona, M. et al. (2007). Accidente bothrópico en Colombia: estudio multicéntrico de la eficacia, y seguridad de Antivipmyn-Tri® un antiveneno polivalente producido en México. Iatreia, 20(3), 244–262.
dc.relation.referencesOtero Patiño, R., León, G., Gutiérrez, J. M., Rojas, G., Toro, M. F., Barona, J., Rodríguez, V., Díaz, A., Núñez, V., Quintana, J. C., Ayala, S., Mosquera, D., Conrado, L. L., Fernández, D., Arroyo, Y., Paniagua, C. A., López, M., Ospina, C. E., Alzate, C., ... Theakston, R. D. G. (2006). Efficacy and safety of two whole IgG polyvalent antivenoms, refined by caprylic acid fractionation with or without β-propiolactone, in the treatment of Bothrops asper bites in Colombia. Transactions of the Royal Society of Tropical Medicine and Hygiene, 100(12), 1173–1182. https://doi.org/10.1016/j.trstmh.2006.01.006
dc.relation.referencesOzeki, Y., Matsui, T., Hamako, J., Suzuki, M., Fujimura, Y., Yoshida, E., Nishida, S., & Titani, K. (1994). C-type galactoside-binding lectin from Bothrops jararaca venom: comparison of its structure and function with those of botrocetin. Archives of Biochemistry and Biophysics, 308(1), 306–310. https://doi.org/10.1006/abbi.1994.1043
dc.relation.referencesPalomino, M., Lazo, F., Delgadillo, J., Severino, R., & Yarlequé, A. (2012). Purificación de una lectina tipo C del veneno de la serpiente peruana Lachesis muta. Sociedad Química de Perú, 78(3), 161–169.
dc.relation.referencesPaoletti, A. C., Parmely, T. J., Tomomori-Sato, C., Sato, S., Zhu, D., Conaway, R. C., Conaway, J. W., Florens, L., & Washburn, M. P. (2006). Quantitative proteomic analysis of distinct mammalian Mediator complexes using normalized spectral abundance factors. Proceedings of the National Academy of Sciences of the United States of America, 103(50), 18928–18933. https://doi.org/10.1073/pnas.060637910
dc.relation.referencesPapadopoulos, J. S., & Agarwala, R. (2007). COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics, 23(9), 1073–1079. https://doi.org/10.1093/bioinformatics/btm076
dc.relation.referencesPardo, L. A. (2004). Voltage-gated potassium channels in cell proliferation. Physiology (Bethesda, Md.), 19, 285–292. https://doi.org/10.1152/physiol.00011.2004
dc.relation.referencesPassero, L. F. D., Tomokane, T. Y., Corbett, C. E. P., Laurenti, M. D., & Toyama, M. H. (2007). Comparative studies of the anti-leishmanial activity of three Crotalus durissus ssp. venoms. Parasitology Research, 101(5), 1365–1371. https://doi.org/10.1007/s00436-007-0653-1
dc.relation.referencesPatiño, A. C., Pereañez, J., Gutiérrez, J. M., & Rucavado, A. (2013). Biochemical and biological characterization of two serine proteinases from Colombian Crotalus durissus cumanensis snake venom. Toxicon, 63, 32–43.
dc.relation.referencesPees, B., Yang, W., Zárate-Potes, A., Schulenburg, H., & Dierking, K. (2016). High Innate Immune Specificity through Diversified C-Type Lectin-Like Domain Proteins in Invertebrates. Journal of Innate Immunity, 8(2), 129–142. https://doi.org/10.1159/000441475
dc.relation.referencesPeigneur, S., Orts, D. J. B., Prieto Da Silva, A. R., Oguiura, N., Boni-Mitake, M., De Oliveira, E. B., Zaharenko, A. J., De Freitas, J. C., & Tytgat, J. (2012). Crotamine pharmacology revisited: Novel insights based on the inhibition of K v channels. Molecular Pharmacology, 82(1), 90–96. https://doi.org/10.1124/mol.112.078188
dc.relation.referencesPereañez, J., Gómez, I. D., & Patiño, A. (2012). Relationship between the structure and the enzymatic activity of crotoxin complex and its phospholipase A 2 subunit: An in silico approach. Journal of Molecular Graphics and Modelling, 35, 36–42. https://doi.org/10.1016/j.jmgm.2012.01.004
dc.relation.referencesPereañez, J., Núñez, V., Huancahuire-Vega, S., Marangoni, S., & Ponce-Soto, L. A. (2009). Biochemical and biological characterization of a PLA2 from crotoxin complex of Crotalus durissus cumanensis. Toxicon, 53(5), 534–542. https://doi.org/10.1016/j.toxicon.2009.01.021
dc.relation.referencesPereira-Bittencourt, M., Carvalho, D. D., Gagliardi, A. R., & Collins, D. C. (1999). The effect of a lectin from the venom of the snake, Bothrops jararacussu, on tumor cell proliferation. Anticancer Research, 19(5 B), 4023–4025.
dc.relation.referencesPereira, A., Kerkis, A., Hayashi, M. A., Pereira, A. S., Silva, F. S., Oliveira, E. B., Prieto Da Silva, A. R., Yamane, T., Rádis-Baptista, G., & Kerkis, I. (2011). Crotamine toxicity and efficacy in mouse models of melanoma. Expert Opinion on Investigational Drugs, 20(9), 1189–1200. https://doi.org/10.1517/13543784.2011.602064
dc.relation.referencesPérez-Peinado, C., Defaus, S., & Andreu, D. (2020). Hitchhiking with nature: Snake venom peptides to fight cancer and superbugs. Toxins, 12(4), 1–23. https://doi.org/10.3390/toxins12040255
dc.relation.referencesPérez-Verdaguer, M., Capera, J., Serrano-Novillo, C., Estadella, I., Sastre, D., & Felipe, A. (2016). The voltage-gated potassium channel Kv1.3 is a promising multitherapeutic target against human pathologies. Expert Opinion on Therapeutic Targets, 20(5), 577–591. https://doi.org/10.1517/14728222.2016.11
dc.relation.referencesPérez, G. (1984). Isolation and characterization of a lectin from the seeds of Erythrina edulis. Phytochemistry, 23(6), 1229–1232. https://doi.org/https://doi.org/10.1016/S0031-9422(00)80431-8
dc.relation.referencesPéterfi, O., Boda, F., Szabó, Z., Ferencz, E., & Bába, L. (2019). Hypotensive Snake Venom Components-A Mini-Review. Molecules (Basel, Switzerland), 24(15), 1–16. https://doi.org/10.3390/molecules24152778
dc.relation.referencesPfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT- PCR. Nucleic Acids Research, 29(9), e45. https://doi.org/10.1093/nar/29.9.e45
dc.relation.referencesPhillips, S., & Kuperwasser, C. (2014). SLUG: Critical regulator of epithelial cell identity in breast development and cancer. Cell Adhesion & Migration, 8(6), 578–587. https://doi.org/10.4161/19336918.2014.972740
dc.relation.referencesPirela, R., López-Jonsthon, J., & Hernández, J. (2006). Caracterización Toxinológica del Veneno Total de la Serpiente de Cascabel Crotalus durissus cumanensis (VIPERIDAE), presente en la localidad de Porshoure, Guajira Venezolana. Rev. Cient. (Maracaibo), 16(3), 232–238.
dc.relation.referencesPla, D., María Gutiérrez, J., & Calvete, J. (2012). Second generation snake antivenomics: Comparing immunoaffinity and immunodepletion protocols. Toxicon, 60, 688–699.
dc.relation.referencesPla, D., Rodríguez, Y., & Calvete, J. (2017). Third generation antivenomics: Pushing the limits of the in vitro preclinical assessment of antivenoms. Toxins, 9(5).
dc.relation.referencesPrado-Franceschi, J., & Brazil, O. V. (1981). Convulxin, a new toxin from the venom of the South American rattlesnake Crotalus durissus terrificus. Toxicon : Official Journal of the International Society on Toxinology, 19(6), 875–887. https://doi.org/10.1016/0041-0101(81)90085-4
dc.relation.referencesProbiol. (n.d.). Suero antiofídico polivalente liofilizado. In Inserto. Retrieved May 11, 2017, from http://www.probiol.com/images/pdf/probiolsueropolivalente.pdf%0D
dc.relation.referencesQuintana-Castillo, J. C., Ávila-Gómez, I. C., Ceballos-Ruiz, J. F., Vargas-Muñoz, L. J., & Estrada-Gómez, S. (2017). Efecto citotóxico de fosfolipasas A2 del veneno de Crotalus durissus cumanensis de Colombia. Revista Investig Salud Univ Boyacá, 4(1), 16–37.
dc.relation.referencesQuintana-Castillo, J. C., Vargas, L. J., Segura, C., Estrada-Gómez, S., Bueno-Sánchez, J. C., & Alarcón, J. C. (2018). Characterization of the Venom of C. d. cumanesis of Colombia: Proteomic Analysis and Antivenomic Study. Toxins, 10(2), 2–12.
dc.relation.referencesQuintana, J. C., Chacón, A. M., Vargas, L., Segura, C., Gutiérrez, J. M., & Alarcón, J. C. (2012). Antiplasmodial effect of the venom of Crotalus durissus cumanensis, crotoxin complex and Crotoxin B. Acta Tropica, 124, 126–132.
dc.relation.referencesRádis-Baptista, G. (2005). Integrins, Cancer and Snake Toxins (Mini-Review). Journal of Venomous Animals and Toxins Including Tropical Diseases, 11(3), 217–241. https://doi.org/10.1590/S1678-91992005000300002
dc.relation.referencesRadis-Baptista, G., & Kerkis, I. (2012). Crotamine, a Small Basic Polypeptide Myotoxin from Rattlesnake Venom with Cell-Penetrating Properties. Current Pharmaceutical Design, 17(38), 4351–4361. https://doi.org/10.2174/138161211798999429
dc.relation.referencesRádis, G., Moreno, B., Nogueira, L., Martins, A., Tomaya, D., Tomaya, M., Azevedo, W., Cavada, B., & Yamane, T. (2005). Crotacetin, a novel snake venom c-type lectin, is homolog of convulxin. J. Venom. Anim. Toxins Incl. Trop. Dis., 11(4), 557–578.
dc.relation.referencesRex, C. J., & Mackessy, S. P. (2019). Venom composition of adult Western Diamondback Rattlesnakes (Crotalus atrox) maintained under controlled diet and environmental conditions shows only minor changes. Toxicon : Official Journal of the International Society on Toxinology, 164, 51–60. https://doi.org/10.1016/j.toxicon.2019.03.027
dc.relation.referencesReyes-Velasco, J., Meik, J. M., Smith, E. N., & Castoe, T. A. (2013). Phylogenetic relationships of the enigmatic longtailed rattlesnakes (Crotalus ericsmithi, C. lannomi, and C. stejnegeri). Molecular Phylogenetics and Evolution, 69 3, 524–534.
dc.relation.referencesRincon-Filho, S., Naves-de-Souza, D. L., Lopes-de-Souza, L., Silvano-de-Oliveira, J., Bonilla Ferreyra, C., Costal-Oliveira, F., Guerra-Duarte, C., & Chávez-Olórtegui, C. (2020). Micrurus surinamensis Peruvian snake venom: Cytotoxic activity and purification of a C-type lectin protein (Ms-CTL) highly toxic to cardiomyoblast-derived H9c2 cells. International Journal of Biological Macromolecules, 164, 1908–1915. https://doi.org/10.1016/j.ijbiomac.2020.08.033
dc.relation.referencesRivas-Mercado, E., & Garza-Ocañas, L. (2017). Disintegrins obtained from snake venom and their pharmacological potential. Medicina Universitaria, 19(74), 32–37.
dc.relation.referencesRizzi, C. T., Carvalho-de-Souza, J. L., Schiavon, E., Cassola, A. C., Wanke, E., & Troncone, L. R. P. (2007). Crotamine inhibits preferentially fast-twitching muscles but is inactive on sodium channels. Toxicon, 50(4), 553–562. https://doi.org/10.1016/j.toxicon.2007.04.026
dc.relation.referencesRodrigues, R., Izidoro, L., & Sampaio, S. (2009). Snake venom phospholipases A2: a new class of antitumor agents. Protein Peptide Lett., 5, 894.898.
dc.relation.referencesRodríguez-Vargas, A. (2017). Accidente ofídico. In Varios (Ed.), Guía para el Manejo de Emergencias Toxicológicas (2nd ed., pp. 499–507). Ministerio de Salud y Protección Social. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/GT/guias- manejo-emergencias-toxicologicas-outpout.pdf
dc.relation.referencesRojas, G., Jiménez, J., & Gutiérrez, J. (1994). Caprylic acid fractionation of hyperimmune horse plasma: Description of a simple procedure for antivenom production. Toxicon, 32(3), 351–363. https://doi.org/10.1016/0041-0101(94)90087-6
dc.relation.referencesRoldán-Padrón, O., Castro-Guillén, J., García-Arredondo, J., Cruz-Pérez, M., Díaz-Peña, L., Saldaña, C., Blanco-Labra, A., & García-Gasca, T. (2019). Snake Venom Hemotoxic Enzymes : Biochemical Comparison between Crotalus Species from Central Mexico. Molecules, 24(1489), 1–16.
dc.relation.referencesRoth, J., Zuber, C., Park, S., Jang, I., Lee, Y., Kysela, K. G., Le Fourn, V., Santimaria, R., Guhl, B., & Cho, J. W. (2010). Protein N-glycosylation, protein folding, and protein quality control. Molecules and Cells, 30(6), 497–506. https://doi.org/10.1007/s10059- 010-0159-z
dc.relation.referencesSalazar, A., Aguilar, I., Guerrero, B., Giron, M., Lucena, S., Sanchez, E., & Rodriguez-Acosta, A. (2008). Intraspecies differences in hemostatic venom activities of the South American rattlesnakes, Crotalus durissus cumanensis, as revealed by a range of protease inhibitors. Blood Coagul Fibrinolysis, 19, 525–530.
dc.relation.referencesSamah, S., Fatah, C., Jean-Marc, B., Safia, K. T., & Fatima, L. D. (2017). Purification and characterization of Cc-Lec, C-type lactose-binding lectin: A platelet aggregation and blood-clotting inhibitor from Cerastes cerastes venom. International Journal of Biological Macromolecules, 102, 336–350. https://doi.org/10.1016/j.ijbiomac.2017.04.018
dc.relation.referencesSamy, R. P., Stiles, B. G., Franco, O. L., Sethi, G., & Lim, L. H. K. (2017). Animal venoms as antimicrobial agents. Biochemical Pharmacology, 134, 127–138. https://doi.org/10.1016/j.bcp.2017.03.005
dc.relation.referencesSanjuán, J., Vargas, J., Ortiz, F., Gonzalez-Herrera, L., Watanabe-Minto, B., & Granja- Salcedo, Y. (2015). Determinación de la DL50 del veneno de serpientes adultas de la especie Bothrops atrox en ratones albinos. Momentos de Ciencia, 9(2), 147–152.
dc.relation.referencesSarray, S., Delamarre, E., Marvaldi, J., Ayeb, M. El, Marrakchi, N., & Luis, J. (2007). Lebectin and lebecetin, two C-type lectins from snake venom, inhibit α5β1 and αv- containing integrins. Matrix Biology, 26(4), 306–313. https://doi.org/10.1016/j.matbio.2007.01.001
dc.relation.referencesSarray, S., Luis, J., Ayeb, M. El, & Marrakchi, N. (2013). Snake Venom Peptides: Promising Molecules with Anti-Tumor Effects. In B. Hernandez & C. Hsieh (Eds.), Bioactive Food Peptides in Health and Disease (pp. 219–238). IntechOpen.
dc.relation.referencesSartim, M. A., & Sampaio, S. V. (2015). Snake venom galactoside-binding lectins: a structural and functional overview. Journal of Venomous Animals and Toxins Including Tropical Diseases, 21(35), 1–11. https://doi.org/10.1186/s40409-015-0038- 3
dc.relation.referencesSayers, E. W., Bolton, E. E., Brister, J. R., Canese, K., Chan, J., Comeau, D. C., Connor, R., Funk, K., Kelly, C., Kim, S., Madej, T., Marchler-Bauer, A., Lanczycki, C., Lathrop, S., Lu, Z., Thibaud-Nissen, F., Murphy, T., Phan, L., Skripchenko, Y., ... Sherry, S. T. (2022). Database resources of the national center for biotechnology information. Nucleic Acids Research, 50(D1), D20–D26. https://doi.org/10.1093/nar/gkab1112
dc.relation.referencesSchägger, H., & von Jagow, G. (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry, 166, 368–379.
dc.relation.referencesSchendel, V., Rash, L. D., Jenner, R. A., & Undheim, E. A. B. (2019). The diversity of venom: The importance of behavior and venom system morphology in understanding its ecology and evolution. Toxins, 11(11), 1–22. https://doi.org/10.3390/toxins11110666
dc.relation.referencesSeguin, L., Desgrosellier, J., Weis, S., & Cheresh, D. (2015). Integrins and cancer: regulators of cancer stemness, metastasis, and drug resistance. Trends in Cell Biology, 25(4), 234–240. https://doi.org/10.1016/j.tcb.2014.12.006
dc.relation.referencesSerrano-Albarrás, A., Estadella, I., Cirera-Rocosa, S., Navarro-Pérez, M., & Felipe, A. (2018). Kv1.3: a multifunctional channel with many pathological implications. In Expert opinion on therapeutic targets (Vol. 22, Issue 2, pp. 101–105). https://doi.org/10.1080/14728222.2017.1420170
dc.relation.referencesSerrano, S. M. T. (2013). The long road of research on snake venom serine proteinases. Toxicon, 62, 19–26. https://doi.org/10.1016/j.toxicon.2012.09.003
dc.relation.referencesSilva, L. M. de A. (2005). Galactomanana de Caesalpinea pulcherrima: biossíntese, estrutura e aplicação em matrizes cromatográficas. Universidade Federal do Ceará.
dc.relation.referencesSilveira, P. V. P., & Nishioka, S. de A. (1992). South american rattlesnake bite in a brazilian teaching hospital. clinical and epidemiological study of 87 cases, with analysis of factors predictive of renal failure. Transactions of the Royal Society of Tropical Medicine and Hygiene, 86(5), 562–564.
dc.relation.referencesSimsiriwong, P., Eursakun, S., & Ratanabanangkoon, K. (2012). A study on the use of caprylic acid and ammonium sulfate in combination for the fractionation of equine antivenom F(ab’)2. Biologicals, 40(5), 338–344. https://doi.org/10.1016/j.biologicals.2012.05.002
dc.relation.referencesSmith, P., Krohn, R., Hermanson, G., Mallia, A., Gartner, F., Provenzano, M., Fujimoto, E., Goeke, N., Olson, B., & Klenk, D. (1985). Measurement of protein using bicinchoninic acid. Analytical Biochemistry, 150, 76–85.
dc.relation.referencesSnake Fangs Amazing Facts. (2014). Snake Facts. https://snake- facts.weebly.com/snake-fangs.html
dc.relation.referencesSoares, S., & Oliveira, L. (2009). Venom-Sweet-Venom: N-Linked Glycosylation in Snake Venom Toxins. Protein & Peptide Letters, 16(8), 913–919. https://doi.org/10.2174/092986609788923293
dc.relation.referencesSommers, C., Byers, S., Thompson, E., Torri, J., & Gelmann, E. (1994). Differentiation state and invasiveness of human breast cancer cell lines. Breast Cancer Research and Treatment, 31(2–3), 325–335.
dc.relation.referencesSousa, L. F., Nicolau, C. A., Peixoto, P. S., Bernardoni, J. L., Oliveira, S. S., Portes- Junior, J. A., Mourão, R. H. V, Lima-dos-Santos, I., Sano-Martins, I. S., Chalkidis, H. M., Valente, R. H., & Moura-da-Silva, A. M. (2013). Comparison of phylogeny, venom composition and neutralization by antivenom in diverse species of bothrops complex. PLoS Neglected Tropical Diseases, 7(9), e2442. https://doi.org/10.1371/journal.pntd.0002442
dc.relation.referencesSpearman, C. (1908). The method of ‘right and wrong cases’ (‘constant stimuli’) without Gauss’s formulae. British Journal of Psychology, 1904-1920, 2(3), 227–242. https://doi.org/https://doi.org/10.1111/j.2044-8295.1908.tb00176.x
dc.relation.referencesStefanelli, V. L., & Barker, T. H. (2015). The evolution of fibrin-specific targeting strategies. Journal of Materials Chemistry B, 3(7), 1177–1186. https://doi.org/10.1039/c4tb01769b
dc.relation.referencesStocker, K., Fischer, H., & Meier, J. (1982). Thrombin-like snake venom proteinases. Toxicon : Official Journal of the International Society on Toxinology, 20(1), 265–273. https://doi.org/10.1016/0041-0101(82)90225-2
dc.relation.referencesSung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
dc.relation.referencesSwenson, S. D., Stack, S., & Markland Jr, F. (2021). Thrombin-Like Serine Proteinases in Reptile Venoms. In S. Mackessy (Ed.), Handbook of Venoms and Toxins of Reptiles (2nd ed., pp. 370–381). CRC Press.
dc.relation.referencesSzabó, I., Bock, J., Grassmé, H., Soddemann, M., Wilker, B., Lang, F., Zoratti, M., & Gulbins, E. (2008). Mitochondrial potassium channel Kv1.3 mediates Bax-induced apoptosis in lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 105(39), 14861–14866. https://doi.org/10.1073/pnas.0804236105
dc.relation.referencesTasima, L. J., Serino-Silva, C., Hatakeyama, D. M., Nishiduka, E. S., Tashima, A. K., Sant’Anna, S. S., Grego, K. F., De Morais-Zani, K., & Tanaka-Azevedo, A. M. (2020). Crotamine in Crotalus durissus: Distribution according to subspecies and geographic origin, in captivity or nature. Journal of Venomous Animals and Toxins Including Tropical Diseases, 26(April 2020), 1–14. https://doi.org/10.1590/1678-9199-jvatitd-2019-0053
dc.relation.referencesTeisseyre, A., Palko-Labuz, A., Sroda-Pomianek, K., & Michalak, K. (2019). Voltage- Gated Potassium Channel Kv1.3 as a Target in Therapy of Cancer. Frontiers in Oncology, 9(September), 1–16. https://doi.org/10.3389/fonc.2019.00933
dc.relation.referencesTheakston, R. D. G., Warrell, D. A., & Griffiths, E. (2003). Report of a WHO workshop on the standardization and control of antivenoms. Toxicon, 41, 541–557.
dc.relation.referencesToscano, M. A., Ilarregui, J. M., Bianco, G. A., Campagna, L., Croci, D. O., Salatino, M., & Rabinovich, G. A. (2007). Dissecting the pathophysiologic role of endogenous lectins: Glycan-binding proteins with cytokine-like activity? Cytokine & Growth Factor Reviews, 18(1), 57–71. https://doi.org/https://doi.org/10.1016/j.cytogfr.2007.01.006
dc.relation.referencesToyama, M. H., Carneiro, E. M., Marangoni, S., Barbosa, R. L., Corso, G., & Boschero, A. C. (2000). Biochemical characterization of two crotamine isoforms isolated by a single step RP-HPLC from Crotalus durissus terrificus (South American rattlesnake) venom and their action on insulin secretion by pancreatic islets. Biochimica et Biophysica Acta - General Subjects, 1474(1), 56–60. https://doi.org/10.1016/S0304- 4165(99)00211-1
dc.relation.referencesTsaneva, M., & Van Damme, E. J. M. (2020). 130 years of Plant Lectin Research. Glycoconjugate Journal, 37(5), 533–551. https://doi.org/10.1007/s10719-020-09942- y
dc.relation.referencesTurner, K. L., & Sontheimer, H. (2014). Cl- and K+ channels and their role in primary brain tumour biology. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1638), 20130095. https://doi.org/10.1098/rstb.2013.0095
dc.relation.referencesUetz, P., Freed, P., Aguilar, R., Reyes, F., & Hošek, J. (2023). The Reptile Database. Micrurus.
dc.relation.referencesUetz, P., & Hallermann, J. (2016). Crotalus durissus LINNAEUS, 1758. The Reptile Database. http://reptile-database.reptarium.cz
dc.relation.referencesUfartes, R., Schneider, T., Mortensen, L. S., de Juan Romero, C., Hentrich, K., Knoetgen, H., Beilinson, V., Moebius, W., Tarabykin, V., Alves, F., Pardo, L. A., Rawlins, J. N. P., & Stuehmer, W. (2013). Behavioural and functional characterization of Kv10.1 (Eag1) knockout mice. Human Molecular Genetics, 22(11), 2247–2262. https://doi.org/10.1093/hmg/ddt076
dc.relation.referencesUllah, A., & Masood, R. (2020). The Sequence and Three-Dimensional Structure Characterization of Snake Venom Phospholipases B. Frontiers in Molecular Biosciences, 7, 175. https://doi.org/10.3389/fmolb.2020.00175
dc.relation.referencesUNDP. (2013). Country Profile: Human Development Indicators. United Nations Development Programme (UNDP). http://hdr.undp.org/en/data/profiles/
dc.relation.referencesUrieles, K. (2020). Informe del Evento: Accidente Ofídico, Colombia, 2020. Report. https://www.ins.gov.co/buscador-eventos/Informesdeevento/ACCIDENTE OFÍDICO_2020.pdf
dc.relation.referencesUrrego, D., Tomczak, A. P., Zahed, F., Stühmer, W., & Pardo, L. A. (2014). Potassium channels in cell cycle and cell proliferation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 369(1638), 20130094. https://doi.org/10.1098/rstb.2013.0094
dc.relation.referencesUrs, N., Yariswamy, M., Joshi, V., Nataraju, A., Gowda, T., & Vishwanath, B. (2014). Implications of phytochemicals in snakebite management: Present status and future prospective. Toxin Reviews, 33(3), 60–83. https://doi.org/10.3109/15569543.2013.854255
dc.relation.referencesValenta, J. (2010a). Envenoming and Snakebite Treatment in Specific Snake Group. In J. Valenta (Ed.), Zoological basis (pp. 152–157). Nova Science Publishers.
dc.relation.referencesValenta, J. (2010b). Zoological basis. In Venomous snakes - Envenoming, therapy (2nd ed.). Nova Science.
dc.relation.referencesvan Zundert, G. C. P., Rodrigues, J. P. G. L. M., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E., Melquiond, A. S. J., van Dijk, M., de Vries, S. J., & Bonvin, A. M. J. J. (2016). The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes. Journal of Molecular Biology, 428(4), 720–725. https://doi.org/https://doi.org/10.1016/j.jmb.2015.09.014
dc.relation.referencesVargaftig, B. B., Joseph, D., Wal, F., Marlas, G., Chignard, M., & Chevance, L. G. (1983). Convulxin-induced activation of intact and of thrombin-degranulated rabbit platelets: specific crossed desensitisation with collagen. European Journal of Pharmacology, 92(1–2), 57–68. https://doi.org/10.1016/0014-2999(83)90108-5
dc.relation.referencesVargas, L. J., Quintana, J. C., Pereañez, J., Núñez, V., Sanz, L., & Calvete, J. (2013). Cloning and characterization of an antibacterial l-amino acid oxidase from Crotalus durissus cumanensis venom. Toxicon, 64, 1–11.
dc.relation.referencesVetter, R. S., & Schmidt, J. O. (2006). Semantics of toxinology. Toxicon, 48(1), 1–3.
dc.relation.referencesViala, V. L., Hildebrand, D., Fucase, T. M., Sciani, J. M., Prezotto-Neto, J. P., Riedner, M., Sanches, L., Nishimura, P. J., Oguiura, N., Pimenta, D. C., Schlüter, H., Betzel, C., Arni, R. K., & Spencer, P. J. (2015). Proteomic analysis of the rare Uracoan rattlesnake Crotalus vegrandis venom: Evidence of a broad arsenal of toxins. Toxicon, 107, 234–251. https://doi.org/10.1016/j.toxicon.2015.09.023
dc.relation.referencesVivas-Ruiz, D. E., Gonzalez-Kozlova, E. E., Delgadillo, J., Palermo, P. M., Sandoval, G. A., Lazo, F., Rodríguez, E., Chávez-Olórtegui, C., Yarlequé, A., & Sanchez, E. F. (2019). Biochemical and molecular characterization of the hyaluronidase from Bothrops atrox Peruvian snake venom. Biochimie, 162, 33–45. https://doi.org/https://doi.org/10.1016/j.biochi.2019.03.022
dc.relation.referencesWaghmare, A. B., Salvi, N. C., Deopurkar, R. L., Shenoy, P. A., & Sonpetkar, J. M. (2014). Evaluation of health status of horses immunized with snake venom and montanide adjuvants, IMS 3012 (nanoparticle), ISA 206 and ISA 35 (emulsion based) during polyvalent snake antivenom production: Hematological and biochemical assessment. Toxicon, 82, 83–92. https://doi.org/10.1016/j.toxicon.2014.02.012
dc.relation.referencesWalker, J. R., Nagar, B., Young, N. M., Hirama, T., & Rini, J. M. (2004). X-ray Crystal Structure of a Galactose-Specific C-Type Lectin Possessing a Novel Decameric Quaternary Structure. Biochemistry, 43(13), 3783–3792.
dc.relation.referencesWalteros, D., Paredes, A., & León, L. (2017). Accidente ofídico. In Protocolo de vigilancia en salud pública. Instituto Nacional de Salud. https://www.ins.gov.co/buscador- eventos/Lineamientos/PRO Accidente ofidico_.pdf
dc.relation.referencesWang, X. W., Zhao, X. F., & Wang, J. X. (2014). C-type lectin binds to β-integrin to promote hemocytic phagocytosis in an invertebrate. Journal of Biological Chemistry, 289(4), 2405–2414.
dc.relation.referencesWarrell, D. A. (2010). Snake bite. Lancet (London, England), 375(9708), 77–88. https://doi.org/10.1016/S0140-6736(09)61754-2
dc.relation.referencesWaterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
dc.relation.referencesWHO. (1981). Progress in the characterization of venoms and standardization of antivenoms. WHO Offset Pubication.
dc.relation.referencesWHO. (2010). WHO Guidelines for the Production, Control and Regulation of Snake Antivenom Immunoglobulins. In WHO (Ed.), World Health Organization (Vol. 204, Issue 1). World Health Organization Press. https://doi.org/10.1051/jbio/2009043
dc.relation.referencesWHO. (2017). Annex 5. Guidelines for the production, control and regulation of snake antivenom immunoglobulins Replacement of Annex 2 of WHO Technical Report Series, No. 964. WHO Technical Report Series, 197–388.
dc.relation.referencesWorld Health Organization. (2023). Cáncer. https://www.who.int/es/news-room/fact- sheets/detail/cancer
dc.relation.referencesWormald, M. R., & Dwek, R. A. (1999). Glycoproteins: glycan presentation and protein- fold stability. Structure (London, England : 1993), 7(7), R155-60. https://doi.org/10.1016/s0969-2126(99)80095-1
dc.relation.referencesWu, A. M. (2003). Carbohydrate structural units in glycoproteins and polysaccharides as important ligands for Gal and GalNAc reactive lectins. Journal of Biomedical Science, 10(6 Pt 2), 676–688. https://doi.org/10.1159/000073954
dc.relation.referencesWu, W., Guan, X., Kuang, P., Jiang, S., Yang, J., Sui, N., Chen, A., Kuang, P., & Zhang, X. (2001). Effect of batroxobin on expression of neural cell adhesion molecule in temporal infarction rats and spatial learning and memory disorder. Journal of Traditional Chinese Medicine = Chung i Tsa Chih Ying Wen Pan, 21(4), 294–298.
dc.relation.referencesWu, W., Kuang, P., & Li, Z. (2001). Effect of batroxobin on neuronal apoptosis during focal cerebral ischemia and reperfusion in rats. Journal of Traditional Chinese Medicine = Chung i Tsa Chih Ying Wen Pan, 21(2), 136–140.
dc.relation.referencesXia, X., You, M., Rao, X.-J., & Yu, X.-Q. (2018). Insect C-type lectins in innate immunity. Developmental and Comparative Immunology, 83, 70–79. https://doi.org/10.1016/j.dci.2017.11.020
dc.relation.referencesYang, K. B., Zhao, S. G., Liu, Y. H., Hu, E. X., & Liu, B. X. (2009). Tetraethylammonium inhibits glioma cells via increasing production of intracellular reactive oxygen species. Chemotherapy, 55(5), 372–380. https://doi.org/10.1159/000235730
dc.relation.referencesYe, Y., & Godzik, A. (2003). Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinformatics, 19(suppl_2), ii246–ii255. https://doi.org/10.1093/bioinformatics/btg1086
dc.relation.referencesYin, L.-T., Fu, Y.-J., Xu, Q.-L., Yang, J., Liu, Z.-L., Liang, A.-H., Fan, X.-J., & Xu, C.-G. (2007). Potential biochemical therapy of glioma cancer. Biochemical and Biophysical Research Communications, 362(2), 225–229. https://doi.org/10.1016/j.bbrc.2007.07.167
dc.relation.referencesYonamine, C M, Prieto-da-Silva, A. R. B., Magalhães, G. S., Rádis-Baptista, G., Morganti, L., Ambiel, F. C., Chura-Chambi, R. M., Yamane, T., & Camillo, M. A. P. (2009). Cloning of serine protease cDNAs from Crotalus durissus terrificus venom gland and expression of a functional Gyroxin homologue in COS-7 cells. Toxicon : Official Journal of the International Society on Toxinology, 54(2), 110–120. https://doi.org/10.1016/j.toxicon.2009.03.022
dc.relation.referencesYonamine, Camila M, Kondo, M. Y., Nering, M. B., Gouvêa, I. E., Okamoto, D., Andrade, D., Alberto da Silva, J. A., Prieto da Silva, Á. R., Yamane, T., Juliano, M. A., Juliano, L., Lapa, A. J., Hayashi, M. A., & Teresa Lima-Landman, M. R. (2014). Enzyme specificity and effects of gyroxin, a serine protease from the venom of the South American rattlesnake Crotalus durissus terrificus, on protease-activated receptors. Toxicon, 79, 64–71.
dc.relation.referencesYoshida-Kanashiro, E., Navarrete, L. F., & Rodríguez-Acosta, A. (2003). On the unusual hemorrhagic and necrotic activities caused by the rattlesnake (Crotalus durissus cumanensis) in a Venezuelan patient. Revista Cubana de Medicina Tropical, 55(1), 38–40.
dc.relation.referencesYount, N. Y., Kupferwasser, D., Spisni, A., Dutz, S. M., Ramjan, Z. H., Sharma, S., Waring, A. J., & Yeaman, M. R. (2009). Selective reciprocity in antimicrobial activity versus cytotoxicity of hBD-2 and crotamine. Proceedings of the National Academy of Sciences, 106(35), 14972–14977. https://doi.org/10.1073/pnas.0904465106
dc.relation.referencesZakraoui, O., Marcinkiewicz, C., Aloui, Z., Othman, H., Grépin, R., Haoues, M., Essafi, M., Srairi-Abid, N., Gasmi, A., Karoui, H., Pagès, G., & Essafi-Benkhadir, K. (2017). Lebein, a snake venom disintegrin, suppresses human colon cancer cells proliferation and tumor-induced angiogenesis through cell cycle arrest, apoptosis induction and inhibition of VEGF expression. Molecular Carcinogenesis, 56, 18–35.
dc.relation.referencesZanetta, J. P. (1998). Structure and functions of lectins in the central and peripheral nervous system. Acta Anatomica, 161(1–4), 180–195. https://doi.org/10.1159/000046457
dc.relation.referencesZaqueo, K. D., Kayano, A. M., Domingos, T. F. S., Moura, L. A., Fuly, A. L., da Silva, S. L., Acosta, G., Oliveira, E., Albericio, F., Zanchi, F. B., Zuliani, J. P., Calderon, L. A., Stábeli, R. G., & Soares, A. M. (2016). BbrzSP-32, the first serine protease isolated from Bothrops brazili venom: Purification and characterization. Comparative Biochemistry and Physiology -Part A : Molecular and Integrative Physiology, 195, 15–25. https://doi.org/10.1016/j.cbpa.2016.01.021
dc.relation.referencesZelensky, A. N., & Gready, J. E. (2005). The C-type lectin-like domain superfamily. The FEBS Journal, 272(24), 6179–6217. https://doi.org/https://doi.org/10.1111/j.1742- 4658.2005.05031.x
dc.relation.referencesZeng, R., Xu, Q., Shao, X. X., Wang, K. Y., & Xia, Q. C. (1999). Characterization and analysis of a novel glycoprotein from snake venom using liquid chromatography- electrospray mass spectrometry and Edman degradation. European Journal of Biochemistry, 266(2), 352–358. https://doi.org/10.1046/j.1432-1327.1999.00859.x
dc.relation.referencesZha, H. G., Lee, W. H., & Zhang, Y. (2001). Cloning of cDNAs encoding C-type lectins from Elapidae snakes Bungarus fasciatus and Bungarus multicinctus. Toxicon : Official Journal of the International Society on Toxinology, 39(12), 1887–1892. https://doi.org/10.1016/s0041-0101(01)00172-6
dc.relation.referencesZhang, K., & Chen, J. F. (2012). The regulation of integrin function by divalent cations. Cell Adhesion and Migration, 61, 20–29.
dc.relation.referencesZhang, S., Sherwood, R. W., Yang, Y., Fish, T., Chen, W., McCardle, J. A., Jones, R. M., Yusibov, V., May, E. R., Rose, J. K. C., & Thannhauser, T. W. (2012). Comparative characterization of the glycosylation profiles of an influenza hemagglutinin produced in plant and insect hosts. Proteomics, 12(8), 1269–1288. https://doi.org/10.1002/pmic.201100474
dc.relation.referencesZhang, Y. (2015). Why do we study animal toxins? Dong Wu Xue Yan Jiu = Zoological Research, 36(4), 183–222. https://doi.org/10.13918/j.issn.2095-8137.2015.4.183
dc.relation.referencesZhou, X., Zheng, W., Li, Y., Pearce, R., Zhang, C., Bell, E. W., Zhang, G., & Zhang, Y. (2022). I-TASSER-MTD: a deep-learning-based platform for multi-domain protein structure and function prediction. Nature Protocols, 17(10), 2326–2353. https://doi.org/10.1038/s41596-022-00728-0
dc.relation.referencesZuccoli, G. S., Martins-de-Souza, D., Guest, P. C., Rehen, S. K., & Nascimento, J. M. (2017). Combining Patient-Reprogrammed Neural Cells and Proteomics as a Model to Study Psychiatric Disorders. Advances in Experimental Medicine and Biology, 974, 279–287. https://doi.org/10.1007/978-3-319-52479-5_26
dc.relation.referencesZuliani, J. P., Paloschi, M. V., Pontes, A. S., Boeno, C. N., Lopes, J. A., Setubal, S. S., Zanchi, F. B., & Soares, A. M. (2021). Reptile Venom L-Amino Acid Oxidases – Structure and Function. In S. Mackessy (Ed.), Handbook of Venoms and Toxins of Reptiles (Vol. 2, pp. 413–430). CRC Press. https://doi.org/10.1201/9780429054204- 31
dc.relation.referencesZybailov, B., Mosley, A. L., Sardiu, M. E., Coleman, M. K., Florens, L., & Washburn, M. P. (2006). Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. Journal of Proteome Research, 5(9), 2339–2347. https://doi.org/10.1021/pr060161n
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembSerpientes venenosas
dc.subject.lembSnake venom
dc.subject.lembVenenos
dc.subject.lembPoisons
dc.subject.proposalCrotalus durissus cumanensis
dc.subject.proposalVeneno
dc.subject.proposalLectinas tipo C
dc.subject.proposalCrotamina
dc.subject.proposalCitotoxicidad
dc.subject.proposalVenom
dc.subject.proposalC-type lectins
dc.subject.proposalCrotamine
dc.subject.proposalCytotoxicity
dc.title.translatedBiochemical, functional and biological characterization of the Colombian Crotalus durissus cumanensis venom
dc.title.translatedCaractérisation biochimique, fonctionnelle et biologique du venin colombien de Crotalus durissus cumanensis
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dc.contributor.orcidRodríguez-Vargas Ariadna [000000016636987X]
dc.contributor.cvlacRODRIGUEZ VARGAS, ARIADNA LORENA [0001378971]
dc.contributor.researchgateRodriguez Vargas Ariadna Lorena [Ariadna-Rodriguez-Vargas]
dc.contributor.googlescholarRodriguez Vargas, Ariadna [m3BS1-EAAAAJ&hl=es]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito