Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorJaime Correa, Jairo Aureliano
dc.contributor.authorTarazona Manrique, Luis Edgar
dc.date.accessioned2024-04-08T19:03:14Z
dc.date.available2024-04-08T19:03:14Z
dc.date.issued2024-03-13
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85879
dc.descriptionilustraciones, diagramas
dc.description.abstractEl complejo respiratorio porcino (PCR) es una entidad multifactorial que afecta negativamente a los cerdos en todas las etapas productivas, su variado comportamiento requiere un estudio particular en cada país y región geográfica. Este trabajo tuvo como objetivo determinar la dinámica de algunos virus respiratorios relacionados con la PCR en dos fincas del trópico alto colombiano, una positiva para PRRSV y la otra negativa. Se realizó un estudio longitudinal entre marzo y septiembre de 2022. Se hicieron tres muestreos bimensuales por granja donde se colectaron muestras de fluidos orales, piso de maternidad, glándulas mamarias, comederos, objetos de enriquecimiento ambiental y suero de cerdos ubicados en las etapas de predestete, preceba, finalización. Se hizo detección de virus asociados con el CRP (PPRSV, SIV-A, PCV2, PCV3, PPV2 y PPIV-1) por técnicas de PCR y RT-PCT junto con qPCR. Se encontró que los virus circulan en las dos granjas en todas las etapas productivas de forma de mono y copresencias, siendo las de tipo doble y triple las más frecuentes y se asociaron con la presencia de PRRSV. Se evaluaron y asociaron variables climáticas con la dinámica viral encontrándose que estas se correlacionaron con la presencia de virus como PCV3 y PPV2, este último incrementó la mortalidad y retrasó el crecimiento de los cerdos. Los análisis de secuenciación de PPV2 muestran que pertenece al clado 1. Este es un estudio pionero para el país que contribuye a entender cómo se comportan los virus asociados al CRP en condiciones propias de Colombia como lo es en el trópico alto (entre 1500 y 2000 msnm), ese comportamiento se complementa estableciendo las copresencias y coinfecciones virales más importantes abriendo toda una línea de investigación sobre la temática del efecto de simultaneidad infecciosa en las granjas de producción de cerdo en Colombia. (Texto tomado de la fuente).
dc.description.abstractThe porcine respiratory complex (PRC) is a multifactorial entity that negatively affects pigs in all productive stages; its varied behavior requires a particular study in each country and geographical region. This work aimed to determine the dynamics of some respiratory viruses related to PRC in two farms in the Colombian high tropics, one positive for PRRSV and the other negative. A longitudinal study was carried out between March and September 2022. Three bimonthly samplings were carried out per farm, collecting samples of oral fluids, farrowing floor, mammary glands, feeders, environmental enrichment objects, and serum from pigs in the pre-weaning, pre-fattening, and fattening stages. PCR and RT-PCT techniques and qPCR detected viruses associated with PRC (PPRSV, SIV-A, PCV2, PCV3, PPV2, and PPIV-1). It was found that the viruses circulating in the two farms in all the productive stages in a mono and co-presence form, being the double and triple types the most frequent and were associated with the presence of PRRSV. Climatic variables were evaluated and associated with viral dynamics, finding that these correlated with viruses such as PCV3 and PPV2. The latter increased mortality and retarded the growth of pigs. Sequencing analyses of PPV2 show that it belongs to clade 1. This pioneering study for the country contributes to understanding how CRP-associated viruses behave in Colombian conditions, such as in the high tropics (between 1,500 and 2,000 masl). This behavior is complemented by establishing viral co-presences and coinfections. Most important, opening a whole line of research on the effect of infectious simultaneity in pig production farms in Colombia.
dc.description.sponsorshipLa universidad financió el proyecto a través de convocatorias internas de apoyo a tesis de maestría
dc.format.extentxiv, 160 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc590 - Animales::599 - Mamíferos
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animal
dc.titleDinámica de algunos virus respiratorios en dos granjas porcinas tecnificadas en el trópico alto colombiano
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Medicina Veterinaria y de Zootecnia - Maestría en Salud y Producción Animal
dc.contributor.researchgroupCentro de investigación en infectología e inmunología veterinaria - CI3V
dc.coverage.countryColombia
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/1000050
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Salud Animal o Magíster en Producción Animal
dc.description.methodsSe realizó un estudio de tipo longitudinal, estratificado y comparativo en dos granjas tecnificadas ubicadas en el trópico alto colombiano durante el período comprendido entre marzo y septiembre del 2022. El estudio se realizó en el departamento de Cundinamarca, las dos granjas están ubicadas en municipios distintos, pero a altitudes similares, así: i) granja 1 (G1): ubicada a una altitud de 1350 msnm; y, ii) granja 2 (G2): ubicada a 1600 msnm, es decir, las dos están en la altura conocida como trópico alto colombiano (entre 1000 y 2000 msnm). La distancia entre las granjas y el laboratorio de virología y biología molecular de la Facultad de Medicina Veterinaria y de Zootecnia de la Universidad Nacional de Colombia no superaba los 60 kilómetros; y entre ellas, la distancia era de 91.5 kilómetros. Las granjas fueron seleccionadas por conveniencia (teniendo en cuenta el deseo manifiesto por los propietarios y veterinarios de participar en el estudio). Las dos granjas manejaban un sistema productivo de ciclo completo con sistema de flujo continuo (G1) y en bandas (G2) y contaban con un inventario total de 150 madres cada una; el fin productivo de las dos granjas es la cría, levante y finalización de cerdos destinados al faenado para consumo humano. El factor diferencial entre granjas fue que G1 tiene un registro histórico de la ausencia de PRRSV por diagnostico serológico (ELISA) mientras que la G2 tiene un registro histórico de presencia de PRRSV también por pruebas serológicas. Es importante señalar que en Colombia no se vacuna contra PRRSV Tomando en cuenta el sistema productivo de ciclo completo la población a evaluar fue dividida en cuatro diferentes etapas, así: (i) cerdos en pre-destete (PD: menos de 21 días de vida), (ii) pre-ceba (PC: 7 - 10 semanas de edad), (iii) ceba (CC: 12 - 15 semanas de edad) y (iv) finalización (CF: 18 - 22 semanas de edad); lo anterior basados en estudios previos del grupo de investigación (Mendoza, 2015) y lo recomendado por (Vilalta et al., 2018; 2019). Se realizó un muestreo longitudinal estratificado con una periodicidad bimensual por seis meses, es decir tres muestreos por granja. En G1, el primer muestreo fue el 14/03/2022, el segundo muestreo ocurrió el 08/06/2022 y se finalizó el 23/08/2022. Por su parte, el muestreo en G2 fue: inició el 22/04/2022, segundo muestreo el 29/06/2022 y el tercer muestreo en 07/09/2022. Dentro de los periodos climáticos de Colombia, los dos primeros muestreos para cada granja ocurrieron durante el primer período de lluvias que tiene el país (marzo-junio); mientras que el tercer muestreo se hizo durante el denominado período seco (ausencia de lluvias, agosto - septiembre). Se determinó un mínimo de tiempo entre cada muestreo entre granjas de 15 días con el fin de prevenir la contaminación de patógenos de una a la otra, así mismo, los materiales fueron preparados para cada muestreo y ningún sobrante de material utilizado en una granja fue llevado a la otra. Es necesario aclarar que no se evaluaron los mismos cerdos en cada muestreo en cada granja, sino que se tomaron muestras de animales que se encontraban en la etapa de desarrollo planteada para el muestro Los virus que se evaluaron en cada granja fueron: virus del síndrome respiratorio y reproductivo porcino (PRRSV), circovirus porcino tipo 2 (PCV2), circovirus porcino tipo 3 (PCV3), el virus de la influenza porcina (SIV) tipo A, Parvovirus porcino 2 (PPV2) y Parainfluenza porcina tipo 1 (PPIV-1). PCR A PUNTO FINAL: esta técnica se empleó para la detección molecular de SIV-A y PPV2 utilizando la enzima Taq Polimerasa Recombinante de Invitrogen® utilizando el siguiente protocolo: denaturación inicial a 94 °C durante 1 min, seguido por 38 ciclos cada uno con una denaturación a 94 °C durante 5 min, alineación a 57 °C durante 30 segundos (seg) y, extensión a 72 °C durante 1 min. La obtención de los fragmentos genómicos para secuenciación de los virus de las muestras positivas se realizó utilizando el siguiente protocolo: denaturación inicial a 98°C durante 1 min, seguido por 35 ciclos, cada uno con una denaturación a 98°C durante 15 seg, alineación a 57°C durante 30 seg y, extensión a 72°C durante 40 seg, utilizando la enzima Q5 High-Fidelity DNA polymerase. Esto se realizó en el equipo Bio-Rad C-1000 Touch. Luego de la PCR, los amplicones fueron visualizados en un gel de agarosa al 1.5%. qPCR: esta técnica se empleó para la detección molecular y la cuantificación de cargas de PRRSV, PCV2, PCV3, SIV-A y PPIV-1. Cada uno de estos agentes fue detectado utilizando primers y sondas específicas utilizadas y validadas en el laboratorio. El protocolo utilizado fue el siguiente: denaturación inicial a 95 °C durante 10 min, seguida de 42 ciclos con una denaturación a 95 °C por 15 seg, alineación a 60°C por 45 seg, extensión (detección de fluorescencia) a 72°C por 2 segundos a 530- 560 nm, y un ciclo final de 40°C por 30 seg. Empleando primers para secuenciación, se intentó la secuenciación parcial de genomas virales: PRRSV (ORF-5); PCV2 (Cap), PCV3 (Cap), SIV-A (H1-H3-H5-N1-N2), PPV2 (VP2). Con esto se realizó genotipificación de los virus encontrados. Esta secuenciación se realizó empleando el método de Sanger en el Servicio de Secuenciación y Análisis Molecular – SsiGMoL de la Universidad Nacional de Colombia. Las secuencias obtenidas fueron curadas empleando el programa Bioedit® y se realizó filogenia empleando MEGA7® comparando las secuencias obtenidas con las reportadas en las bases de datos (GenBank) utilizando el método estadístico “Maximun Likelihood”, con el método de filogenia de “Bootstrap” con 1000 réplicas, el método de inferencia Tamura-3 y el análisis “Gamma Distributed With Invariant Sites (G+I)”. La modificación final del árbol se realizó utilizando el programa FigTree versión 1.4.4. Con los resultados obtenidos se determinó el porcentaje de positividad de cada virus en cada granja, como también el porcentaje de positividad de cada una de las diferentes copresencias virales posibles. Aquí es importante aclarar que el termino rutinario empleado para la presencia simultánea de patógenos en un individuo es “coinfección”. En el presente estudio, la mayoría de las muestras fueron de tipo ambiental (fluidos orales, pisos de parideras, glándula mamaria, enriquecimiento ambiental y comederos), excepto los sueros. Consideramos que el termino coinfección no es el apropiado ya que al encontrar los virus en el ambiente no es indicativo de que los cerdos estén infectados. Así, decidimos emplear el término “copresencia” a lo largo del texto excepto cuando se hable particularmente de sueros donde se empleará el termino coinfección. Se establecieron diferencias entre los grupos evaluados tanto dentro de granja como entre granjas mediante estadística descriptiva. Igualmente, se analizó con estadística descriptiva el comportamiento de cada virus y copresencias a través del tiempo (evolución en el tiempo). Los análisis de asociación entre las variables climáticas y presencia de virus como también con las variables productivas se analizaron mediante correlación múltiple utilizando el método de Pearson con un nivel de significancia del 95%. Los análisis de resultados fueron asistidos por el analista estadígrafo del grupo de investigación y las gráficas fueron realizadas utilizando el programa Excel® para Windows 2010 y RStudio. El proyecto contó con el aval del Comité de Bioética de la Facultad de Medicina Veterinaria y de Zootecnia de la Universidad Nacional de Colombia, Sede Bogotá (Acta No. CB-FMVZ-UN-009-2022). La ejecución de este proyecto está sustentada según lo expuesto en la resolución 8430 de 1993 “Por la cual se establecen las normas científicas, técnicas y administrativas para la investigación en salud”. La ley 84 de 1989 “Por la cual se adopta el estatuto nacional de protección de los animales y se crean unas contravenciones y se regula lo referente a su procedimiento y competencia”, ley 576 del 2000 “Por la cual se expide el Código de Ética para el ejercicio profesional de la medicina veterinaria, la medicina veterinaria y zootecnia y la zootecnia”, y la ley 1774 de 2016 “por medio de la cual se modifican el código civil, la ley 84 de 1989”. Por último, el Código Penal, artículo 1 “Los animales como seres sintientes no son cosas, recibirán especial protección contra el sufrimiento y el dolor, en especial, el causado directa o indirectamente por los humanos, por lo cual en la presente ley se tipifican como punibles algunas conductas relacionadas con el maltrato a los animales, y se establece un procedimiento sancionatorio de carácter policivo y judicial”.
dc.description.researchareaVirología veterinaria
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Medicina Veterinaria y de Zootecnia
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.indexedAgrosavia
dc.relation.indexedAgrovoc
dc.relation.referencesAlmario-Leiva, G., Suarez-Mesa, R., Uribe-García, F., & Rondón-Barragán, I. (2020). Detection and characterization of porcine circovirus type 2 (PCV2) circulating in pigs of the departments of Tolima and Huila, Colombia. Revista de Investigaciones Veterinarias Del Peru, 31(1). https://doi.org/10.15381/rivep.v31i1.17553
dc.relation.referencesAlmeida, M. N., Zimmerman, J. J., Wang, C., & Linhares, D. C. L. (2018). Assessment of abattoir based monitoring of PRRSV using oral fluids. Preventive Veterinary Medicine, 158, 137–145. https://doi.org/10.1016/j.prevetmed.2018.08.002
dc.relation.referencesAlomar, J., Saporiti, V., Pérez, M., Gonçalvez, D., Sibila, M., & Segalés, J. (2021). Multisystemic lymphoplasmacytic inflammation associated with PCV-3 in wasting pigs. Transboundary and Emerging Diseases, 68(6), 2969–2974. https://doi.org/10.1111/tbed.14260
dc.relation.referencesAssao, V. S., Santos, M. R., Pereira, C. E. R., Vannucci, F., & Silva-Júnior, A. (2021). Porcine circovirus 3 in North and South America: Epidemiology and genetic diversity. Transboundary and Emerging Diseases, 68(6), 2949–2956. https://doi.org/10.1111/tbed.14238
dc.relation.referencesBaudon, E., Peyre, M., Peiris, M., & Cowling, B. J. (2017). Epidemiological features of influenza circulation in swine populations: A systematic review and meta-analysis. In PLoS ONE (Vol. 12, Issue 6). Public Library of Science. https://doi.org/10.1371/journal.pone.0179044
dc.relation.referencesBjustrom-Kraft, J., Christopher-Hennings, J., Daly, R., Main, R., Torrison, J., Thurn, M., & Zimmerman DVM, J. (2018). The use of oral fluid diagnostics in swine medicine. Journal of Swine Health and Production, 26(5), 262–269. http://www.aasv.org/shap.html.
dc.relation.referencesBrockmeier, S. L., Halbur, P. G., & Thacker, E. L. (2002). PORCINE RESPIRATORY DISEASE COMPLEX. In Polymicrobial diseases
dc.relation.referencesCanelli, E., Borghetti, P., Ferrari, L., De Angelis, E., Ferrarini, G., Catella, A., Ogno, G., & Martelli, P. (2016). Immune response to PCV2 vaccination in PRRSV viraemic piglets. Veterinary Record, 178(8), 193. https://doi.org/10.1136/vr.103637
dc.relation.referencesCastro, N. (2015). Análisis filogenético de la región ORF5 del Virus del Síndrome Respiratorio y Reproductivo Porcino (PRRSV) provenientes de granjas porcícolas Colombianas [Instituto de Biotecnología-IBUN]. Universidad Nacional de Colombia.
dc.relation.referencesCecere, T. E., Meng, X. J., Pelzer, K., Todd, S. M., Beach, N. M., Ni, Y. Y., & LeRoith, T. (2012). Co-infection of porcine dendritic cells with porcine circovirus type 2a (PCV2a) and genotype II porcine reproductive and respiratory syndrome virus (PRRSV) induces CD4+CD25+FoxP3+ T cells in vitro. Veterinary Microbiology, 160(1–2), 233–239. https://doi.org/10.1016/j.vetmic.2012.04.040
dc.relation.referencesCrisci, E., Fraile, L., & Montoya, M. (2019). Cellular innate immunity against PRRSV and swine influenza viruses. In Veterinary Sciences (Vol. 6, Issue 1). MDPI Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/VETSCI6010026
dc.relation.referencesCruz, M., Mogollón, J., Rincón, M., Ruiz, S., & Lora, A. (2006). PREVALENCIA SEROLÓGICA DEL SÍNDROME REPRODUCTIVO Y RESPIRATORIO PORCINO (PRRS) EN CERDOS DE EXPLOTACIONES EXTENSIVAS DE COLOMBIA. Revista de La Facultad de Medicina Veterinaria y de Zootecnia, 53(1), 33–41. https://revistas.unal.edu.co/index.php/remevez/article/view/17799
dc.relation.referencesCságola, A., Zádori, Z., Mészáros, I., & Tuboly, T. (2016). Detection of Porcine Parvovirus 2 (Ungulate Tetraparvovirus 3) Specific Antibodies and Examination of the Serological Profile of an Infected Swine Herd. PLoS ONE, 11(3). https://doi.org/10.1371/journal.pone.0151036
dc.relation.referencesDiaz, A., Marthaler, D., Culhane, M., Sreevatsan, S., Alkhamis, M., Torremorell, M., Schultz-Cherry, S., & Jude, S. (2017). Complete Genome Sequencing of Influenza A Viruses within Swine Farrow-to-Wean Farms Reveals the Emergence, Persistence, and Subsidence of Diverse Viral Genotypes. 91, 745–762. https://doi.org/10.1128/JVI
dc.relation.referencesDuinhof, T. F., van Schaik, G., van Esch, E. J. B., & Wellenberg, G. J. (2011). Detection of PRRSV circulation in herds without clinical signs of PRRS: Comparison of five age groups to assess the preferred age group and sample size. Veterinary Microbiology, 150(1–2), 180–184. https://doi.org/10.1016/J.VETMIC.2011.01.001
dc.relation.referencesEspinoza, A. C., & Velásquez, M. R. (2021). Porcine reproductive and respiratory syndrome: A review of the etiological agent and its influence on the current behaviour of the disease. Revista de Investigaciones Veterinarias Del Peru, 32(1). https://doi.org/10.15381/RIVEP.V32I1.19645
dc.relation.referencesFigueras-Gourgues, S., Fraile, L., Segalés, J., Hernández-Caravaca, I., López-Úbeda, R., García-Vázquez, F. A., Gomez-Duran, O., & Grosse-Liesner, B. (2019). Effect of Porcine circovirus 2 (PCV-2) maternally derived antibodies on performance and PCV-2 viremia in vaccinated piglets under field conditions. Porcine Health Management, 5(1). https://doi.org/10.1186/s40813-019-0128-7
dc.relation.referencesFlórez R, J., Vera A, V., Lora M, Á., & Ramírez-Nieto, G. (2018). Evaluación molecular de la presencia del virus de influenza A en cerdos en plantas de beneficio en Colombia. Revista MVZ Córdoba, 23(S), 7013–7024. https://doi.org/10.21897/rmvz.1424
dc.relation.referencesFranzo, G., & Segalés, J. (2020). Porcine circovirus 2 genotypes, immunity and vaccines: Multiple genotypes but one single serotype. In Pathogens (Vol. 9, Issue 12, pp. 1–12). MDPI AG. https://doi.org/10.3390/pathogens9121049
dc.relation.referencesGainor, K., Fortuna, Y. C., Alakkaparambil, A. S., González, W., Malik, Y. S., & Ghosh, S. (2023). Detection and Complete Genomic Analysis of Porcine circovirus 3 (PCV3) in Diarrheic Pigs from the Dominican Republic: First Report on PCV3 from the Caribbean Region. Pathogens, 12(2). https://doi.org/10.3390/pathogens12020250
dc.relation.referencesGale, C., Velazquez, E., & Pattison, E. (2020). The impact of swine influenza and how to control it on farm. Livestock, 25(2), 105–110. https://doi.org/10.12968/live.2020.25.2.105
dc.relation.referencesGarrido-Mantilla, J., Culhane, M. R., & Torremorell, M. (2020). Transmission of influenza A virus and porcine reproductive and respiratory syndrome virus using a novel nurse sow model: A proof of concept. Veterinary Research, 51(1). https://doi.org/10.1186/s13567-020-00765-1
dc.relation.referencesGrau-Roma, L., Hjulsager, C. K., Sibila, M., Kristensen, C. S., López-Soria, S., Enøe, C., Casal, J., Bøtner, A., Nofrarías, M., Bille-Hansen, V., Fraile, L., Baekbo, P., Segalés, J., & Larsen, L. E. (2009). Infection, excretion and seroconversion dynamics of porcine circovirus type 2 (PCV2) in pigs from post-weaning multisystemic wasting syndrome (PMWS) affected farms in Spain and Denmark. Veterinary Microbiology, 135(3–4), 272–282. https://doi.org/10.1016/j.vetmic.2008.10.007
dc.relation.referencesGray, G., McCarthy, T., Capuano, A., Setterquist, S., Olsen, C., Alavanja, M., & Lynch, C. (2007). Swine workers and swine influenza virus infections. Emerging Infectious Diseases, 13(12), 1871–1878.
dc.relation.referencesGuo, K., Xu, L., Wu, M., Hou, Y., Jiang, Y., Lv, J., Xu, P., Fan, Z., Zhang, R., Xing, F., & Zhang, Y. (2019). A host factor GPNMB restricts porcine circovirus type 2 (PCV2) replication and interacts with PCV2 ORF5 protein. Frontiers in Microbiology, 10(JAN). https://doi.org/10.3389/fmicb.2018.03295
dc.relation.referencesGuo, Z., Ruan, H., Qiao, S., Deng, R., & Zhang, G. (2020). Co-infection status of porcine circoviruses (PCV2 and PCV3) and porcine epidemic diarrhea virus (PEDV) in pigs with watery diarrhea in Henan province, central China: Co-infection of PCV2, PCV3 and PEDV. Microbial Pathogenesis, 142. https://doi.org/10.1016/j.micpath.2020.104047
dc.relation.referencesKarlsson, E. A., Ciuoderis, K., Freiden, P. J., Seufzer, B., Jones, J. C., Johnson, J., Parra, R., Gongora, A., Cardenas, D., Barajas, D., Osorio, J. E., & Schultz-Cherry, S. (2013). Prevalence and characterization of influenza viruses in diverse species in Los Llanos, Colombia. Emerging Microbes and Infections, 2. https://doi.org/10.1038/emi.2013.20
dc.relation.referencesKedkovid, R., Woonwong, Y., Arunorat, J., Sirisereewan, C., Sangpratum, N., Lumyai, M., Kesdangsakonwut, S., Teankum, K., Jittimanee, S., & Thanawongnuwech, R. (2018). Porcine circovirus type 3 (PCV3) infection in grower pigs from a Thai farm suffering from porcine respiratory disease complex (PRDC). Veterinary Microbiology, 215, 71–76. https://doi.org/10.1016/j.vetmic.2018.01.004
dc.relation.referencesKim, J., Ha, Y., & Chae, C. (2006). Potentiation of Porcine Circovirus 2-induced Postweaning Multisystemic Wasting Syndrome by Porcine Parvovirus Is Associated with Excessive Production of Tumor Necrosis Factor-a. Veterinary Pathology, 43, 718–725.
dc.relation.referencesKim, S. C., Nazki, S., Kwon, S., Juhng, J. H., Mun, K. H., Jeon, D. Y., Jeong, C. G., Khatun, A., Kang, S. J., & Kim, W. Il. (2018). The prevalence and genetic characteristics of porcine circovirus type 2 and 3 in Korea. BMC Veterinary Research, 14(1). https://doi.org/10.1186/s12917-018-1614-x
dc.relation.referencesKim, S. C., Kim, J. H., Kim, J. Y., Park, G. S., Jeong, C. G., & Kim, W. Il. (2022). Prevalence of porcine parvovirus 1 through 7 (PPV1-PPV7) and co-factor association with PCV2 and PRRSV in Korea. BMC Veterinary Research, 18(1). https://doi.org/10.1186/s12917-022-03236-1
dc.relation.referencesKlaumann, F., Correa-Fiz, F., Sibila, M., Núñez, J. I., & Segalés, J. (2019). Infection dynamics of porcine circovirus type 3 in longitudinally sampled pigs from four Spanish farms. Veterinary Record, 184(20), 619. https://doi.org/10.1136/vr.105219
dc.relation.referencesKumar, N., Sharma, S., Barua, S., Tripathi, B. N., & Rouse, B. T. (2018). Virological and Immunological Outcomes of Coinfections. https://journals.asm.org/journal/cmr
dc.relation.referencesKvisgaard, L. K., Larsen, L. E., Hjulsager, C. K., Bøtner, A., Rathkjen, P. H., Heegaard, P. M. H., Bisgaard, N. P., Nielsen, J., & Hansen, M. S. (2017). Genetic and biological characterization of a Porcine Reproductive and Respiratory Syndrome Virus 2 (PRRSV-2) causing significant clinical disease in the field. Veterinary Microbiology, 211, 74–83. https://doi.org/10.1016/j.vetmic.2017.10.001
dc.relation.referencesLagan Tregaskis, P., Staines, A., Gordon, A., Sheridan, P., McMenamy, M., Duffy, C., Collins, P. J., Mooney, M. H., & Lemon, K. (2021). Co-infection status of novel parvovirus’s (PPV2 to 4) with porcine circovirus 2 in porcine respiratory disease complex and porcine circovirus-associated disease from 1997 to 2012. Transboundary and Emerging Diseases, 68(4), 1979–1994. https://doi.org/10.1111/tbed.13846
dc.relation.referencesLara, A. C., Fernando, F. S., Takeuti, K. L., Bortolozzo, F. P., & De Barcellos, D. E. S. N. (2022). Efficacy of disinfectants to inactivate H1N1 influenza A virus isolated from pigs1. Pesquisa Veterinaria Brasileira, 42. https://doi.org/10.1590/1678-5150-PVB-6987
dc.relation.referencesLarochelle, R., Magar, R., & D’allaire, S. (2003). Comparative serologic and virologic study of commercial swine herdswith and without postweaning multisystemic wasting syndrome. The Canadian Journal of Veterinary Research, 67, 114–120. Li, J., Xiao, Y., Qiu, M., Li, X., Li, S., Lin, H., Li, X., Zhu, J., Chen, N., & Jones, C. J. (2021). A Systematic Investigation Unveils High Coinfection Status of Porcine Parvovirus Types 1 through 7 in China from 2016 to 2020. 9(3), e01294–e01294. https://talk.ictvonline.org/taxonomy/
dc.relation.referencesLópez-Soria, S., Maldonado, J., Riera, P., Nofrarías, M., Espinal, A., Valero, O., Blanchard, P., Jestin, A., Casal, J., Domingo, M., Artigas, C., & Segalés, J. (2010). Selected swine viral pathogens in indoor pigs in Spain. Seroprevalence and farm-level characteristics. Transboundary and Emerging Diseases, 57(3), 171–179. https://doi.org/10.1111/j.1865-1682.2010.01135.x
dc.relation.referencesLv, J., Jiang, Y., Feng, Q., Fan, Z., Sun, Y., Xu, P., Hou, Y., Zhang, X., Fan, Y., Xu, X., Zhang, Y., & Guo, K. (2020). Porcine Circovirus Type 2 ORF5 Protein Induces Autophagy to Promote Viral Replication via the PERK-eIF2α-ATF4 and mTOR-ERK1/2-AMPK Signaling Pathways in PK-15 Cells. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00320
dc.relation.referencesMa, Z., Liu, M., Liu, Z., Meng, F., Wang, H., Cao, L., Li, Y., Jiao, Q., Han, Z., & Liu, S. (2021). Epidemiological investigation of porcine circovirus type 2 and its coinfection rate in Shandong province in China from 2015 to 2018. BMC Veterinary Research, 17(1). https://doi.org/10.1186/s12917-020-02718-4
dc.relation.referencesMaisonnasse, P., Bouguyon, E., Piton, G., Ezquerra, A., Urien, C., Deloizy, C., Bourge, M., Leplat, J. J., Simon, G., Chevalier, C., Vincent-Naulleau, S., Crisci, E., Montoya, M., Schwartz-Cornil, I., & Bertho, N. (2016). The respiratory DC/macrophage network at steady-state and upon influenza infection in the swine biomedical model. Mucosal Immunology, 9(4), 835–849. https://doi.org/10.1038/mi.2015.105
dc.relation.referencesMancipe, L. F., Ramírez-Nieto, G., Vera, V., & Jaime, J. (2014). Association of swine influenza H1N1 pandemic virus (SIV-H1N1p) with porcine respiratory disease complex in sows from commercial pig farms in Colombia. Virologica Sinica, 29(4), 242–249. https://doi.org/10.1007/s12250-014-3471-5
dc.relation.referencesMendoza Niño, E. (2015). Detección y caracterización del virus del Síndrome Reproductivo y Respiratorio Porcino en tres granjas de producción intensiva para el establecimiento del control local de la enfermedad.
dc.relation.referencesMiłek, D., Woźniak, A., Guzowska, M., & Stadejek, T. (2019). Detection patterns of porcine parvovirus (PPV) and novel porcine parvoviruses 2 through 6 (PPV2–PPV6) in Polish swine farms. Viruses, 11(5). https://doi.org/10.3390/v11050474
dc.relation.referencesNelsen, A., Lin, C. M., & Hause, B. M. (2021). Porcine Parvovirus 2 Is Predominantly Associated With Macrophages in Porcine Respiratory Disease Complex. Frontiers in Veterinary Science, 8. https://doi.org/10.3389/fvets.2021.726884
dc.relation.referencesNišavić, J., Milić, N., Radalj, A., Krnjaić, D., Milićević, D., Knežević, A., Radojičić, M., Obrenović, S., Ćosić, M., Tešović, B., Benković, D., & Živulj, A. (2021). Genetic Analysis and Distribution of Porcine Parvoviruses Detected in the Organs of Wild Boars in Serbia. Acta Veterinaria, 71(1), 32–46. https://doi.org/10.2478/acve-2021-0003
dc.relation.referencesNovosel, D., Cadar, D., Tuboly, T., Jungic, A., Stadejek, T., Ait-Ali, T., & Cságola, A. (2018). Investigating porcine parvoviruses genogroup 2 infection using in situ polymerase chain reaction. BMC Veterinary Research, 14(1). https://doi.org/10.1186/s12917-018-1487-z
dc.relation.referencesNurhayati, Wibawa, H., Mahawan, T., Zenal, F. C., Schoonman, L., Pfeiffer, C. N., Stevenson, M., & Punyapornwithaya, V. (2020). Herd-Level Risk Factors for Swine Influenza (H1N1) Seropositivity in West Java and Banten Provinces of Indonesia (2016–2017). Frontiers in Veterinary Science, 7. https://doi.org/10.3389/fvets.2020.544279
dc.relation.referencesOpriessnig, T., & Halbur, P. G. (2012). Concurrent infections are important for expression of porcine circovirus associated disease. In Virus Research (Vol. 164, Issues 1–2, pp. 20–32). https://doi.org/10.1016/j.virusres.2011.09.014
dc.relation.referencesOpriessnig, T., Karuppannan, A. K., Halbur, P. G., Calvert, J. G., Nitzel, G. P., Matzinger, S. R., & Meng, X. J. (2020). Porcine circovirus type 2a or 2b based experimental vaccines provide protection against PCV2d/porcine parvovirus 2 co-challenge. Vaccine, 38(8), 1975–1981. https://doi.org/10.1016/j.vaccine.2020.01.013
dc.relation.referencesOsorio-Zambrano, W., Ospina-Jimenez, A., Alvarez-Muñoz, S., Gomez, A., & Ramirez-Nieto, G. C. (2022). Zooming in on the molecular characteristics of swine influenza virus circulating in Colombia before and after the H1N1pdm09 virus. Frontiers in Veterinary Science, 9, 01–12. https://doi.org/doi: 10.3389/fvets.2022.983304
dc.relation.referencesOuyang, T., Zhang, X., Liu, X., & Ren, L. (2019). Co-infection of swine with porcine circovirus type 2 and other swine viruses. Viruses, 11(2). https://doi.org/10.3390/v11020185
dc.relation.referencesPapatsiros, V. G., Papakonstantinou, G., Meletis, E., Tsekouras, N., Maragkakis, G., Bitchava, D., & Kostoulas, P. (2022). Occurrence and Associated Risk Factors of Porcine Reproductive and Respiratory Syndrome Virus and Porcine Circovirus Type 2 Infections in Greece. Viral Immunology, 35(3), 200–211. https://doi.org/10.1089/VIM.2021.0124
dc.relation.referencesPessoa, J., Montoro, J. C., Nunes, T. P., Norton, T., McAloon, C., Manzanilla, E. G., & Boyle, L. (2022). Environmental Risk Factors Influence the Frequency of Coughing and Sneezing Episodes in Finisher Pigs on a Farm Free of Respiratory Disease. Animals, 12(8). https://doi.org/10.3390/ani12080982
dc.relation.referencesPileri, E., & Mateu, E. (2016). Review on the transmission porcine reproductive and respiratory syndrome virus between pigs and farms and impact on vaccination. In Veterinary Research (Vol. 47, Issue 1, pp. 1–13). BioMed Central Ltd. https://doi.org/10.1186/s13567-016-0391-4
dc.relation.referencesPirolo, M., Espinosa-Gongora, C., Bogaert, D., & Guardabassi, L. (2021). The porcine respiratory microbiome: recent insights and future challenges. Animal Microbiome, 3(1). https://doi.org/10.1186/s42523-020-00070-4 Piñeyro, P. (2012). Infección por virus de influenza en el cerdo: estudios seroepidemiológicos, anatomopatológicos e inmunohistoquímicos y de biología molecular [Doctorado en Ciencias Veterinarias]. Universidad Nacional de La Plata.
dc.relation.referencesPleguezuelos, P., Sibila, M., Cuadrado-Matías, R., López-Jiménez, R., Pérez, D., Huerta, E., Pérez, M., Correa-Fiz, F., Mancera-Gracia, J. C., Taylor, L. P., Borowski, S., Saunders, G., Segalés, J., López-Soria, S., & Balasch, M. (2022). Efficacy Studies of a Trivalent Vaccine Containing PCV-2a, PCV-2b Genotypes and Mycoplasma hyopneumoniae When Administered at 3 Days of Age and 3 Weeks Later against Porcine Circovirus 2 (PCV-2) Infection. Vaccines, 10(8). https://doi.org/10.3390/vaccines10081234
dc.relation.referencesRamírez, M., Bauermann, F. v., Navarro, D., Rojas, M., Manchego, A., Nelson, E. A., Diel, D. G., & Rivera, H. (2019). Detection of porcine reproductive and respiratory syndrome virus (PRRSV) 1-7-4-type strains in Peru. Transboundary and Emerging Diseases, 66(3), 1107–1113. https://doi.org/10.1111/tbed.13134
dc.relation.referencesRamirez-Nieto, G. C., Rojas, C. A. D., Alfonso, V. J. V., Correa, J. J., & Galvis, J. D. M. (2012). First isolation and identification of H1N1 swine influenza viruses in Colombian pig farms. Health, 04(10), 983–990. https://doi.org/10.4236/health.2012.430150
dc.relation.referencesRincón, M., Consuelo Ramirez-Nieto, G., Vera, V. J., Correa, J. J., & Mogollón-Galvis, J. (2014). Detection and molecular characterization of porcine circovirus type 2 from piglets with Porcine Circovirus Associated Diseases in Colombia. Virology Journal, 11(1), 1–11. https://doi.org/10.1186/1743-422X-11-143
dc.relation.referencesRomagosa, A., Allerson, M., Gramer, M., Joo, H., Deen, J., Detmer, S., & Torremorell, M. (2011). Vaccination of influenza a virus decreases transmission rates in pigs. Veterinary Research, 42(1). https://doi.org/10.1186/1297-9716-42-120
dc.relation.referencesSaade, G., Deblanc, C., Bougon, J., Marois-Créhan, C., Fablet, C., Auray, G., Belloc, C., Leblanc-Maridor, M., Gagnon, C. A., Zhu, J., Gottschalk, M., Summerfield, A., Simon, G., Bertho, N., & Meurens, F. (2020). Coinfections and their molecular consequences in the porcine respiratory tract. Veterinary Research, 51(1). https://doi.org/10.1186/s13567-020-00807-8
dc.relation.referencesSaekhow, P., & Ikeda, H. (2015). Prevalence and genomic characterization of porcine parvoviruses detected in Chiangmai area of Thailand in 2011. Microbiology and Immunology, 59(2), 82–88. https://doi.org/10.1111/1348-0421.12218
dc.relation.referencesSaekhow, P., Mawatari, T., & Ikeda, H. (2014). Coexistence of multiple strains of porcine parvovirus 2 in pig farms. Microbiology and Immunology, 58(7), 382–387. https://doi.org/10.1111/1348-0421.12159
dc.relation.referencesSalvesen, H. A., & Whitelaw, C. B. A. (2021). Current and prospective control strategies of influenza A virus in swine. In Porcine Health Management (Vol. 7, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s40813-021-00196-0
dc.relation.referencesSaporiti, V., Huerta, E., Correa-Fiz, F., Grosse Liesner, B., Duran, O., Segalés, J., & Sibila, M. (2020). Detection and genotyping of Porcine circovirus 2 (PCV-2) and detection of Porcine circovirus 3 (PCV-3) in sera from fattening pigs of different European countries. Transboundary and Emerging Diseases, 67(6), 2521–2531. https://doi.org/10.1111/tbed.13596
dc.relation.referencesSchmidt, C., Cibulski, S. P., Andrade, C. P., Teixeira, T. F., Varela, A. P. M., Scheffer, C. M., Franco, A. C., de Almeida, L. L., & Roehe, P. M. (2016). Swine Influenza Virus and Association with the Porcine Respiratory Disease Complex in Pig Farms in Southern Brazil. Zoonoses and Public Health, 63(3), 234–240. https://doi.org/10.1111/zph.12223
dc.relation.referencesSegalés, J. (2012). Porcine circovirus type 2 (PCV2) infections: Clinical signs, pathology and laboratory diagnosis. In Virus Research (Vol. 164, Issues 1–2, pp. 10–19). https://doi.org/10.1016/j.virusres.2011.10.007
dc.relation.referencesStadejek, T., Larsen, L. E., Podgórska, K., Bøtner, A., Botti, S., Dolka, I., Fabisiak, M., Heegaard, P. M. H., Hjulsager, C. K., Huć, T., Kvisgaard, L. K., Sapierzyński, R., & Nielsen, J. (2017). Pathogenicity of three genetically diverse strains of PRRSV Type 1 in specific pathogen free pigs. Veterinary Microbiology, 209, 13–19. https://doi.org/10.1016/j.vetmic.2017.05.011
dc.relation.referencesSun, Y., Zhang, J., Liu, Z., Zhang, Y., & Huang, K. (2021). Swine Influenza Virus Infection Decreases the Protective Immune Responses of Subunit Vaccine Against Porcine Circovirus Type 2. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.807458
dc.relation.referencesTemeeyasen, G., Lierman, S., Arruda, B. L., Main, R., Vannucci, F., Gimenez-Lirola, L. G., & Piñeyro, P. E. (2021). Pathogenicity and immune response against porcine circovirus type 3 infection in caesarean-derived, colostrum-deprived pigs. Journal of General Virology, 102(1). https://doi.org/10.1099/JGV.0.001502
dc.relation.referencesTicó, G., Segalés, J., & Martínez, J. (2013). The blurred border between porcine circovirus type 2-systemic disease and porcine respiratory disease complex. Veterinary Microbiology, 163(3–4), 242–247. https://doi.org/10.1016/j.vetmic.2013.01.001
dc.relation.referencesTorremorell, M., Allerson, M., Corzo, C., Diaz, A., & Gramer, M. (2012). Transmission of Influenza A Virus in Pigs. In Transboundary and Emerging Diseases (Vol. 59, Issue SUPPL. 1, pp. 68–84). https://doi.org/10.1111/j.1865-1682.2011.01300.x
dc.relation.referencesTurlewicz-Podbielska, H., Włodarek, J., & Pomorska-Mól, M. (2020). Noninvasive strategies for surveillance of swine viral diseases: a review. Journal of Veterinary Diagnostic Investigation, 32(4), 503–512. https://doi.org/10.1177/1040638720936616
dc.relation.referencesVangroenweghe, F. A. C. J., & Thas, O. (2021). Seasonal variation in prevalence of mycoplasma hyopneumoniae and other respiratory pathogens in peri-weaned, post-weaned, and fattening pigs with clinical signs of respiratory diseases in belgian and dutch pig herds, using a tracheobronchial swab sampling technique, and their associations with local weather conditions. Pathogens, 10(9). https://doi.org/10.3390/pathogens10091202
dc.relation.referencesVargas-Bermudez, D. S., Campos, F. S., Bonil, L., Mogollon, D., & Jaime, J. (2019). First detection of porcine circovirus type 3 in Colombia and the complete genome sequence demonstrates the circulation of PCV3a1 and PCV3a2. Veterinary Medicine and Science, 5(2), 182–188. https://doi.org/10.1002/vms3.155
dc.relation.referencesVargas-Bermudez, D. S., Díaz, A., Mogollón, J. D., & Jaime, J. (2018). Longitudinal comparison of the humoral immune response and viral load of Porcine Circovirus Type 2 in pigs with different vaccination schemes under field conditions. F1000Research, 7, 42. https://doi.org/10.12688/f1000research.13160.1
dc.relation.referencesVargas-Bermudez, D. S., Mogollón, J. D., & Jaime, J. (2022). The Prevalence and Genetic Diversity of PCV3 and PCV2 in Colombia and PCV4 Survey during 2015–2016 and 2018–2019. Pathogens, 11(6). https://doi.org/10.3390/pathogens11060633
dc.relation.referencesVargas-Bermúdez, D. S., Vargas-Pinto, M. A., Mogollón, J. D., & Jaime, J. (2021). Field infection of a gilt and its litter demonstrates vertical transmission and effect on reproductive failure caused by porcine circovirus type 3 (PCV3). BMC Veterinary Research, 17(1). https://doi.org/10.1186/s12917-021-02862-5
dc.relation.referencesVereecke, N., Woźniak, A., Pauwels, M., Coppens, S., Nauwynck, H., Cybulski, P., Theuns, S., & Stadejek, T. (2023). Successful Whole Genome Nanopore Sequencing of Swine Influenza A Virus (swIAV) Directly from Oral Fluids Collected in Polish Pig Herds. Viruses, 15(2). https://doi.org/10.3390/v15020435
dc.relation.referencesVilalta, C., Sanhueza, J., Alvarez, J., Murray, D., Torremorell, M., Corzo, C., & Morrison, R. (2018). Use of processing fluids and serum samples to characterize porcine reproductive and respiratory syndrome virus dynamics in 3 day-old pigs. Veterinary Microbiology, 225, 149–156. https://doi.org/10.1016/j.vetmic.2018.09.006
dc.relation.referencesWei, H., Lenz, S., Van Alstine, W., Stevenson, G., Langohr, I., & Pogranichniy, R. (2010). Infection of Cesarean-Derived Colostrum-Deprived Pigs with Porcine Circovirus Type 2 and Swine Influenza Virus. Comparative Medicine, 60(1), 45–50.
dc.relation.referencesWoźniak, A., Miłek, D., Bąska, P., & Stadejek, T. (2019). Does porcine circovirus type 3 (PCV3) interfere with porcine circovirus type 2 (PCV2) vaccine efficacy? Transboundary and Emerging Diseases, 66(4), 1454–1461. https://doi.org/10.1111/tbed.13221
dc.relation.referencesXiao, C. T., Harmon, K. M., Halbur, P. G., & Opriessnig, T. (2016). PCV2d-2 is the predominant type of PCV2 DNA in pig samples collected in the U.S. during 2014–2016. Veterinary Microbiology, 197, 72–77. https://doi.org/10.1016/j.vetmic.2016.11
dc.relation.referencesLi, J., Xiao, Y., Qiu, M., Li, X., Li, S., Lin, H., Li, X., Zhu, J., Chen, N., & Jones, C. J. (2021). A Systematic Investigation Unveils High Coinfection Status of Porcine Parvovirus Types 1 through 7 in China from 2016 to 2020. 9(3), e01294–e01294. https://talk.ictvonline.org/taxonomy/
dc.relation.referencesLau, S., Woo, P., Wu, Y., Wong, A., Wong, B., Lau, C. et al., (2013). Identification and characterization of a novel paramyxovirus, porcine parainfluenza virus 1, from deceased pigs. J. Gen. Vir. 94. doi:10.1099/vir.0.052985-0
dc.relation.referencesLebret, A., Berton, P., Normand, V., Messager, I., Robert, N., Bouchet, F., Brissonnier, M., & Boulbria, G. (2021). PRRSV detection by qPCR in processing fluids and serum samples collected in a positive stable breeding herd following mass vaccination of sows with a modified live vaccine. Porcine Health Management, 7(1). https://doi.org/10.1186/s40813-020-00186-8
dc.relation.referencesLiu, J., Xu, Y., Lin, Z., Fan, J., Dai, A., Deng, X., Mao, W., Huang, X., Yang, X., & Wei, C. (2021). Epidemiology investigation of PRRSV discharged by faecal and genetic variation of ORF5. Transboundary and Emerging Diseases, 68(4), 2334–2344. https://doi.org/10.1111/tbed.13894
dc.relation.referencesLiu, X., Shen, H., Zhang, X., Liang, T., Ban, Y., Yu, L., Zhang, L., Liu, Y., Dong, J., Zhang, P., Lian, K., & Song, C. (2021). Porcine circovirus type 3 capsid protein induces NF-κB activation and upregulates pro-inflammatory cytokine expression in HEK-293T cells. Archives of Virology, 166(8), 2141–2149. https://doi.org/10.1007/s00705-021-05104-z
dc.relation.referencesLoving, C. L., Osorio, F. A., Murtaugh, M. P., & Zuckermann, F. A. (2015). Innate and adaptive immunity against Porcine Reproductive and Respiratory Syndrome Virus. In Veterinary Immunology and Immunopathology (Vol. 167, Issues 1–2, pp. 1–14). Elsevier. https://doi.org/10.1016/j.vetimm.2015.07.003
dc.relation.referencesLunney, J. K., Fang, Y., Ladinig, A., Chen, N., Li, Y., Rowland, B., & Renukaradhya, G. J. (2016). Porcine reproductive and respiratory syndrome virus (PRRSV): Pathogenesis and interaction with the immune system. In Annual Review of Animal Biosciences (Vol. 4, pp. 129–154). Annual Reviews Inc. https://doi.org/10.1146/annurev-animal-022114-111025
dc.relation.referencesLunney, J. K., Ho, C. S., Wysocki, M., & Smith, D. M. (2009). Molecular genetics of the swine major histocompatibility complex, the SLA complex. Developmental and Comparative Immunology, 33(3), 362–374. https://doi.org/10.1016/j.dci.2008.07.002
dc.relation.referencesLv, N., Zhu, L., Li, W., Li, Z., Qian, Q., Zhang, T., Liu, L., Hong, J., Zheng, X., Wang, Y., Zhang, Y., & Chai, J. (2020). Molecular epidemiology and genetic variation analyses of porcine circovirus type 2 isolated from Yunnan Province in China from 2016-2019. BMC Veterinary Research, 16(1). https://doi.org/10.1186/s12917-020-02304-8
dc.relation.referencesMa, W. (2020). Swine influenza virus: Current status and challenge. Virus Research, 288. https://doi.org/10.1016/j.virusres.2020.198118
dc.relation.referencesMacLachlan, J., & Dubovi, E. (2017a). Circoviridae and Anelloviridae. In J. MacLachlan & E. Dubovi (Eds.), Fenner’s Veterinary Virology (Fifth, pp. 259–268). Elsevier. https://doi.org/10.1016/b978-0-12-800946-8.00013-1
dc.relation.referencesMacLachlan, J., & Dubovi, E. (2017b). Orthomyxoviridae. In J. MacLachlan, E. Dubovi, S. Barthold, D. Swayne, & J. Winton (Eds.), Fenner’s Veterinary Virology (Fifth edition, pp. 389–410). Elsevier Inc. https://doi.org/10.1016/B978-0-12-800946-8.00021-0
dc.relation.referencesMarazzi, I., Ho, J. S. Y., Kim, J., Manicassamy, B., Dewell, S., Albrecht, R. A., Seibert, C. W., Schaefer, U., Jeffrey, K. L., Prinjha, R. K., Lee, K., García-Sastre, A., Roeder, R. G., & Tarakhovsky, A. (2012). Suppression of the antiviral response by an influenza histone mimic. Nature, 483(7390), 428–433. https://doi.org/10.1038/nature10892
dc.relation.referencesMattola, S., Aho, V., Bustamante-Jaramillo, L. F., Pizzioli, E., Kann, M., & Vihinen-Ranta, M. (2022). Nuclear entry and egress of parvoviruses. Molecular Microbiology, 1–14. https://doi.org/10.1111/mmi.14974
dc.relation.referencesMeischel, T., Villalon-Letelier, F., Saunders, P. M., Reading, P. C., & Londrigan, S. L. (2020). Influenza A virus interactions with macrophages: Lessons from epithelial cells. In Cellular Microbiology (Vol. 22, Issue 5). Blackwell Publishing Ltd. https://doi.org/10.1111/cmi.13170
dc.relation.referencesMibayashi, M., Martínez-Sobrido, L., Loo, Y.-M., Cárdenas, W. B., Gale, M., & García-Sastre, A. (2007). Inhibition of Retinoic Acid-Inducible Gene I-Mediated Induction of Beta Interferon by the NS1 Protein of Influenza A Virus. Journal of Virology, 81(2), 514–524. https://doi.org/10.1128/jvi.01265-06
dc.relation.referencesMiłek, D., Woźniak, A., Podgórska, K., & Stadejek, T. (2020). Do porcine parvoviruses 1 through 7 (PPV1-PPV7) have an impact on porcine circovirus type 2 (PCV2) viremia in pigs? Veterinary Microbiology, 242. https://doi.org/10.1016/j.vetmic.2020.108613
dc.relation.referencesMora-Díaz, J., Piñeyro, P., Shen, H., Schwartz, K., Vannucci, F., Li, G., Arruda, B., & Giménez-Lirola, L. (2020). Isolation of PCV3 from perinatal and reproductive cases of PCV3-associated disease and in vivo characterization of PCV3 replication in CD/Cd growing pigs. Viruses, 12(2). https://doi.org/10.3390/v12020219
dc.relation.referencesMurtaugh, M. P., & Genzow, M. (2011). Immunological solutions for treatment and prevention of porcine reproductive and respiratory syndrome (PRRS). In Vaccine (Vol. 29, Issue 46, pp. 8192–8204). https://doi.org/10.1016/j.vaccine.2011.09.013
dc.relation.referencesNathues, H., Alarcon, P., Rushton, J., Jolie, R., Fiebig, K., Jimenez, M., Geurts, V., & Nathues, C. (2017). Cost of porcine reproductive and respiratory syndrome virus at individual farm level – An economic disease model. Preventive Veterinary Medicine, 142, 16–29. https://doi.org/10.1016/j.prevetmed.2017.04.006
dc.relation.referencesNeira, V., Rabinowitz, P., Rendahl, A., Paccha, B., Gibbs, S. G., & Torremorell, M. (2016). Characterization of viral load, viability and persistence of influenza a virus in air and on surfaces of swine production facilities. PLoS ONE, 11(1). https://doi.org/10.1371/journal.pone.0146616
dc.relation.referencesOh, T., & Chae, C. (2020). First isolation and genetic characterization of porcine circovirus type 3 using primary porcine kidney cells. Veterinary Microbiology, 241. https://doi.org/10.1016/j.vetmic.2020.108576
dc.relation.referencesOlvera, A., Cortey, M., & Segalés, J. (2007). Molecular evolution of porcine circovirus type 2 genomes: Phylogeny and clonality. Virology, 357(2), 175–185. https://doi.org/10.1016/j.virol.2006.07.047
dc.relation.referencesOpriessnig, T., Giménez-Lirola, L. G., & Halbur, P. G. (2011). Polymicrobial respiratory disease in pigs. In Animal health research reviews / Conference of Research Workers in Animal Diseases (Vol. 12, Issue 2, pp. 133–148). https://doi.org/10.1017/s1466252311000120
dc.relation.referencesOpriessnig, T., Karuppannan, A. K., Castro, A. M. M. G., & Xiao, C. T. (2020). Porcine circoviruses: current status, knowledge gaps and challenges. In Virus Research (Vol. 286). Elsevier B.V. https://doi.org/10.1016/j.virusres.2020.198044
dc.relation.referencesOpriessnig, T., Xiao, C. T., Gerber, P. F., & Halbur, P. G. (2014). Identification of recently described porcine parvoviruses in archived North American samples from 1996 and association with porcine circovirus associated disease. Veterinary Microbiology, 173(1–2), 9–16. https://doi.org/10.1016/j.vetmic.2014.06.024
dc.relation.referencesOuyang, T., Niu, G., Liu, X., Zhang, X., Zhang, Y., & Ren, L. (2019). Recent progress on porcine circovirus type 3. Infection, Genetics and Evolution, 73, 227–233. https://doi.org/10.1016/j.meegid.2019.05.009
dc.relation.referencesPalinski, R., Chen, Z., Henningson, J., Lang, Y., Rowland, R., Fang, Y., et al. (2016). Widespread detection and characterization of porcine parainfluenza virus 1 in pigs in the USA. J. Gen. Virol. 97. doi:10.1099/jgv.0.000343.
dc.relation.referencesPalinski, R., Piñeyro, P., Shang, P., Yuan, F., Guo, R., Fang, Y., Byers, E., & Hause, B. M. (2017). A Novel Porcine Circovirus Distantly Related to Known Circoviruses Is Associated with Porcine Dermatitis and Nephropathy Syndrome and Reproductive Failure. Journal of Virology, 91(1). https://doi.org/10.1128/jvi.01879-16
dc.relation.referencesPan, Y., Li, P., Jia, R., Wang, M., Yin, Z., & Cheng, A. (2018). Regulation of apoptosis during Porcine Circovirus type 2 infection. In Frontiers in Microbiology (Vol. 9, Issue SEP). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2018.02086
dc.relation.referencesPark, H.S., Liu, G., Thulasi Raman, S. N., Landreth, S. L., Liu, Q., & Zhou, Y. (2018). NS1 Protein of 2009 Pandemic Influenza A Virus Inhibits Porcine NLRP3 Inflammasome-Mediated Interleukin-1 Beta Production by Suppressing ASC Ubiquitination. Journal of Virology, 92(8). https://doi.org/10.1128/jvi.00022-18
dc.relation.referencesPark, J., Welch, M., Harmon, K., Zhang, J., Piñeyro, P., Li, G., et al. (2019). Detection, isolation, and in vitro characterization of porcine parainfluenza virus type 1 isolated from respiratory diagnostic specimens in swine. Vet. Microbiol. 228. doi:10.1016/j.vetmic.2018.12.002.
dc.relation.referencesParrish, C. R., Murcia, P. R., & Holmes, E. C. (2015). Influenza Virus Reservoirs and Intermediate Hosts: Dogs, Horses, and New Possibilities for Influenza Virus Exposure of Humans. Journal of Virology, 89(6), 2990–2994. https://doi.org/10.1128/jvi.03146-14
dc.relation.referencesPénzes, J. J., Söderlund-Venermo, M., Canuti, M., Eis-Hübinger, A. M., Hughes, J., Cotmore, S. F., & Harrach, B. (2020). Reorganizing the family Parvoviridae: a revised taxonomy independent of the canonical approach based on host association. Archives of Virology, 165(9), 2133–2146. https://doi.org/10.1007/s00705-020-04632-4
dc.relation.referencesPénzes, J. J., Söderlund-Venermo, M., Canuti, M., Eis-Hübinger, A. M., Hughes, J., Cotmore, S. F., & Harrach, B. (2020). Reorganizing the family Parvoviridae: a revised taxonomy independent of the canonical approach based on host association. Archives of Virology, 165(9), 2133–2146. https://doi.org/10.1007/s00705-020-04632-4
dc.relation.referencesPhan, T. G., Giannitti, F., Rossow, S., Marthaler, D., Knutson, T., Li, L., Deng, X., Resende, T., Vannucci, F., & Delwart, E. (2016). Detection of a novel circovirus PCV3 in pigs with cardiac and multi-systemic inflammation. Virology Journal, 13(1), 1–8. https://doi.org/10.1186/s12985-016-0642-z
dc.relation.referencesPiñeyro, P. (2012). Infección por virus de influenza en el cerdo: estudios seroepidemiológicos, anatomopatológicos e inmunohistoquímicos y de biología molecular [Doctorado en Ciencias Veterinarias]. Universidad Nacional de La Plata.
dc.relation.referencesQi, S., Su, M., Guo, D., Li, C., Wei, S., Feng, L., & Sun, D. (2019). Molecular detection and phylogenetic analysis of porcine circovirus type 3 in 21 Provinces of China during 2015–2017. Transboundary and Emerging Diseases, 66(2), 1004–1015. https://doi.org/10.1111/tbed.13125
dc.relation.referencesQin, S., Ruan, W., Yue, H., Tang, C., Zhou, K., & Zhang, B. (2018). Viral communities associated with porcine respiratory disease complex in intensive commercial farms in Sichuan province, China. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-31554-8
dc.relation.referencesRajkhowa, T. K., Lalnunthanga, P., Rao, P. L., Subbiah, M., & Lalrohlua, B. (2021). Emergence of porcine circovirus 2g (PCV2g) and evidence for recombination between genotypes 2g, 2b and 2d among field isolates from non-vaccinated pigs in Mizoram, India. Infection, Genetics and Evolution, 90. https://doi.org/10.1016/j.meegid.2021.104775
dc.relation.referencesRajsbaum, R., Albrecht, R. A., Wang, M. K., Maharaj, N. P., Versteeg, G. A., Nistal-Villán, E., García-Sastre, A., & Gack, M. U. (2012). Species-Specific Inhibition of RIG-I Ubiquitination and IFN Induction by the Influenza A Virus NS1 Protein. PLoS Pathogens, 8(11). https://doi.org/10.1371/journal.ppat.1003059
dc.relation.referencesRamirez, A., Wang, C., Prickett, J. R., Pogranichniy, R., Yoon, K. J., Main, R., Johnson, J. K., Rademacher, C., Hoogland, M., Hoffmann, P., Kurtz, A., Kurtz, E., & Zimmerman, J. (2012). Efficient surveillance of pig populations using oral fluids. Preventive Veterinary Medicine, 104(3–4), 292–300. https://doi.org/10.1016/J.PREVETMED.2011.11.008
dc.relation.referencesRamos, N., Betancour, G., Puig, J., & Arbiza, J. (2022). An update on genetic analysis of porcine reproductive and respiratory syndrome virus type 2 (PRRSV-2) in South America: identification of ORF5 sequences of lineage 1A, 1C and 1G. Archives of Microbiology, 204(7). https://doi.org/10.1007/s00203-022-02976-w
dc.relation.referencesRazzuoli, E., Armando, F., De Paolis, L., Ciurkiewicz, M., & Amadori, M. (2022). The Swine IFN System in Viral Infections: Major Advances and Translational Prospects. In Pathogens (Vol. 11, Issue 2). MDPI. https://doi.org/10.3390/pathogens11020175
dc.relation.referencesRen, L., Chen, X., & Ouyang, H. (2016). Interactions of porcine circovirus 2 with its hosts. Virus Genes, 52(4), 437–444. https://doi.org/10.1007/s11262-016-1326-x
dc.relation.referencesRen, X., Tao, Y., Cui, J., Suo, S., Cong, Y., & Tijssen, P. (2013). Phylogeny and evolution of porcine parvovirus. Virus Research, 178(2), 392–397. https://doi.org/10.1016/j.virusres.2013.09.014
dc.relation.referencesRenukaradhya, G. J., Alekseev, K., Jung, K., Fang, Y., & Saif, L. J. (2010). Porcine reproductive and respiratory syndrome virus-Induced immunosuppression exacerbates the inflammatory response to porcine respiratory coronavirus in pigs. Viral Immunology, 23(5), 457–466. https://doi.org/10.1089/vim.2010.0051
dc.relation.referencesResende, T. P., Marshall Lund, L., Rossow, S., & Vannucci, F. A. (2019). Next-Generation Sequencing Coupled With in situ Hybridization: A Novel Diagnostic Platform to Investigate Swine Emerging Pathogens and New Variants of Endemic Viruses. In Frontiers in Veterinary Science (Vol. 6). Frontiers Media S.A. https://doi.org/10.3389/fvets.2019.00403
dc.relation.referencesRincón, A. (2014). Circovirosis porcina en Colombia: Aspectos moleculares y caracterización biológica de cepas de campo [Doctorado en Salud y Producción Animal]. Universidad Nacional de Colombia.
dc.relation.referencesRodrigues, I. L. F., Cruz, A. C. M., Souza, A. E., Knackfuss, F. B., Costa, C. H. C., Silveira, R. L., & Castro, T. X. (2020). Retrospective study of porcine circovirus 3 (PCV3) in swine tissue from Brazil (1967–2018). Brazilian Journal of Microbiology, 51(3), 1391–1397. https://doi.org/10.1007/s42770-020-00281-6
dc.relation.referencesRose, N., Opriessnig, T., Grasland, B., & Jestin, A. (2012). Epidemiology and transmission of porcine circovirus type 2 (PCV2). In Virus Research (Vol. 164, Issues 1–2, pp. 78–89). https://doi.org/10.1016/j.virusres.2011.12.002
dc.relation.referencesRupasinghe, R., Lee, K., Liu, X., Gauger, P. C., Zhang, J., & Martínez-López, B. (2022). Molecular Evolution of Porcine Reproductive and Respiratory Syndrome Virus Field Strains from Two Swine Production Systems in the Midwestern United States from 2001 to 2020. Microbiology Spectrum, 10(3). https://doi.org/10.1128/spectrum.02634-21
dc.relation.referencesSaporiti, V., Franzo, G., Sibila, M., & Segalés, J. (2021). Porcine circovirus 3 (PCV-3) as a causal agent of disease in swine and a proposal of PCV-3 associated disease case definition. Transboundary and Emerging Diseases, 68(6), 2936–2948. https://doi.org/10.1111/tbed.14204
dc.relation.referencesSarli, G., D’annunzio, G., Gobbo, F., Benazzi, C., & Ostanello, F. (2021). The role of pathology in the diagnosis of swine respiratory disease. Veterinary Sciences, 8(11). https://doi.org/10.3390/vetsci8110256
dc.relation.referencesSchuele, L., Lizarazo-Forero, E., Cassidy, H., Strutzberg-Minder, K., Boehmer, J., Schuetze, S., et al. (2021). First detection of porcine respirovirus 1 in Germany and the Netherlands. Transbound. Emerg. Dis. 68. doi:10.1111/tbed.14100.
dc.relation.referencesSegalés, J., Allan, G., & Domingo, M. (2019). Chapter 30 Circoviruses. In J. Zimmerman, L. Karriker, A. Ramírez, K. Schwartz, G. Stevenson, & J. Zhang (Eds.), Diseases of Swine (Eleventh Edition, pp. 473–487). John Wiley & Sons, Inc. https://doi.org/https://doi.org/10.1002/9781119350927.ch30
dc.relation.referencesSegalés, J., Valero, O., Espinal, A., López-Soria, S., Nofrarías, M., Calsamiglia, M., & Sibila, M. (2012). Exploratory study on the influence of climatological parameters on Mycoplasma hyopneumoniae infection dynamics. International Journal of Biometeorology, 56(6), 1167–1171. https://doi.org/10.1007/s00484-011-0487-5
dc.relation.referencesSha, H., Zhang, H., Chen, Y., Huang, L., Zhao, M., & Wang, N. (2022). Research Progress on the NSP9 Protein of Porcine Reproductive and Respiratory Syndrome Virus. Frontiers in Veterinary Science, 9. https://doi.org/10.3389/fvets.2022.872205
dc.relation.referencesShang, S. bin, Jin, Y. L., Jiang, X. tao, Zhou, J. Y., Zhang, X., Xing, G., He, J. L., & Yan, Y. (2009). Fine mapping of antigenic epitopes on capsid proteins of porcine circovirus, and antigenic phenotype of porcine circovirus Type 2. Molecular Immunology, 46(3), 327–334. https://doi.org/10.1016/j.molimm.2008.10.028
dc.relation.referencesShen, H., Liu, X., Zhang, P., Wang, S., Liu, Y., Zhang, L., & Song, C. (2020). Porcine circovirus 3 Cap inhibits type I interferon signaling through interaction with STAT2. Virus Research, 275, 197804. https://doi.org/10.1016/J.VIRUSRES.2019.197804
dc.relation.referencesShen, W., Wang, Z., Ning, K., Cheng, F., Engelhardt, J. F., Yan, Z., & Qiu, J. (2021). Hairpin Transfer-Independent Parvovirus DNA Replication Produces Infectious Virus. Journal of Virology, 95(20). https://doi.org/10.1128/jvi.01108-21
dc.relation.referencesShi, C., Liu, Y., Ding, Y., Zhang, Y., & Zhang, J. (2015). PRRSV receptors and their roles in virus infection. In Archives of Microbiology (Vol. 197, Issue 4, pp. 503–512). Springer Verlag. https://doi.org/10.1007/s00203-015-1088-1
dc.relation.referencesShi, R., Hou, L., Wei, L., Quan, R., Zhou, B., Jiang, H., Wang, J., Zhu, S., Song, J., Wang, D., & Liu, J. (2021). Porcine Circovirus Type 3 Enters Into PK15 Cells Through Clathrin- and Dynamin-2-Mediated Endocytosis in a Rab5/Rab7 and pH-Dependent Fashion. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.636307
dc.relation.referencesShin, G.-E., Park, J.-Y., Lee, K.-K., Ko, M.-K., Ku, B.-K., Park, C.-K., & Jeoung, H.-Y. (2022). Genetic diversity of porcine reproductive and respiratory syndrome virus and evaluation of three one-step real-time RT-PCR assays in Korea. BMC Veterinary Research, 18(1). https://doi.org/10.1186/s12917-022-03407-0
dc.relation.referencesSidler, X., Sydler, T., Mateos, J. M., Klausmann, S., & Brugnera, E. (2020). Porcine circovirus type 2 pathogenicity alters host’s central tolerance for propagation. Pathogens, 9(10), 1–17. https://doi.org/10.3390/pathogens9100839
dc.relation.referencesSnijder, E. J., Kikkert, M., & Fang, Y. (2013). Arterivirus molecular biology and pathogenesis. In Journal of General Virology (Vol. 94, Issue PART10, pp. 2141–2163). https://doi.org/10.1099/vir.0.056341-0
dc.relation.referencesSong, J., Hou, L., Wang, D., Wei, L., Zhu, S., Wang, J., Quan, R., Jiang, H., Shi, R., & Liu, J. (2021). Nucleolar Phosphoprotein NPM1 Interacts With Porcine Circovirus Type 3 Cap Protein and Facilitates Viral Replication. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.679341
dc.relation.referencesTechakriengkrai, N., Nedumpun, T., Golde, W. T., & Suradhat, S. (2021). Diversity of the Swine Leukocyte Antigen Class I and II in Commercial Pig Populations. Frontiers in Veterinary Science, 8. https://doi.org/10.3389/fvets.2021.637682
dc.relation.referencesTrevisan, G., Linhares, L. C. M., Crim, B., Dubey, P., Schwartz, K. J., Burrough, E. R., Main, R. G., Sundberg, P., Thurn, M., Lages, P. T. F., Corzo, C. A., Torrison, J., Henningson, J., Herrman, E., Hanzlicek, G. A., Raghavan, R., Marthaler, D., Greseth, J., Clement, T., … Linhares, D. C. L. (2019). Macroepidemiological aspects of porcine reproductive and respiratory syndrome virus detection by major United States veterinary diagnostic laboratories over time, age group, and specimen. PLoS ONE, 14(10). https://doi.org/10.1371/journal.pone.0223544
dc.relation.referencesTu, J., Zhou, H., Jiang, T., Li, C., Zhang, A., Guo, X., Zou, W., Chen, H., & Jin, M. (2009). Isolation and molecular characterization of equine H3N8 influenza viruses from pigs in China. Archives of Virology, 154(5), 887–890. https://doi.org/10.1007/s00705-009-0381-1
dc.relation.referencesTaubenberger, J. K., & Morens, D. M. (2008). The pathology of influenza virus infections. Annual Review of Pathology: Mechanisms of Disease, 3, 499–522. https://doi.org/10.1146/annurev.pathmechdis.3.121806.154316
dc.relation.referencesTurlewicz-Podbielska, H., Włodarek, J., & Pomorska-Mól, M. (2020). Noninvasive strategies for surveillance of swine viral diseases: a review. Journal of Veterinary Diagnostic Investigation, 32(4), 503–512. https://doi.org/10.1177/1040638720936616
dc.relation.referencesVasin, A. v., Temkina, O. A., Egorov, V. v., Klotchenko, S. A., Plotnikova, M. A., & Kiselev, O. I. (2014). Molecular mechanisms enhancing the proteome of influenza A viruses: An overview of recently discovered proteins. In Virus Research (Vol. 185, pp. 53–63). Elsevier. https://doi.org/10.1016/j.virusres.2014.03.015
dc.relation.referencesVilalta, C., Sanhueza, J., Garrido, J., Murray, D., Morrison, R., Corzo, C. A., & Torremorell, M. (2019). Indirect assessment of porcine reproductive and respiratory syndrome virus status in pigs prior to weaning by sampling sows and the environment. Veterinary Microbiology, 237. https://doi.org/10.1016/j.vetmic.2019.108406
dc.relation.referencesVincent, A. L., Ma, W., Lager, K. M., Janke, B. H., & Richt, J. A. (2008). Chapter 3 Swine Influenza Viruses. A North American Perspective. Advances in Virus Research, 72, 127154. https://doi.org/10.1016/S0065-3527(08)00403-X
dc.relation.referencesWang, Q., Sun, Z., Li, J., Qin, T., Ma, H., Chen, S., Peng, D., & Liu, X. (2021). Identification of a universal antigen epitope of influenza A virus using peptide microarray. BMC Veterinary Research, 17(1). https://doi.org/10.1186/s12917-020-02725-5
dc.relation.referencesWang, R., & Zhang, Y. J. (2014). Antagonizing interferon-mediated immune response by porcine reproductive and respiratory syndrome virus. BioMed Research International, 2014. https://doi.org/10.1155/2014/315470
dc.relation.referencesWang, Y., Noll, L., Porter, E., Stoy, C., Dong, J., Anderson, J., Fu, J., Pogranichniy, R., Woodworth, J., Peddireddi, L., & Bai, J. (2020). Development of a differential multiplex realtime PCR assay for porcine circovirus type 2 (PCV2) genotypes PCV2a, PCV2b and PCV2d. Journal of https://doi.org/10.1016/j.jviromet.2020.113971
dc.relation.referencesWelch, M., Park, J., Gauger, P., Harmon, K., Lin, K., Piñeyro, P., Zhang, J. (2017). Porcine Parainfluenza Virus Type 1 (PPIV-1) in U.S. swine: summary of veterinary diagnostic laboratory data. Iowa State University https://www.iastatedigitalpress.com/air/article/id/5961/
dc.relation.referencesWelch, M., Park, J., Harmon, K., Zhang, J., Piñeyro, P., Giménez-Lirola, L., et al. (2021). Pathogenesis of a novel porcine parainfluenza virus type 1 isolate in conventional and colostrum deprived/caesarean derived pigs. Virol. 563. doi:10.1016/j.virol.2021.08.015.
dc.relation.referencesWozniak, A., Cybulski, P., Denes, L., Balka, G., Stadejek, T. (2022). Detection of porcine respirovirus 1 (PRV1) in Poland: incidence of co-infections with influenza a virus (IAV) and Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) in herds with a respiratory disease. Viruses.14:148. doi:10.3390/v14010148.
dc.relation.referencesXiao, C. T., Gerber, P. F., Giménez-Lirola, L. G., Halbur, P. G., & Opriessnig, T. (2013). Characterization of porcine parvovirus type 2 (PPV2) which is highly prevalent in the USA. Veterinary Microbiology, 161(3–4), 325–330. https://doi.org/10.1016/j.vetmic.2012.07.038
dc.relation.referencesXu, H., Li, C., Li, W., Zhao, J., Gong, B., Sun, Q., Tang, Y. D., Xiang, L., Leng, C., Peng, J., Wang, Q., Meng, F., Yu, Y., An, T., Cai, X., Tian, Z. J., & Zhang, H. (2022). Novel characteristics of Chinese NADC34-like PRRSV during 2020–2021. Transboundary and Emerging Diseases. https://doi.org/10.1111/tbed.14485
dc.relation.referencesXu, P. L., Zhang, Y., Zhao, Y., Zheng, H. H., Han, H. Y., Zhang, H. X., Chen, H. Y., Yang, M. F., & Zheng, L. L. (2018). Detection and phylogenetic analysis of porcine circovirus type 3 central China. Transboundary and Emerging Diseases, 65(5), 1163–1169. https://doi.org/10.1111/tbed.12920
dc.relation.referencesXu, Y., Ye, M., Sun, S., Cao, Q., Luo, J., Wang, Y., Zheng, W., Meurens, F., Chen, N., & Zhu, J. (2022). CD163-Expressing Porcine Macrophages Support NADC30-like and NADC34-like PRRSV Infections. Viruses, 14(9), 2056. https://doi.org/10.3390/v14092056
dc.relation.referencesYao, J., Qin, Y., Zeng, Y., Ouyang, K., Chen, Y., Huang, W., & Wei, Z. (2019). Genetic analysis of porcine circovirus type 2 (PCV2) strains between 2002 and 2016 reveals PCV2 mutant predominating in porcine population in Guangxi, China. BMC Veterinary Research, 15(1). https://doi.org/10.1186/s12917-019-1859-z
dc.relation.referencesYaeger, M., & van Alstine, W. (2019). Respiratory System. In J. Zimmerman, L. Karriker, A. Ramírez, K. Schuwartz, G. Stevenson, & J. Zhang (Eds.), Diseases of Swine (11th ed., Vol. 1, pp. 393–407). John Wiley & Son.
dc.relation.referencesYang, L., & Zhang, Y. J. (2017). Antagonizing cytokine-mediated JAK-STAT signaling by porcine reproductive and respiratory syndrome virus. Veterinary Microbiology, 209, 57–65. https://doi.org/10.1016/j.vetmic.2016.12.036
dc.relation.referencesYang, S., Zhang, D., Ji, Z., Zhang, Y., Wang, Y., Chen, X., He, Y., Lu, X., Li, R., Guo, Y., Shen, Q., Ji, L., Wang, X., Li, Y., & Zhang, W. (2022). Viral Metagenomics Reveals Diverse Viruses in Tissue Samples of Diseased Pigs. Viruses, 14(9), 2048. https://doi.org/10.3390/v14092048
dc.relation.referencesYe, X., Berg, M., Fossum, C., Wallgren, P., & Blomström, A. L. (2018). Detection and genetic characterisation of porcine circovirus 3 from pigs in Sweden. Virus Genes, 54(3), 466–469. https://doi.org/10.1007/s11262-018-1553-4
dc.relation.referencesZepeda-Cervantes, J., Cruz-Reséndiz, A., Sampieri, A., Carreón-Nápoles, R., SánchezBetancourt, J. I., & Vaca, L. (2019). Incorporation of ORF2 from Porcine Circovirus Type 2(PCV2) into genetically encoded nanoparticles as a novel vaccine using a self-aggregating peptide. Vaccine, 37(14), 1928–1937. https://doi.org/10.1016/j.vaccine.2019.02.044
dc.relation.referencesZhang, J., Fan, J., Li, Y., Liang, S., Huo, S., Wang, X., Zuo, Y., Cui, D., Li, W., Zhong, Z., & Zhong, F. (2019). Porcine parvovirus infection causes pig placenta tissue damage involving nonstructural protein 1 (NS1)-induced intrinsic ROS/mitochondria-mediated apoptosis. Viruses, 11(4). https://doi.org/10.3390/V11040389
dc.relation.referencesZhang, P., Shen, H., Liu, X., Wang, S., Liu, Y., Xu, Z., & Song, C. (2020). Porcine Circovirus Type 3 Cap Inhibits Type I Interferon Induction Through Interaction With G3BP1. Frontiers in Veterinary Science, 7. https://doi.org/10.3389/fvets.2020.594438
dc.relation.referencesZhang, W., Fu, Z., Yin, H., Han, Q., Fan, W., Wang, F., & Shang, Y. (2021). Macrophage Polarization Modulated by Porcine Circovirus Type 2 Facilitates Bacterial Coinfection. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.688294
dc.relation.referencesZhao, J., Sun, J., Li, X., Xing, G., Zhang, Y., Lai, A. et al. (2022). Divergent viruses discovered in swine alter the understanding of evolutionary history and genetic diversity of the respirovirus genus and related porcine parainfluenza viruses. Microbiol. Spect. 10:3. doi:10.1128/spectrum.00242-22.
dc.relation.referencesZhao, J., Zhu, L., Xu, L., Huang, J., Sun, X., & Xu, Z. (2020). Porcine interferon lambda 3 (IFN-λ3) shows potent anti-PRRSV activity in primary porcine alveolar macrophages (PAMs). BMC Veterinary Research, 16(1). https://doi.org/10.1186/s12917-020-02627-6
dc.relation.referencesZhao, K., Ye, C., Chang, X.-B., Jiang, C.-G., Wang, S.-J., Cai, X.-H., Tong, G.-Z., Tian, Z.J., Shi, M., & An, T.-Q. (2015). Importation and Recombination Are Responsible for the Latest Emergence of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus in China. Journal of Virology, 89(20), 10712–10716. https://doi.org/10.1128/jvi.0144615
dc.relation.referencesZhou, L., Kang, R., Yu, J., Xie, B., Chen, C., Li, X., Xie, J., Ye, Y., Xiao, L., Zhang, J., Yang, X., & Wang, H. (2018). Genetic characterization and pathogenicity of a novel recombined porcine reproductive and respiratory syndrome virus 2 among Nadc30-like, Jxa1-like, and Mlv-like strains. Viruses, 10(10). https://doi.org/10.3390/v10100551 Research
dc.relation.referencesZhou, L., & Yang, H. (2010). Porcine reproductive and respiratory syndrome in China. In Virus (Vol. 154, https://doi.org/10.1016/j.virusres.2010.07.016
dc.relation.referencesZhou, A., & Zhang, S. (2012). Regulation of cell signaling and porcine reproductive and respiratory syndrome virus. In Cellular Signalling (Vol. 24, Issue 5, pp. 973–980). https://doi.org/10.1016/j.cellsig.2012.01.004
dc.relation.referencesZhao, X., Xiang, H., Bai, X., Fei, N., Huang, Y., Song, X., Zhang, H., Zhang, L., & Tong, D. (2016). Porcine parvovirus infection activates mitochondria-mediated apoptotic signaling pathway by inducing ROS accumulation. https://doi.org/10.1186/s12985-016-0480-z Virology Journal, 13(1).
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocVirus de los animales
dc.subject.agrovocAnimal viruses
dc.subject.agrovocEnfermedades respiratorias
dc.subject.agrovocrespiratory diseases
dc.subject.agrovocProducción animal
dc.subject.agrovocanimal production
dc.subject.proposalAnálisis molecular
dc.subject.proposalComplejo respiratorio porcino
dc.subject.proposalDiagnóstico
dc.subject.proposalPatógenos respiratorios
dc.subject.proposalVirología
dc.subject.proposalMolecular analysis
dc.subject.proposalPorcine respiratory complex
dc.subject.proposalDiagnosis
dc.subject.proposalRespiratory Pathogens
dc.subject.proposalVirology
dc.title.translatedDynamics of some respiratory viruses in two techinified pig farms in the Colombian high tropics
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameUniversidad Nacional de Colombia
dcterms.audience.professionaldevelopmentInvestigadores
dc.contributor.orcidhttps://orcid.org/0000-0003-2819-0582
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000169270
dc.contributor.scopushttp://www.scopus.com/inward/authorDetails.url?authorID=57219535130&partnerID=MN8TOARS
dc.contributor.researchgatehttps://www.researchgate.net/profile/Luis-Tarazona-Manrique
dc.contributor.googlescholarhttps://scholar.google.es/citations?user=ZLYqyhoAAAAJ&hl=es


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito