Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorTavera Vargas, José Julián
dc.contributor.advisorAcero Pizarro, Arturo
dc.contributor.authorOntiveros Ospina, María Katherine
dc.date.accessioned2024-04-15T15:52:02Z
dc.date.available2024-04-15T15:52:02Z
dc.date.issued2023-08
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85909
dc.descriptiongráficos, mapas, tablas
dc.description.abstractParrotfishes play a key role in marine ecosystems, especially on coral reefs, a highly threatened ecosystem of significant importance, as they host nearly 25% of the diversity of marine life. These fish have become the target of artisanal fishermen in the Caribbean and their decline in natural habitats has been noticeable. Despite the importance of these organisms, little is known about their populations in terms of their genetic diversity. Fishery resources generally do not acknowledge population structure or local adaptations; instead, they are prematurely considered panmictic stocks. Although parrotfishes are not classified as a fishing resource, they suffer from this pressure. Considering this, it is essential to know the diversity, population genetic structure, and connectivity as population indicators of their adaptive capacity, resilience, and survival in the face of present and future eventualities. Sparisoma chrysopterum, the redtail parrotfish, was selected as a model to evaluate genetic variation at the population level using single nucleotide polymorphisms (SNP) and its distribution in a longitudinal gradient that covers four areas of the southern and southwestern Caribbean (Margarita Island, Taganga, Cartagena, and San Andrés Island), locations in which the genetic flow can be interrupted by geographical barriers such as the Panama-Colombia countercurrent, Magdalena River plume, and Caribbean upwelling. There was no evidence of population structure in the southern Caribbean. The genetic diversity showed a pattern with low values, the heterozygosity was low in the four locations, and there were no barriers to gene flow. The general result suggests a Sparisoma chrysopterum in the southern Caribbean is a panmictic population (Texto tomado de la fuente)
dc.description.abstractLos peces loro desempeñan un papel de vital importancia en los ecosistemas marinos, en especial en los arrecifes coralinos, un ecosistema altamente amenazado y de suma importancia pues alberga cerca de 25% de la diversidad de la vida marina. Estos peces se han convertido en objetivo de los pescadores artesanales del Caribe y su disminución en hábitats naturales ha sido notable. A pesar de la importancia de estos organismos, poco se conoce acerca de las poblaciones en términos de su diversidad genética. Los recursos pesqueros en general no toman en cuenta la estructura poblacional ni las adaptaciones locales, en cambio son consideradas, prematuramente, poblaciones panmícticas y, aunque los peces loro no están establecidos como recurso pesquero, sufren por esta presión. Teniendo esto en cuenta, se hace indispensable conocer la diversidad, estructura genética poblacional y conectividad como indicadores poblacionales de su capacidad adaptativa, resiliencia y supervivencia ante eventualidades presentes y futuras. Se seleccionó la especie Sparisoma chrysopterum como modelo para evaluar la variación genética a un nivel poblacional a través del estudio de polimorfismos de único nucleótido (SNP) y su distribución en un gradiente longitudinal que abarca cuatro áreas del Caribe sur y occidental (isla Margarita, Taganga, Cartagena e isla de San Andrés), áreas en las que el flujo genético puede verse interrumpido por las barreras geográficas de la contracorriente Panamá -Colombia, la pluma del Magdalena y la surgencia del Caribe. No hubo evidencia de estructura poblacional en el Caribe sur. La diversidad genética mostró un patrón con valores bajos, la heterocigosidad fue baja en las cuatro localidades y no se evidenciaron barreras para el flujo génico. El resultado general sugiere que Sparisoma chrysopterum en el Caribe sur es una población panmítica.
dc.format.extentVII, 40 paginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc570 - Biología::576 - Genética y evolución
dc.subject.ddc590 - Animales::596 - Cordados
dc.subject.ddc590 - Animales::597 - Vertebrados de sangre fría
dc.titleGenetic survey and variation of the populations of Sparisoma chrysopterum (Labriformes, Scarinae) in the southern and western Caribbean
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programCaribe - Caribe - Maestría en Ciencias - Biología
dc.contributor.researchgroupFauna Marina Colombiana: Biodiversidad y Usos
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Biología
dc.description.researchareaBiología marina
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.departmentInstituto de Estudios Caribeños
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeSan Andrés Isla
dc.publisher.branchUniversidad Nacional de Colombia - Sede Caribe
dc.relation.referencesAdam, T. C., Kelley, M., Ruttenberg, B. I., & Burkepile, D. E. (2015). Resource partitioning along multiple niche axes drives functional diversity in parrotfishes on Caribbean coral reefs. Oecologia, 179(4), 1173–1185. https://doi.org/10.1007/S00442-015-3406-3/FIGURES/6
dc.relation.referencesAndrade, C. A. (2001). Las corrientes superficiales en la cuenca de Colombia observadas con boyas de deriva. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 25 (96), 321336
dc.relation.referencesAndrade, C. A. (2003). Evidence for an eastward flow along the Central and South American Caribbean Coast. Journal of Geophysical Research, 108(C6), 3185. https://doi.org/10.1029/2002JC001549
dc.relation.referencesAtencia-Galindo, M. A., Narvaéz, J. C., Ramírez, A., Paramo, J., & Aguire-Pabón, J. C. (2021). Genetic structure of the pink shrimp Penaeus (Farfantepenaeus) notialis (Pérez-Farfante, 1967) (Decapoda: Penaeidae) in the Colombian Caribbean. Fisheries Research, 243, 106052. https://doi.org/10.1016/J.FISHRES.2021.106052
dc.relation.referencesBellwood, D. R., Hoey, A. S., & Choat, J. H. (2003). Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecology Letters, 6(4), 281–285. https://doi.org/10.1046/j.1461-0248.2003.00432.x
dc.relation.referencesBenestan, L., Gosselin, T., Perrier, C., Sainte-Marie, B., Rochette, R., & Bernatchez, L. (2015). RAD genotyping reveals fine-scale genetic structuring and provides powerful population assignment in a widely distributed marine species, the American lobster (Homarus americanus). Molecular Ecology, 24(13), 3299–3315. https://doi.org/10.1111/mec.13245
dc.relation.referencesBernardi, G., Robertson, D. R., Clifton, K. E., & Azzurro, E. (2000). Molecular systematics, zoogeography, and evolutionary ecology of the Atlantic parrotfish genus Sparisoma. Molecular Phylogenetics and Evolution, 15(2), 292–300. https://doi.org/10.1006/mpev.1999.0745
dc.relation.referencesBradbury, I. R., Laurel, B., Snelgrove, P. V. R., Bentzen, P., & Campana, S. E. (2008). Global patterns in marine dispersal estimates: the influence of geography, taxonomic category and life history. Proceedings of the Royal Society B: Biological Sciences, 275(1644), 1803–1809. https://doi.org/10.1098/rspb.2008.0216
dc.relation.referencesBrandrud, M. K., Paun, O., Lorenzo, M. T., Nordal, I., & Brysting, A. K. (2017). RADseq provides evidence for parallel ecotypic divergence in the autotetraploid Cochlearia officinalis in Northern Norway. Scientific Reports, 7(1), 1–13. https://doi.org/10.1038/s41598-017-05794-z
dc.relation.referencesBrown, K. T., Bender-Champ, D., Kubicek, A., van der Zande, R., Achlatis, M., Hoegh-Guldberg, O., & Dove, S. G. (2018). The dynamics of coral-algal interactions in space and time on the southern Great Barrier Reef. Frontiers in Marine Science, 5(MAY), 1–13. https://doi.org/10.3389/fmars.2018.00181
dc.relation.referencesCatchen, J. M., Amores, A., Hohenlohe, P., Cresko, W., & Postlethwait, J. H. (2011). Stacks: Building and genotyping loci de novo from short-read sequences. G3: Genes, Genomes, Genetics, 1(3), 171–182. https://doi.org/10.1534/g3.111.000240
dc.relation.referencesCatchen, J., Hohenlohe, P. A., Bassham, S., Amores, A., & Cresko, W. A. (2013). Stacks: an analysis tool set for population genomics. Molecular Ecology, 22(11), 3124–3140. https://doi.org/10.1111/mec.12354
dc.relation.referencesChasqui Velasco, L. H., Polanco F., A., Acero P., A., Mejía Falla, P. A., Navia, A. F., Zapata, L. A., & Caldas, J. P. (2017). Libro rojo de peces marinos de Colombia (2017). INVEMAR. http://hdl.handle.net/1834/15894
dc.relation.referencesCocheret De La Morinière, E., Pollux, B. J. A., Nagelkerken, I., & Van Der Velde, G. (2002). Post-settlement life cycle migration patterns and habitat preference of coral reef fish that use seagrass and mangrove habitats as nurseries. Estuarine, Coastal and Shelf Science, 55(2), 309–321. https://doi.org/10.1006/ECSS.2001.0907
dc.relation.referencesComeros-Raynal, M. T., Choat, J. H., Polidoro, B. A., Clements, K. D., Abesamis, R., Craig, M. T., Lazuardi, M. E., McIlwain, J., Muljadi, A., Myers, R. F., Nañola, C. L., Pardede, S., Rocha, L. A., Russell, B., Sanciangco, J. C., Stockwell, B., Harwell, H., & Carpenter, K. E. (2012). The likelihood of extinction of iconic and dominant herbivores and detritivores of coral reefs: The parrotfishes and surgeonfishes. PLoS ONE, 7(7). https://doi.org/10.1371/journal.pone.0039825
dc.relation.referencesCowen, R. K., & Sponaugle, S. (2009). Larval dispersal and marine population connectivity. In Annual Review of Marine Science (Vol. 1). https://doi.org/10.1146/annurev.marine.010908.163757
dc.relation.referencesCowen, R. K., Lwiza, K. M. M., Sponaugle, S., Paris, C. B., & Olson, D. B. (2000). Connectivity of marine populations: Open or closed? Science, 287(5454). https://doi.org/10.1126/science.287.5454.857
dc.relation.referencesCowen, R. K., Gawarkiewicz, G., Pineda, J., Thorrold, S. R., & Werner, F. E. (2007). Population connectivity in marine systems: An overview. Oceanography, 20(SPL.ISS. 3). https://doi.org/10.5670/oceanog.2007.26
dc.relation.referencesCowman, P. F., & Bellwood, D. R. (2013). Vicariance across major marine biogeographic barriers: Temporal concordance and the relative intensity of hard versus soft barriers. Proceedings of the Royal Society B: Biological Sciences, 280(1768). https://doi.org/10.1098/rspb.2013.1541
dc.relation.referencesCramer, K. L., O’Dea, A., Clark, T. R., Zhao, J., & Norris, R. D. (2017). Prehistorical and historical declines in Caribbean coral reef accretion rates driven by loss of parrotfish. Nature Communications, 8, 14160. https://doi.org/10.1038/ncomms14160
dc.relation.referencesDíaz-Ferguson, E., Haney, R., Wares, J., & Silliman, B. (2010). Population genetics of a trochid gastropod broadens picture of Caribbean Sea connectivity. PLoS ONE, 5(9), 1–8. https://doi.org/10.1371/JOURNAL.PONE.0012675
dc.relation.referencesDíaz-Ferguson, E., Haney, R. A., Wares, J. P., & Silliman, B. R. (2012). Genetic structure and connectivity patterns of two Caribbean rocky-intertidal gastropods. Journal of Molluscan Studies, 78(1), 112–118. https://doi.org/10.1093/MOLLUS/EYR050
dc.relation.referencesDichmont, C. M., Ovenden, J. R., Berry, O., Welch, D. J., & Buckworth, R. C. (2012). Scoping current and future genetic tools, their limitations and their applications for wild fisheries management Wealth from Oceans www.csiro.au. www.csiro.au
dc.relation.referencesDorenbosch, M., Van Riel, M. C., Nagelkerken, I., & Van Der Velde, G. (2004). The relationship of reef fish densities to the proximity of mangrove and seagrass nurseries. Estuarine, Coastal and Shelf Science, 60(1), 37–48. https://doi.org/10.1016/J.ECSS.2003.11.018
dc.relation.referencesEarl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359–361. https://doi.org/10.1007/s12686-011-9548-7
dc.relation.referencesElliff, C. I., & Silva, I. R. (2017). Coral reefs as the first line of defense: Shoreline protection in face of climate change. Marine Environmental Research, 127, 148–154. https://doi.org/10.1016/j.marenvres.2017.03.007
dc.relation.referencesEnberg, K., Jørgensen, C., Dunlop, E. S., Heino, M., & Dieckmann, U. (2009). Implications of fisheries-induced evolution for stock rebuilding and recovery. Evolutionary Applications, 2(3), 394–414. https://doi.org/10.1111/j.1752-4571.2009.00077.x
dc.relation.referencesEvanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14(8), 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
dc.relation.referencesExcoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
dc.relation.referencesFisher, R., O’Leary, R. A., Low-Choy, S., Mengersen, K., Knowlton, N., Brainard, R. E., & Caley, M. J. (2015). Species richness on coral reefs and the pursuit of convergent global estimates. Current Biology, 25(4), 500–505. https://doi.org/10.1016/j.cub.2014.12.022
dc.relation.referencesFunk, W. C., McKay, J. K., Hohenlohe, P. A., & Allendorf, F. W. (2012). Harnessing genomics for delineating conservation units. Trends in Ecology and Evolution, 27(9), 489–496. https://doi.org/10.1016/j.tree.2012.05.012
dc.relation.referencesGilg, M. R., & Hilbish, T. J. (2003). The geography of marine larval dispersal: Coupling genetics with fine-scale physical oceanography. Ecology, 84(11). https://doi.org/10.1890/02-0498
dc.relation.referencesGómez Gaspar, A., & Acero P., A. (2020). Comparación de las surgencias de la Guajira colombiana y del oriente venezolano. Boletín de Investigaciones Marinas y Costeras, 49(2), 131–172. https://doi.org/10.25268/bimc.invemar.2020.49.2.943
dc.relation.referencesGoudet, J., & Jombart, T. (2015). hierfstat: estimation and tests of hierarchical F-statistics. In R package version 0.04-22, 10
dc.relation.referencesGraves, J. E. (1998). Molecular insight into the population structure of cosmopolitan marine fishes. Journal of Heredity, 89(April), 427–437. https://doi.org/10.1093/jhered/89.5.427
dc.relation.referencesGray, J. S. (1997). Marine biodiversity: patterns, threats and conservation needs. Biodiversity & Conservation,6(1), 153–175
dc.relation.referencesHawkins, J. P., & Roberts, C. M. (2004a). Effects of artisanal fishing on Caribbean coral reefs. Conservation Biology, 18(1), 215–226. https://doi.org/10.1111/j.1523-1739.2004.00328.x
dc.relation.referencesHawkins, J. P., & Roberts, C. M. (2004b). Effects of fishing on sex-changing Caribbean parrotfishes. Biological Conservation, 115(2), 213–226. https://doi.org/10.1016/S0006-3207(03)00119-8
dc.relation.referencesHoarau, G., Boon, E., Jongma, D. N., Ferber, S., Palsson, J., Van Der Veer, H. W., Rijnsdorp, A. D., Stam, W. T., & Olsen, J. L. (2005). Low effective population size and evidence for inbreeding in an overexploited flatfish, plaice (Pleuronectes platessa L.). Proceedings of the Royal Society B: Biological Sciences, 272(1562). https://doi.org/10.1098/rspb.2004.2963
dc.relation.referencesHutchings, J. A. (2000). Collapse and recovery of marine fishes. Nature, 406(6798). https://doi.org/10.1038/35022565
dc.relation.referencesHutchings, J. A., & Reynolds, J. D. (2004). Marine fish population collapses: Consequences for recovery and extinction risk. In BioScience (Vol. 54, Issue 4). https://doi.org/10.1641/0006-3568(2004)054[0297:MFPCCF]2.0.CO;2
dc.relation.referencesJackson, J. B., Donovan, M. K., Cramer, K., & Lam, V. (2014). Status and trends of Caribbean coral reefs: 1970-2012. Global Coral Reef Monitoring Network, 306
dc.relation.referencesJohnston, L., Miller, M. W., & Baums, I. B. (2012). Assessment of host-associated genetic differentiation among phenotypically divergent populations of a coral-eating gastropod across the Caribbean. PLoS ONE, 7(11). https://doi.org/10.1371/journal.pone.0047630
dc.relation.referencesJombart, T. (2008). Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11). https://doi.org/10.1093/bioinformatics/btn129
dc.relation.referencesJombart, T., & Ahmed, I. (2011). Adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics, 27(21), 3070–3071. https://doi.org/10.1093/BIOINFORMATICS/BTR521
dc.relation.referencesJombart, T., Devillard, S., & Balloux, F. (2010). Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genetics, 11. https://doi.org/10.1186/1471-2156-11-94
dc.relation.referencesKamvar, Z. N., Tabima, J. F., & Gr̈unwald, N. J. (2014). Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ, 2014(1). https://doi.org/10.7717/peerj.281
dc.relation.referencesKardos, M., Taylor, H. R., Ellegren, H., Luikart, G., & Allendorf, F. W. (2016). Genomics advances the study of inbreeding depression in the wild. In Evolutionary Applications (Vol. 9, Issue 10). https://doi.org/10.1111/eva.12414
dc.relation.referencesKeenan, K., Mcginnity, P., Cross, T. F., Crozier, W. W., & Prodöhl, P. A. (2013). diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods in Ecology and Evolution, 4(8), 782–788. https://doi.org/10.1111/2041-210X.12067
dc.relation.referencesKenchington, E. (2013). The effects of fishing on species and genetic diversity. Responsible Fisheries in the Marine Ecosystem, 235–255. https://doi.org/10.1079/9780851996332.0235
dc.relation.referencesKitada, S., Nakamichi, R., & Kishino, H. (2021). Understanding population structure in an evolutionary context: population-specific FST and pairwise FST. G3 Genes|Genomes|Genetics, 11(11). https://doi.org/10.1093/G3JOURNAL/JKAB316
dc.relation.referencesKnowlton, N., Brainard, R. E., Fisher, R., Moews, M., Plaisance, L., & Caley, M. J. (2010). Coral reef biodiversity. Life in the World’s Oceans: Diversity, Distribution, and Abundance, 65–78. https://doi.org/10.1002/9781444325508.CH4
dc.relation.referencesKopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A., & Mayrose, I. (2015). Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Molecular Ecology Resources, 15(5), 1179–1191. https://doi.org/10.1111/1755-0998.12387
dc.relation.referencesKough, A. S., & Paris, C. B. (2015). The influence of spawning periodicity on population connectivity. Coral Reefs, 34(3), 753–757. https://doi.org/10.1007/S00338-015-1311-1/METRICS
dc.relation.referencesLoera-Padilla, F. J., Piñeros, V. J., Baldwin, C. C., Cox, C. E., Simoes, N., Ribeiro, E., Lasso-Alcalá, O. M., & Domínguez-Domínguez, O. (2021). Phylogeography, population connectivity and demographic history of the Stoplight parrotfish, Sparisoma viride (Teleostei: Labridae), in the Greater Caribbean. Coral Reefs, 1–13. https://doi.org/10.1007/s00338-020-02036-z
dc.relation.referencesLópez-Angarita, J., Del Pilar, M., Orjuela, R., Peña, K. G., & Escobar, D. (2021). Results from a conservation initiative for parrotfishes in the Colombian Caribbean. BioRxiv, 2021.09.27.462015. https://doi.org/10.1101/2021.09.27.462015
dc.relation.referencesLowe, W. H., & Allendorf, F. W. (2010). What can genetics tell us about population connectivity? Molecular Ecology, 19(15), 3038–3051. https://doi.org/10.1111/j.1365-294X.2010.04688.x
dc.relation.referencesLuiz, O. J., Madin, J. S., Robertson, D.R., Rocha, L. A., Wirtz, P., & Floeter, S. R. (2012). Ecological traits influencing range expansion across large oceanic dispersal barriers: Insights from tropical Atlantic reef fishes. Proceedings of the Royal Society B: Biological Sciences, 279(1730), 1033–1040. https://doi.org/10.1098/rspb.2011.1525
dc.relation.referencesMumby, P. J. (2009a). Herbivory versus corallivory: Are parrotfish good or bad for Caribbean coral reefs? Coral Reefs, 28(3), 683–690. https://doi.org/10.1007/s00338-009-0501-0
dc.relation.referencesMumby, P. J. (2009b). Phase shifts and the stability of macroalgal communities on Caribbean coral reefs. Coral Reefs, 28(3), 761–773. https://doi.org/10.1007/s00338-009-0506-8
dc.relation.referencesNadukkalam Ravindran, P., Bentzen, P., Bradbury, I. R., & Beiko, R. G. (2019). RADProc: A computationally efficient de novo locus assembler for population studies using RADseq data. Molecular Ecology Resources, 19(1), 272–282. https://doi.org/10.1111/1755-0998.12954
dc.relation.referencesNagelkerken, I., Roberts, C. M., Van der Velde, G., Dorenbosch, M., Van Riel, M. C., Cocheret de la Morinière, E., & Nienhuis, P. H. (2002). How important are mangroves and seagrass beds for coral-reef fish? The nursery hypothesis tested on an island scale. Marine Ecology Progress Series, 244, 299–305. https://doi.org/10.3354/meps244299
dc.relation.referencesNatasha, J., Stockwell, B. L., Marie, A. D., Hampton, J., Smith, N., Nicol, S., & Rico, C. (2022). No population structure of bigeye tunas (Thunnus obesus) in the Western and Central Pacific Ocean indicated by single nucleotide polymorphisms. Frontiers in Marine Science, 9, 371. https://doi.org/10.3389/FMARS.2022.799684/BIBTEX
dc.relation.referencesNazareno, A. G., Bemmels, J. B., Dick, C. W., & Lohmann, L. G. (2017). Minimum sample sizes for population genomics: an empirical study from an Amazonian plant species. Molecular Ecology Resources, 17(6), 1136–1147. https://doi.org/10.1111/1755-0998.12654
dc.relation.referencesNesbø, C. L., Rueness, E. K., Iversen, S. A., Skagen, D. W., & Jakobsen, K. S. (2000). Phylogeography and population history of Atlantic mackerel (Scomber scombrus L.): a genealogical approach reveals genetic structuring among the eastern Atlantic stocks. Proceedings of the Royal Society B: Biological Sciences, 267(1440), 281–292. https://doi.org/10.1098/rspb.2000.0998
dc.relation.referencesNielsen, E. E., Hemmer-Hansen, J., Larsen, P. F., & Bekkevold, D. (2009). Population genomics of marine fishes: Identifying adaptive variation in space and time. Molecular Ecology, 18(15), 3128–3150. https://doi.org/10.1111/j.1365-294X.2009.04272.x
dc.relation.referencesNielsen, E. E., Cariani, A., Aoidh, E. Mac, Maes, G. E., Milano, I., Ogden, R., Taylor, M., Hemmer-Hansen, J., Babbucci, M., Bargelloni, L., Bekkevold, D., Diopere, E., Grenfell, L., Helyar, S., Limborg, M. T., Martinsohn, J. T., McEwing, R., Panitz, F., Patarnello, T., … Carvalho, G. R. (2012). Gene-associated markers provide tools for tackling illegal fishing and false eco-certification. Nature Communications, 3. https://doi.org/10.1038/ncomms1845
dc.relation.referencesPalumbi, S. R. (1994). Genetic divergence, reproductive isolation, and marine speciation. Annual Review of Ecology and Systematics, 25, 547–572. https://doi.org/10.1146/annurev.es.25.110194.002555
dc.relation.referencesPalumbi, S. R. (2008). Humans as the world’s greatest evolutionary force. Urban Ecology: An International Perspective on the Interaction Between Humans and Nature, 293(September), 15–24. https://doi.org/10.1007/978-0-387-73412-5_2
dc.relation.referencesParamo, J., Correa, M., & Núñez, S. (2011). Evidence of physical-biological mismatch in the Guajira upwelling system, Colombian Caribbean Revista de Biologia Marina y Oceanografia,46(3), 421-430. http://podaac.jlp.nasa.gov/quickscat
dc.relation.referencesPeakall, R., & Smouse, P. E. (2012). GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics, 28(19). https://doi.org/10.1093/bioinformatics/bts460
dc.relation.referencesPelc, R. A., Warner, R. R., & Gaines, S. D. (2009). Geographical patterns of genetic structure in marine species with contrasting life histories. Journal of Biogeography, 36(10), 1881–1890. https://doi.org/10.1111/j.1365-2699.2009.02138.x
dc.relation.referencesPicq, S., Mcmillan, W. O., & Puebla, O. (2016). Population genomics of local adaptation versus speciation in coral reef fishes (Hypoplectrus spp, Serranidae). Ecology and Evolution, 6(7), 2109–2124. https://doi.org/10.1002/ece3.2028
dc.relation.referencesPorto-Hannes, I., Zubillaga, A. L., Shearer, T. L., Bastidas, C., Salazar, C., Coffroth, M. A., & Szmant, A. M. (2015). Population structure of the corals Orbicella faveolata and Acropora palmata in the Mesoamerican Barrier Reef System with comparisons over Caribbean basin-wide spatial scale. Marine Biology, 162(1), 81–98. https://doi.org/10.1007/S00227-014-2560-1/METRICS
dc.relation.referencesPritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of Population Structure Using Multilocus Genotype Data. http://www.stats.ox.ac.uk/pritch/home.html
dc.relation.referencesPuebla, O. (2009). Ecological speciation in marine v. freshwater fishes. Journal of Fish Biology, 75(5), 960–996. https://doi.org/10.1111/j.1095-8649.2009.02358.x
dc.relation.referencesPuechmaille, S. J. (2016). The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Molecular Ecology Resources, 16(3). https://doi.org/10.1111/1755-0998.12512
dc.relation.referencesPuentes Sayo, P. A. (2021). Patrón filogeográfico del pulpo común Octopus insularis en el Caribe de Colombia. Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/81142
dc.relation.referencesR Core Team. (2019). R Core Team (2019) R A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. - References - Scientific Research Publishing. https://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/reference/ReferencesPapers.aspx?ReferenceID=2631126
dc.relation.referencesR Core Team. (2022). R: A Language and Environment for Statistical Computing (3.4.4). R Foundation for Statistical Computing
dc.relation.referencesRestrepo, J. C., Ortíz, J. C., Pierini, J., Schrottke, K., Maza, M., Otero, L., & Aguirre, J. (2014). Freshwater discharge into the Caribbean Sea from the rivers of Northwestern South America (Colombia): Magnitude, variability and recent changes. Journal of Hydrology, 509, 266–281. https://doi.org/10.1016/j.jhydrol.2013.11.045
dc.relation.referencesRestrepo, J. D., Zapata, P., Díaz, J. M., Garzón-Ferreira, J., & García, C. B. (2006). Fluvial fluxes into the Caribbean Sea and their impact on coastal ecosystems: The Magdalena River, Colombia. Global and Planetary Change, 50(1–2), 33–49. https://doi.org/10.1016/j.gloplacha.2005.09.002
dc.relation.referencesReynolds, J. D., Dulvy, N. K., Goodwin, N. B., & Hutchings, J. A. (2005). Biology of extinction risk in marine fishes. Proceedings of the Royal Society B: Biological Sciences, 272(1579), 2337–2344. https://doi.org/10.1098/RSPB.2005.3281
dc.relation.referencesRichards, V. P., DeBiasse, M. B., & Shivji, M. S. (2015). Genetic evidence supports larval retention in the western Caribbean for an invertebrate with high dispersal capability (Ophiothrix suensonii: Echinodermata, Ophiuroidea). Coral Reefs, 34(1), 313–325. https://doi.org/10.1007/S00338-014-1237-Z/METRICS
dc.relation.referencesRivera, A. M. J., Andrews, K. R., Kobayashi, D. R., Wren, J. L. K., Kelley, C., Roderick, G. K., & Toonen, R. J. (2011). Genetic analyses and simulations of larval dispersal reveal distinct populations and directional connectivity across the range of the Hawaiian grouper (Epinephelus quernus). Journal of Marine Biology, 2011, 11. https://doi.org/10.1155/2011/765353
dc.relation.referencesRobertson, D. R., & Cramer, K. L. (2014). Defining and dividing the Greater Caribbean: Insights from the biogeography of shorefishes. PLoS ONE, 9(7). https://doi.org/10.1371/journal.pone.0102918
dc.relation.referencesRobertson, D. R., & Van Tassell, J. (2019). Shorefishes - Homepage. Shorefishes of the Greater Caribbean: Online Information System. https://biogeodb.stri.si.edu/caribbean/en/pages
dc.relation.referencesRobertson, R., & Warner, R. R. (1978). Sexual patterns in the labroid fishes of the Western Caribbean, II, the parrotfishes (Scaridae). Smithsonian Contributions to Zoology, 255, 1–26. https://doi.org/10.5479/si.00810282.255
dc.relation.referencesRobertson, D., Karg, F., Leao de Moura, R., Victor, B. C., & Bernardi, G. (2006). Mechanisms of speciation and faunal enrichment in Atlantic parrotfishes. Molecular Phylogenetics and Evolution, 40(3), 795–807. https://doi.org/10.1016/j.ympev.2006.04.011
dc.relation.referencesRocha, L. A., Choat, J. H., Clements, K. D., Russell, B., Myers, R., Lazuardi, M. E., Muljadi, A., Pardede, S., & Rahardjo, P. (2012). Sparisoma chrysopterum. The IUCN Red List of Threatened Species 2012: e.T190738A17788150. https://doi.org/https://dx.doi.org/10.2305/IUCN.UK.2012.RLTS.T190738A17788150.en
dc.relation.referencesRochette, N. C., & Catchen, J. M. (2017). Deriving genotypes from RAD-seq short-read data using Stacks. Nature Protocols, 12(12), 2640–2659. https://doi.org/10.1038/nprot.2017.123
dc.relation.referencesRodríguez-Ezpeleta, N., Bradbury, I. R., Mendibil, I., Álvarez, P., Cotano, U., & Irigoien, X. (2016). Population structure of Atlantic mackerel inferred from RAD-seq-derived SNP markers: effects of sequence clustering parameters and hierarchical SNP selection. Molecular Ecology Resources, 16(4), 991–1001. https://doi.org/10.1111/1755-0998.12518
dc.relation.referencesRogers, A., Blanchard, J. L., & Mumby, P. J. (2014). Vulnerability of coral reef fisheries to a loss of structural complexity. Current Biology, 24(9), 1000–1005. https://doi.org/10.1016/J.CUB.2014.03.026
dc.relation.referencesRueda, J., Rivillas-Ospina, G., Ávila, H., & Acuña, G. (2016). Dinámica estacional de la pluma turbia del delta Río Magdalena y su respuesta ante la hidrodinámica local, el viento y los flujos de calor Análisis intramensual. Instituto de Estudios Hidráulicos y Ambientales, October 2015, 23. https://www.researchgate.net/publication/283292433_Dinamica_estacional_de_la_pluma_turbia_del_delta_Rio_Magdalena_y_su_respuesta_ante_la_hidrodinamica_local_el_viento_y_los_flujos_de_calor_-_Analisis_intramensual
dc.relation.referencesSaad, Y. M., AbuZinadah, O. A. H., & El-Domyati, M. F. (2013). Monitoring of genetic diversity in some parrotfish species based on inter simple sequence repeats polymorphism. Life Science Journal, 10(4), 1841–1846.
dc.relation.referencesSilliman, K. (2019). Population structure, genetic connectivity, and adaptation in the Olympia oyster (Ostrea lurida) along the west coast of North America. Evolutionary Applications, 12(5), 923–939. https://doi.org/10.1111/eva.12766
dc.relation.referencesSmith, C. L. (1997). National Audubon Society Field Guide to Tropical Marine Fishes: Caribbean, Gulf of Mexico, Florida, Bahamas, Bermuda. (Knopf Doubleday Publishing Group, Ed.). Knopf.
dc.relation.referencesSmith, T. B., & Weissman, D. B. (2023). Isolation by distance in populations with power-law dispersal. G3: Genes, Genomes, Genetics, 13(4). https://doi.org/10.1093/g3journal/jkad023
dc.relation.referencesSteneck, R. S., Arnold, S. N., & Mumby, P. J. (2014). Experiment mimics fishing on parrotfish: insights on coral reef recovery and alternative attractors. Marine Ecology Progress Series, 506, 115–127. https://doi.org/10.3354/MEPS10764
dc.relation.referencesSundqvist, L., Keenan, K., Zackrisson, M., Prodöhl, P., & Kleinhans, D. (2016). Directional genetic differentiation and relative migration. Ecology and Evolution, 6(11), 3461–3475. https://doi.org/10.1002/ECE3.2096
dc.relation.referencesSwearer, S. E., Treml, E. A., & Shima, J. S. (2019). A review of biophysical models of marine larval dispersal. In Oceanography and Marine Biology (Vol. 57, pp. 325–356). CRC Press. https://doi.org/10.1201/9780429026379-7
dc.relation.referencesSwierts, T., & Vermeij, M. J. A. (2016). Competitive interactions between corals and turf algae depend on coral colony form. PeerJ, 2016(5), 1–18. https://doi.org/10.7717/peerj.1984
dc.relation.referencesTaylor, M. S., & Hellberg, M. E. (2003). Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science, 299(5603). https://doi.org/10.1126/science.1079365
dc.relation.referencesTiffin, P., & Ross-Ibarra, J. (2014). Advances and limits of using population genetics to understand local adaptation. Trends in Ecology and Evolution, 29(12), 673–680. https://doi.org/10.1016/j.tree.2014.10.004
dc.relation.referencesTovar Verba, J., Ferreira, C. E. L., Pennino, M. G., Hagberg, L., Lopes, P. F. M., Padovani Ferreira, B., Maia Queiroz Lima, S., & Stow, A. (2022). Genetic structure of the threatened gray parrotfish (Sparisoma axillare) in the southwestern Atlantic. Coral Reefs 2022 42:1, 42(1), 105–117. https://doi.org/10.1007/S00338-022-02324-W
dc.relation.referencesVallès, H., & Oxenford, H. A. (2014). Parrotfish size: A simple yet useful alternative indicator of fishing effects on Caribbean reefs? PLoS ONE, 9(1). https://doi.org/10.1371/journal.pone.0086291
dc.relation.referencesVelasco-Montoya, D. A., Millán-Márquez, A. M., & Tavera, J. (2022). Genetic connectivity in Sparisoma aurofrenatum (redband parrotfish): an unexpected journey. Hydrobiologia, 849(8), 1727–1741. https://doi.org/10.1007/S10750-022-04806-Y/METRICS
dc.relation.referencesWallace, E. M., & Tringali, M. D. (2016). Fishery composition and evidence of population structure and hybridization in the Atlantic bonefish species complex (Albula spp.). Marine Biology, 163(6), 1–15. https://doi.org/10.1007/S00227-016-2915-X/METRICS
dc.relation.referencesWard, R. D., Woodwark, M., & Skibinski, D. O. F. (1994). A comparison of genetic diversity levels in marine, freshwater, and anadromous fishes. In Journal of Fish Biology (Vol. 44, Issue 2, pp. 213–232). https://doi.org/10.1111/j.1095-8649.1994.tb01200.x
dc.relation.referencesWeersing, K., & Toonen, R. J. (2009). Population genetics, larval dispersal, and connectivity in marine systems. Marine Ecology Progress Series, 393. https://doi.org/10.3354/meps08287
dc.relation.referencesWeir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, 38(6), 1358. https://doi.org/10.2307/2408641
dc.relation.referencesWhite, C., Selkoe, K., Watson, J., Siegel, D., & Zacherl, D. (2010). Ocean currents help explain population genetic structure. Proceedings of the Royal Society B-Biological Sciences, 277.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalpopulation genomics
dc.subject.proposalsouthern Caribbean
dc.subject.proposalRADseq
dc.subject.proposalSNP
dc.subject.proposalredtail parrotfish
dc.subject.proposalGenómica poblacional
dc.subject.proposalCaribe Sur
dc.subject.proposalRADseq
dc.subject.proposalSNP
dc.subject.proposalLoro colirrojo
dc.title.translatedEstado genético y variación de las poblaciones de Sparisoma chrysopterum (Labriformes, Scarinae) en el Caribe suroccidental
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaOtra. Sede Caribe


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito