Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorDavid Ruales, Carlos Arturo
dc.contributor.advisorPardo Carrasco, Sandra Clemencia
dc.contributor.advisorGutiérrez Ramírez, Luz Adriana
dc.contributor.authorCano Gil, Juan David
dc.date.accessioned2024-04-16T14:30:17Z
dc.date.available2024-04-16T14:30:17Z
dc.date.issued2024-04-10
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85923
dc.descriptionilustraciones, fotografías, gráficos
dc.description.abstractPanaque cochliodon, conocido en Colombia como cucha de ojos azules, es una especie endémica de las cuencas del Cauca y el Magdalena, y está clasificada como vulnerable (A2d) en el Libro Rojo de los Peces de Agua Dulce de Colombia. Este es el primer reporte para Colombia sobre esta especie en medio natural razón por la cual se escogió para este trabajo, además por tener hábitos xilívoros, es decir, que consume madera como principal fuente de alimento para su nutrición, siendo una especie de gran valor biológico para el ecosistema. Se tiene cierto conocimiento sobre su comportamiento básico, adaptación al cautiverio y otras características relacionadas con su alimentación y reproducción, sin embargo, se desconoce por completo su fisiología digestiva y las posibles relaciones simbióticas de los componentes de su microbiota intestinal. En este estudio se realizó la primera caracterización de la microbiota asociada al tracto gastrointestinal de Panaque cochliodon. Para ello, se capturaron y utilizaron tres ejemplares adultos provenientes del río Magdalena, los cuales fueron transportados y sacrificados siguiendo las normas de bienestar animal. Se realizó la disección del tracto intestinal, obteniendo muestras para el aislamiento microbiológico e identificación molecular de los microorganismos cultivables, con el objetivo de obtener información filogenética. Mediante análisis bioinformáticos, se identificaron varios géneros de interés para la producción agropecuaria y de alimentos, como: Bacillus paramycoides, Bacillus velezensis, Bacillus thuringiensis y Lactococcus cremoris. Posteriormente, se realizó un análisis metagenómico utilizando la extracción de ADN de tres secciones intestinales: anterior, media y posterior. El ADN se amplificó mediante PCR y, finalmente, se secuenció utilizando el gen ADNr 16S bacteriano. Como resultado, se identificaron todas las comunidades bacterianas que forman parte de la microbiota intestinal, con una presencia predominante de Proteobacteria, Actinobacteriota, Firmicutes, Bdellovibrionota, Planctomycetes, Verrucomicrobiota, Spirochaetota y Cyanobacteria. El análisis metagenómico reveló diferencias funcionales entre las comunidades y la abundancia relativa de la microbiota intestinal. (Tomado de la fuente)
dc.description.abstractPanaque cochliodon, known in Colombia as blue-eyed pleco,' is an endemic species in the Cauca and Magdalena river basins, classified as vulnerable (A2d) in the Red Book of Freshwater Fish of Colombia. This is the first report for Colombia on this species in its natural habitat, which is why it was chosen for this study. Additionally, due to its xylophagous habits—meaning it primarily consumes wood as a source of nutrition—it holds significant biological value for the ecosystem. While there is some knowledge about its basic behavior, adaptation to captivity, and other characteristics related to its feeding and reproduction, its digestive physiology and potential symbiotic relationships within its intestinal microbiota remain completely unknown. This study conducted the first characterization of the microbiota associated with the gastrointestinal tract of Panaque cochliodon. Three adult specimens from the Magdalena River were captured, transported, and sacrificed following animal welfare standards. Intestinal dissection was performed, obtaining samples for microbiological isolation and molecular identification of cultivable microorganisms to gather phylogenetic information. Through bioinformatic analysis, several genera of interest for agricultural and food production were identified, including Bacillus paramycoides, Bacillus velezensis, Bacillus thuringiensis, and Lactococcus cremoris. Subsequently, a metagenomic analysis was conducted using DNA extraction from three intestinal sections: anterior, middle, and posterior. DNA was amplified via PCR and sequenced using the bacterial 16S rRNA gene. As a result, all bacterial communities forming part of the intestinal microbiota were identified, with a predominant presence of Proteobacteria, Actinobacteriota, Firmicutes, Bdellovibrionota, Planctomycetes, Verrucomicrobiota, Spirochaetota, and Cyanobacteria. The metagenomic analysis revealed functional differences between communities and the relative abundance of the intestinal microbiota
dc.format.extent97 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc590 - Animales
dc.subject.ddc570 - Biología
dc.subject.ddc570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales
dc.titleCaracterización de la diversidad microbiana asociada al tracto gastrointestinal del Panaque cochliodon (Cucha de ojos azules)
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.contributor.researchgroupProducción, Desarrollo y Transformación Agropecuaria (GIPDTA).
dc.coverage.countryColombia
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ciencias Agrarias
dc.description.methodsSe capturaron y utilizaron tres ejemplares adultos provenientes del río Magdalena, los cuales fueron transportados y sacrificados siguiendo las normas de bienestar animal. Se realizó la disección del tracto intestinal, obteniendo muestras para el aislamiento microbiológico e identificación molecular de los microorganismos cultivables, con el objetivo de obtener información filogenética. Mediante análisis bioinformáticos, se identificaron varios géneros de interés para la producción agropecuaria y de alimentos, como: Bacillus paramycoides, Bacillus velezensis, Bacillus thuringiensis y Lactococcus cremoris. Posteriormente, se realizó un análisis metagenómico utilizando la extracción de ADN de tres secciones intestinales: anterior, media y posterior. El ADN se amplificó mediante PCR y, finalmente, se secuenció utilizando el gen ADNr 16S bacteriano. Como resultado, se identificaron todas las comunidades bacterianas que forman parte de la microbiota intestinal, con una presencia predominante de Proteobacteria, Actinobacteriota, Firmicutes, Bdellovibrionota, Planctomycetes, Verrucomicrobiota, Spirochaetota y Cyanobacteria. El análisis metagenómico reveló diferencias funcionales entre las comunidades y la abundancia relativa de la microbiota intestinal.
dc.description.researchareaBiotecnología y producción agropecuaria
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedLaReferencia
dc.relation.referencesAbdul Rahman, N., Parks, D., Willner, DL Engelbrektson, A., Goffredi, S., Warnecke, F., & Hugenholtz. (2015). Un estudio molecular de los géneros de termitas de Australia y América del Norte indica que la herencia vertical es la fuerza principal que da forma a los microbiomas intestinales de las termitas. Microbioma, 3(1), 1–16. https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-015-0067-8
dc.relation.referencesAbriouel, H., Franz, C. M. A. P., Omar, N. Ben, & Gálvez, A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews, 35(1), 201–232. https://doi.org/10.1111/j.1574-6976.2010.00244.x
dc.relation.referencesAskarian, F., Zhou, Z., Olsen, R. E., Sperstad, S., & Ringø, E. (2012). Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens. Aquaculture, 326–329, 1–8. https://doi.org/https://doi.org/10.1016/j.aquaculture.2011.10.016
dc.relation.referencesAustin, B. (2006). The Bacterial Microflora of Fish, Revised. TheScientificWorldJOURNAL, 6, 325830. https://doi.org/10.1100/tsw.2006.181
dc.relation.referencesBird, A. R., Conlon, M. A., Christophersen, C. T., & Topping, D. L. (2010). Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics. Beneficial Microbes, 1(4), 423–431. https://doi.org/10.3920/BM2010.0041
dc.relation.referencesBledsoe, J. W., Peterson, B. C., Swanson, K. S., & Small, B. C. (2016). Ontogenetic characterization of the intestinal microbiota of channel catfish through 16S rRNA gene sequencing reveals insights on temporal shifts and the influence of environmental microbes. PLoS ONE, 11(11), 1–22. https://doi.org/10.1371/journal.pone.0166379
dc.relation.referencesBorges, N., Keller-Costa, T., Sanches-Fernandes, G. M. M., Louvado, A., Gomes, N. C. M., & Costa, R. (2021). Bacteriome Structure, Function, and Probiotics in Fish Larviculture: The Good, the Bad, and the Gaps. Annual Review of Animal Biosciences, 9, 423–452. https://doi.org/10.1146/annurev-animal-062920-113114
dc.relation.referencesCarnevali, O., Maradonna, F., & Gioacchini, G. (2017). Integrated control of fish metabolism, wellbeing and reproduction: The role of probiotic. Aquaculture, 472, 144–155. https://doi.org/https://doi.org/10.1016/j.aquaculture.2016.03.037
dc.relation.referencesCastañeda-Monsalve, V. A., Junca, H., García-Bonilla, E., Montoya-Campuzano, O. I., & Moreno-Herrera, C. X. (2019). Characterization of the gastrointestinal bacterial microbiome of farmed juvenile and adult white Cachama (Piaractus brachypomus). Aquaculture, 512, 734325. https://doi.org/https://doi.org/10.1016/j.aquaculture.2019.734325
dc.relation.referencesChu, T.-W., Chen, C.-N., & Pan, C.-Y. (2020). Antimicrobial status of tilapia (Oreochromis niloticus) fed Enterococcus avium originally isolated from goldfish intestine. Aquaculture Reports, 17, 100397. https://doi.org/https://doi.org/10.1016/j.aqrep.2020.100397
dc.relation.referencesClements, K. D., Angert, E. R., Montgomery, W. L., & Choat, J. H. (2014). Intestinal microbiota in fishes: what’s known and what’s not. Molecular Ecology, 23(8), 1891–1898. https://doi.org/https://doi.org/10.1111/mec.12699
dc.relation.referencesDas, M. P., & Kumar, S. (2015). An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. Biotech, 5(1), 81–86. https://doi.org/https://doi.org/10.1007/s13205-014-0205-1
dc.relation.referencesDavid-Ruales, C. ., Betancur-Gonzales, E. ., & Cano-Gil, J. . (2021). Adaptación al cautiverio y estandarización de una tecnica no invasiva (ecografía) para la determinación del género y la evaluación de la madurez gonadal de la especie Panaque cochliodon (Cucha de ojos azules) del río Magdalena. Rev. Lasallista de Investigación, 267.
dc.relation.referencesDavid-Ruales, Guerra, M. O., Cano, J. D., & Betancur, E. M. (2022). Clove Oil (Eugenol®) as an Anesthetic in the Species Panaque Cochliodon-Steindachner, 1879 (Blue-Eyed Pleco. Revista Lasallista de Investigacion, 19(1), 182–194. https://doi.org/10.22507/rli.v19n1a11
dc.relation.referencesDavid, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V, Devlin, A. S., Varma, Y., Fischbach, M. A., Biddinger, S. B., Dutton, R. J., & Turnbaugh, P. J. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–563. https://doi.org/10.1038/nature12820
dc.relation.referencesDeng, Z., Jiang, Y., Chen, K., Gao, F., & Liu, X. (2020). Petroleum Depletion Property and Microbial Community Shift After Bioremediation Using Bacillus halotolerans T-04 and Bacillus cereus 1-1. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00353
dc.relation.referencesDi Maiuta, N., Schwarzentruber, P., Schenker, M., & Schoelkopf, J. (2013). Microbial population dynamics in the faeces of wood‐eating loricariid catfishes. Letters in Applied Microbiology, 56(6), 401–407. https://doi.org/10.1111/lam.12061
dc.relation.referencesDomínguez-Arrizabalaga, M Villanueva, M., Escriche, B., Ancín-Azpilicueta, C., & Caballero, P. (2020). Insecticidal activity of bacillus thuringiensis proteins against coleopteran pests. Toxins, 12(7). https://doi.org/https://doi.org/10.3390/toxins12070430
dc.relation.referencesFishelson, L., Montgomery, W. L., & Myrberg, A. (1985). A unique symbiosis in the gut of tropical herbivorous surgeonfish (Acanthuridae: Teleostei) from the Red Sea. Science, 229, 49–51.
dc.relation.referencesGerking, S. D., Division, A., & Brace, H. (1994). Feeding Ecology of fish (A. S. UNIVERSITY (ed.)). Library of Congress Cataloging-in-Publication Data.
dc.relation.referencesGerman, D. (2009). Inside the guts of wood-eating catfishes: can they digest wood? Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology, 179, 1011–1023. https://api.semanticscholar.org/CorpusID:7512400
dc.relation.referencesGerman, D., & Bittong, R. (2009). Digestive enzymes and gastrointestinal fermentation in wood-eating catfishes. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology, 179, 1025–1042. https://doi.org/10.1007/s00360-009-0383-z
dc.relation.referencesGivens, C., Ransom, B., Bano, N., & Hollibaugh, J. (2015). Comparison of the gut microbiomes of 12 bony fish and 3 shark species. Marine Ecology Progress Series, 518, 209–223. https://doi.org/10.3354/meps11034
dc.relation.referencesGómez, G. D., & Balcázar, J. L. (2008). A review on the interactions between gut microbiota and innate immunity of fish. FEMS Immunology & Medical Microbiology, 52(2), 145–154. https://doi.org/10.1111/j.1574-695X.2007.00343.x
dc.relation.referencesGreen, G. B. H., Williams, M. B., Chehade, S. B., Flowers, J. T., Morrow, C. D., Lawrence, A. L., Bej, A. K., & Watts, S. A. (2023). Body Metrics and the Gut Microbiome in Response to Macronutrient Limitation in the Zebrafish Danio rerio. Current Developments in Nutrition, 7(4), 100065. https://doi.org/https://doi.org/10.1016/j.cdnut.2023.100065
dc.relation.referencesGrosell, M., Farrell, A. P., & Brauner, C. J. (2010). The Multifunctional Gut of Fish. In Fish Physiology (1st ed., Vol. 30). Academic Press; 1er edición (5 Octubre 2010).
dc.relation.referencesGutiérrez-Ramirez, L. A., David-Ruales, C. A., Montoya-Campuzano, O. I., & Betancur-Gonzalez, E. M. (2016). Efecto de la inclusión en la dieta de probióticos microencapsulados sobre algunos parámetros zootécnicos en alevinos de tilapia roja (Oreochromis sp.). Salud Animal, 38(2), 112–119. https://doi.org/10.1093/oxfordhb/9780199204540.003.0007
dc.relation.referencesHlordzi, V., Kuebutornye, F., Afriyie, G., Abarike, E., Lu, Y., & Chi, S. (2020). The use of Bacillus species in maintenance of water quality in aquaculture: A review. Aquaculture Reports, 18(100503). https://doi.org/https://doi.org/https://doi.org/10.1016/j.aqrep.2020.100503
dc.relation.referencesHuertas-Caro, C., Urbano-Cáceres, E., & Torres-Caycedo, M. (2019). CIENCIAS EPIDEMIOLÓGICAS Y SALUBRISTAS ARTÍCULO DE REVISIÓN Diagnóstico molecular una alternativa para la detección de patógenos en alimentos. Revista Habanera de Ciencias Médicas, 18(3), 513–528. http://www.revhabanera.sld.cu/index.php/rhab/article/view/2352
dc.relation.referencesIchimatsu, T., Mizuki, E., Nishimura, K., Akao, T., Saitoh, H., Higuchi, K., & Ohba, M. (2000). Occurrence of Bacillus thuringiensis in Fresh Waters of Japan. Current Microbiology, 40(4), 217–220. https://doi.org/10.1007/s002849910044
dc.relation.referencesIngerslev, H.-C., von Gersdorff Jørgensen, L., Lenz Strube, M., Larsen, N., Dalsgaard, I., Boye, M., & Madsen, L. (2014). The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss) is affected by first feeding and diet type. Aquaculture, 424–425, 24–34. https://doi.org/https://doi.org/10.1016/j.aquaculture.2013.12.032
dc.relation.referencesIzvekova, G. I., Izvekov, E. I., & Plotnikov, A. O. (2007). Symbiotic microflora in fishes of different ecological groups. Biology Bulletin, 34(6), 610–618. https://doi.org/10.1134/S106235900706012X
dc.relation.referencesKamei, Y., Sakata, T., & Kakimoto, D. (1985). Microflora in the alimentary tract of tilapia: Characterization and distri-bution of anaerobic bacteria. The Journal of General and Applied Microbiology, 31(2), 115–124. https://doi.org/10.2323/jgam.31.115
dc.relation.referencesKamilya, D., & Devi, W. M. (2022). Bacillus Probiotics and Bioremediation: An Aquaculture Perspective BT - Bacilli in Agrobiotechnology: Plant Stress Tolerance, Bioremediation, and Bioprospecting (M. T. Islam, M. Rahman, & P. Pandey (eds.); pp. 335–347). Springer International Publishing. https://doi.org/10.1007/978-3-030-85465-2_15
dc.relation.referencesKim, P. S., Shin, N.-R., Lee, J.-B., Kim, M.-S., Whon, T. W., Hyun, D.-W., Yun, J.-H., Jung, M.-J., Kim, J. Y., & Bae, J.-W. (2021). Host habitat is the major determinant of the gut microbiome of fish. Microbiome, 9(1), 166. https://doi.org/10.1186/s40168-021-01113-x
dc.relation.referencesLall, S. P., & Tibbetts, S. M. (2009). Nutrition, Feeding, and Behavior of Fish. Veterinary Clinics of North America: Exotic Animal Practice, 12(2), 361–372. https://doi.org/https://doi.org/10.1016/j.cvex.2009.01.005
dc.relation.referencesLi, T, Raza, S. H. A., Yang, B., Sun, Y., Wang, G., Sun, W., Qian, A., Wang, C., Kang, Y., & Shan, X. (2020). Aeromonas veronii infection in commercial freshwater fish: A potential threat to public health. Animals, 10(4). https://doi.org/https://doi.org/10.3390/ani10040608
dc.relation.referencesLi, Tongtong, Long, M., Gatesoupe, F.-J., Zhang, Q., Li, A., & Gong, X. (2015). Comparative Analysis of the Intestinal Bacterial Communities in Different Species of Carp by Pyrosequencing. Microbial Ecology, 69(1), 25–36. https://doi.org/10.1007/s00248-014-0480-8
dc.relation.referencesLiu, H., Guo, X., Gooneratne, R., Lai, R., Zeng, C., Zhan, F., & Wang, W. (2016). The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Scientific Reports, 6(1), 24340. https://doi.org/10.1038/srep24340
dc.relation.referencesLlewellyn, M. S., Boutin, S., Hoseinifar, S. H., & Derome, N. (2014). Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Frontiers in Microbiology, 5. https://doi.org/10.3389/fmicb.2014.00207
dc.relation.referencesLujan, N. K., German, D. P., & Winemiller, K. O. (2011). Do wood-grazing fishes partition their niche?: Morphological and isotopic evidence for trophic segregation in Neotropical Loricariidae. Functional Ecology, 25(6), 1327–1338. https://doi.org/10.1111/j.1365-2435.2011.01883.x
dc.relation.referencesManuel, F., Arnaldo, C., Odalis, T., Deysy, C., Mario, C., & Virna, C. (2019). Caracterización molecular ómica de una cepa de Bacillus amyloliquefaciens aislada de la microbiota del paiche Arapaima gigas con actividad antagonista contra bacterias patógenas de peces. Revista de Investigaciones Veterinarias Del Perú, 30(2). https://doi.org/http://dx.doi.org/10.15381/rivep.v30i2.15407
dc.relation.referencesMarch, P., & Tillett, D. (1999). BioEdit Nucleicos. https://www.nucleics.com/about_nucleics/about_nucleics.html
dc.relation.referencesMarden, C. L., McDonald, R., Schreier, H. J., & Watts, J. E. M. (2017). Investigation into the fungal diversity within different regions of the gastrointestinal tract of Panaque nigrolineatus, a wood-eating fish. AIMS Microbiology, 3(4), 749–761. https://doi.org/10.3934/microbiol.2017.4.749
dc.relation.referencesMcCauley, M., German, D. P., Lujan, N. K., & Jackson, C. R. (2020). Gut microbiomes of sympatric Amazonian wood-eating catfishes (Loricariidae) reflect host identity and little role in wood digestion. Ecology and Evolution, 10(14), 7117–7128. https://doi.org/10.1002/ece3.6413
dc.relation.referencesMcdonald, R. C., Em, J., & Schreier, H. J. (2019). Efecto de la dieta sobre el microbioma entérico del bagre carnívoro Panaque nigrolineatus. 1–15.
dc.relation.referencesMcDonald, R., Schreier, H. J., & Watts, J. E. M. (2012). Phylogenetic Analysis of Microbial Communities in Different Regions of the Gastrointestinal Tract in Panaque nigrolineatus, a Wood-Eating Fish. PLoS ONE, 7(10). https://doi.org/10.1371/journal.pone.0048018
dc.relation.referencesMcDonald, R., Zhang, F., Watts, J. E. M., & Schreier, H. J. (2015). Nitrogenase diversity and activity in the gastrointestinal tract of the wood-eating catfish Panaque nigrolineatus. ISME Journal, 9(12), 2712–2724. https://doi.org/10.1038/ismej.2015.65
dc.relation.referencesMedela, D., Directora, T., Piazzon, C., Upv, H. T., & Mart, S. (2021). Recopilación bibliográfica y comparativa : la microbiota intestinal de dorada ( Sparus aurata ).
dc.relation.referencesMeidong, R., Nakao, M., Sakai, K., & Tongpim, S. (2021). Lactobacillus paraplantarum L34b-2 derived from fermented food improves the growth, disease resistance and innate immunity in Pangasius bocourti. Aquaculture, 531, 735878. https://doi.org/https://doi.org/10.1016/j.aquaculture.2020.735878
dc.relation.referencesMichl, S. C., Ratten, J.-M., Beyer, M., Hasler, M., LaRoche, J., & Schulz, C. (2017). The malleable gut microbiome of juvenile rainbow trout (Oncorhynchus mykiss): Diet-dependent shifts of bacterial community structures. PLOS ONE, 12(5), e0177735. https://doi.org/10.1371/journal.pone.0177735
dc.relation.referencesMojica, J., Castellanos, C., Usma, J., & Álvarez-León, R. (2012). Libro rojo de peces dulceacuícolas de Colombia. Serie Libros Rojos de Especies Amenazadas de Colombia. In Researchgate.Net.
dc.relation.referencesMotta, A. S., Cladera-Olivera, F., & Brandelli, A. (2004). Screening for antimicrobial activity among bacteria isolated from the Amazon Basin. In Brazilian Journal of Microbiology (Vol. 35). scielo .
dc.relation.referencesMuegge, B. D., Kuczynski, J., Knights, D., Clemente, J. C., González, A., Fontana, L., Henrissat, B., Knight, R., & Gordon, J. I. (2011). Diet Drives Convergence in Gut Microbiome Functions Across Mammalian Phylogeny and Within Humans. Science, 332(6032), 970–974. https://doi.org/10.1126/science.1198719
dc.relation.referencesNavarrete, P., Espejo, R. T., & Romero, J. (2009). Molecular analysis of microbiota along the digestive tract of juvenile atlantic salmon (Salmo salar L.). Microbial Ecology, 57(3), 550–561. https://doi.org/10.1007/s00248-008-9448-x
dc.relation.referencesNayak, S. (2010). Role of gastrointestinal microbiota in fish. Aquaculture Research, 41, 1553–1573. https://doi.org/10.1111/j.1365-2109.2010.02546.x
dc.relation.referencesNelson, J., Wubah, D., & Stewart, D. (1999). Wood‐eating catfishes of the genus Panaque : gut microflora and cellulolytic enzyme activities. Journal of Fish Biology, 54(5), 1069–1082. https://doi.org/10.1111/j.1095-8649.1999.tb00858.x
dc.relation.referencesO’Sullivan, J. N., O’Connor, P. M., Rea, M. C., O’Sullivan, O., Walsh, C. J., Healy, B., Mathur, H., Field, D., Hill, C., & Paul Ross, R. (2020). Nisin J, a novel natural nisin variant, is produced by Staphylococcus capitis sourced from the human skin microbiota. Journal of Bacteriology, 202(3). https://doi.org/https://doi.org/10.1128/JB.00639-19
dc.relation.referencesOulas, A., Pavloudi, C., Polymenakou, P., Pavlopoulos, G. A., Papanikolaou, N., Kotoulas, G., Arvanitidis, C., & Iliopoulos, loannis. (2015). Metagenomics: Tools and Insights for Analyzing Next-Generation Sequencing Data Derived from Biodiversity Studies. Bioinformatics and Biology Insights, 9, BBI.S12462. https://doi.org/10.4137/BBI.S12462
dc.relation.referencesPrasath, B. B., Wang, Y., Su, Y., Zheng, W., Lin, H., & Yang, H. (2021). Coagulant plus bacillus nitratireducens fermentation broth technique provides a rapid algicidal effect of toxic red tide dinoflagellate. Journal of Marine Science and Engineering, 9(4). https://doi.org/https://doi.org/10.3390/jmse9040395
dc.relation.referencesPuello-Caballero, P., Liseth, Inés Montoya-Campuzano, O., Alfonso Castañeda-Monsalve, V., & Mary Moreno-Murillo, L. (2018). Characterization of the microbiota present in the intestine of Piaractus brachypomus (Cachama blanca). Revista de Salud Animal, 40(2), 2224–4700.
dc.relation.referencesRabbee, M. F., Sarafat Ali, M., Choi, J., Hwang, B. S., Jeong, S. C., & Baek, K. hyun. (2019). Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules, 24(6). https://doi.org/https://doi.org/10.3390/molecules24061046
dc.relation.referencesRawls, J. F., Samuel, B. S., & Gordon, J. I. (2004). Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proceedings of the National Academy of Sciences, 101(13), 4596–4601. https://doi.org/10.1073/pnas.0400706101
dc.relation.referencesRay, A., Roy, T., Mondal, S., & Ringø, E. (2010). Identification of gut-associated amylase, cellulase and protease-producing bacteria in three species of Indian major carps. Aquaculture Research, 41(10), 1462–1469. https://doi.org/https://doi.org/10.1111/j.1365-2109.2009.02437.x
dc.relation.referencesRay, A K, Ghosh, K., & Ringø, E. (2012). Enzyme-producing bacteria isolated from fish gut: a review. Aquaculture Nutrition, 18(5), 465–492. https://doi.org/https://doi.org/10.1111/j.1365-2095.2012.00943.x
dc.relation.referencesRay, Arun K., Bairagi, A., Sarkar Ghosh, K., & Sen, S. K. (2007). Optimization of fermentation conditions for cellulase production by Bacillus subtilis CY5 and Bacillus circulans TP3 isolated from fish gut. Acta Ichthyologica et Piscatoria, 37(1), 47–53. https://doi.org/10.3750/AIP2007.37.1.07
dc.relation.referencesRees, C. E. D., Green, L. H., Goldman, E., & Loessner, M. J. (2015). Manual de Bacteriología Sistemática de Bergey. In Practical Handbook of Microbiology, Third Edition. https://doi.org/10.1201/b17871
dc.relation.referencesRomero, J., & Navarrete, P. (2006). 16S rDNA-Based Analysis of Dominant Bacterial Populations Associated with Early Life Stages of Coho Salmon (Oncorhynchus kisutch). Microbial Ecology, 51(4), 422–430. http://www.jstor.org/stable/25153335
dc.relation.referencesSaha, S., Roy, R. N., Sen, S. K., & Ray, A. K. (2006). Characterization of cellulase-producing bacteria from the digestive tract of tilapia, Oreochromis mossambica (Peters) and grass carp, Ctenopharyngodon idella (Valenciennes). Aquaculture Research, 37(4), 380–388. https://doi.org/https://doi.org/10.1111/j.1365-2109.2006.01442.x
dc.relation.referencesScott, K. P., Gratz, S. W., Sheridan, P. O., Flint, H. J., & Duncan, S. H. (2013). The influence of diet on the gut microbiota. Pharmacological Research, 69(1), 52–60. https://doi.org/https://doi.org/10.1016/j.phrs.2012.10.020
dc.relation.referencesSibbing, F. A. (1988). Specializations and limitations in the utilization of food resources by the carp, Cyprinus carpio: a study of oral food processing. Environmental Biology of Fishes, 22(3), 161–178. https://doi.org/10.1007/BF00005379
dc.relation.referencesSullam, K., Essinger, S., Rosen, G., Kilham, S., & Russell, J. (2010). Environmental and evolutionary factors that shape gut bacterial communities of fish: A meta-analysis.
dc.relation.referencesSuyehiro, Y. (1942). A Study on the digestive system and feeding habits of fish. In TA - TT -. Japanese journal of zoology [S.l.]. https://doi.org/LK - https://worldcat.org/title/492797911
dc.relation.referencesTalwar, C., Nagar, S., Lal, R., & Negi, R. K. (2018). Fish Gut Microbiome: Current Approaches and Future Perspectives. Indian Journal of Microbiology, 58(4), 397–414. https://doi.org/10.1007/s12088-018-0760-y
dc.relation.referencesTan, H. Y., Chen, S.-W., & Hu, S.-Y. (2019). Improvements in the growth performance, immunity, disease resistance, and gut microbiota by the probiotic Rummeliibacillus stabekisii in Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology, 92, 265–275. https://doi.org/https://doi.org/10.1016/j.fsi.2019.06.027
dc.relation.referencesTiwari, S., Singh, R., Yadav, J., Gaur, R., Singh, A., Yadav, J. S., Pandey, P. K., Yadav, S. K., Prajapati, J., Helena, P., Dewangan, J., & Jamal, F. (2022). Three-Step Purification and Characterization of Organic Solvent-Tolerant and Alkali-Thermo-Tolerant Xylanase from Bacillus paramycoides T4 [MN370035]. Catalysts, 12 (7). https://doi.org/https://doi.org/10.3390/catal12070749
dc.relation.referencesTrust, T. J., & Sparrow, R. A. H. (1974). The bacterial flora in the alimentary tract of freshwater salmonid fishes. Canadian Journal of Microbiology, 20(9), 1219–1228. https://doi.org/10.1139/m74-188
dc.relation.referencesTüre, M., Cebeci, A., & Özcelep, T. (2022). The first outbreak of citrobacteriosis caused by Citrobacter gillenii in reared Russian sturgeon (Acipenser gueldenstaedtii) in Turkiye. Veterinary Research Forum, 13(3), 323–329. https://doi.org/10.30466/vrf.2021.137808.3076
dc.relation.referencesVadstein, O., Bergh, Ø., Gatesoupe, F.-J., Galindo-Villegas, J., Mulero, V., Picchietti, S., Scapigliati, G., Makridis, P., Olsen, Y., Dierckens, K., Defoirdt, T., Boon, N., De Schryver, P., & Bossier, P. (2013). Microbiology and immunology of fish larvae. Reviews in Aquaculture, 5(s1), S1–S25. https://doi.org/https://doi.org/10.1111/j.1753-5131.2012.01082.x
dc.relation.referencesVan Kessel, M. A. H. J., Dutilh, B. E., Neveling, K., Kwint, M. P., Veltman, J. A., Flik, G., Jetten, M. S. M., Klaren, P. H. M., & Op den Camp, H. J. M. (2011). Pyrosequencing of 16S rRNA gene amplicons to study the microbiota in the gastrointestinal tract of carp (Cyprinus carpio L.). AMB Express, 1(1), 41. https://doi.org/10.1186/2191-0855-1-41
dc.relation.referencesVásquez-Torres, W. (2004). Principios de Nutrición Aplicada al Cultivo de Peces (1st ed.). Universidad de los Llanos.
dc.relation.referencesViaud, S., Saccheri, F., Mignot, G., Yamazaki, T., Daillère, R., Hannani, D., Enot, D. P., Pfirschke, C., Engblom, C., Pittet, M. J., Schlitzer, A., Ginhoux, F., Apetoh, L., Chachaty, E., Woerther, P.-L., Eberl, G., Bérard, M., Ecobichon, C., Clermont, D., … Zitvogel, L. (2013). The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide. Science, 342(6161), 971–976. https://doi.org/10.1126/science.1240537
dc.relation.referencesWang, A. R., Ran, C., Ringø, E., & Zhou, Z. G. (2018). Progress in fish gastrointestinal microbiota research. Reviews in Aquaculture, 10(3), 626–640. https://doi.org/https://doi.org/10.1111/raq.12191
dc.relation.referencesWang, A., Ran, C., Ring, E., & Zhou, Z. (2017). Progress in fish gastrointestinal microbiota researche. Aquaculture, 0, 1–15.
dc.relation.referencesWang, C., Xie, B., Han, L., & Xu, X. (2013). Study of anaerobic ammonium oxidation bacterial community in the aged refuse bioreactor with 16S rRNA gene library technique. Bioresource Technology, 145, 65–70. https://doi.org/https://doi.org/10.1016/j.biortech.2013.01.170
dc.relation.referencesWatts, J. E. M., McDonald, R., Daniel, R., & Schreier, H. J. (2013). Examination of a culturable microbial population from the gastrointestinal tract of the wood-eating loricariid catfish panaque nigrolineatus. Diversity, 5(3), 641–656. https://doi.org/10.3390/d5030641
dc.relation.referencesWróbel, M., Śliwakowski, W., Kowalczyk, P., Kramkowski, K., & Dobrzyński, J. (2023). Bioremediation of Heavy Metals by the Genus Bacillus. In International Journal of Environmental Research and Public Health (Vol. 20, Issue 6). https://doi.org/10.3390/ijerph20064964
dc.relation.referencesWu, S., Wang, G., Angert, E. R., Wang, W., Li, W., & Zou, H. (2012). Composition, Diversity, and Origin of the Bacterial Community in Grass Carp Intestine. PLOS ONE, 7(2), e30440. https://doi.org/10.1371/journal.pone.0030440
dc.relation.referencesYe, L., Amberg, J., Chapman, D., Gaikowski, M., & Liu, W.-T. (2014). Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish. The ISME Journal, 8(3), 541–551. https://doi.org/10.1038/ismej.2013.181
dc.relation.referencesYoshimizu, M., & Kimura, T. (1976). Study on the Intestinal Microflora of Salmonids. Fish Pathology, 10(2), 243–259. https://doi.org/10.3147/jsfp.10.243
dc.relation.referencesYounes, A., Saito, H., Tani, S., Ikeo, R., & Kawai, K. (2023). Metagenomic analysis of gut microbiome from tilapia species across several regions in Japan. Aquaculture, 576(March), 739809. https://doi.org/10.1016/j.aquaculture.2023.739809
dc.relation.referencesZatán Valdiviezo, A. E., Castillo Chunga, D., Castañeda Vargas, A. E., Feria Zevallos, M. A., Toledo Valdiviezo, O. E., Aguilar Zavaleta, J. L., Cueva Távara, M. D., & Motte, E. (2020). Caracterización de la microbiota intestinal en robalo (Centropomus sp.) y aislamiento de bacterias probióticas potenciales. Revista de Investigaciones Veterinarias Del Perú, 31(3), e16036. https://doi.org/10.15381/rivep.v31i3.16036
dc.relation.referencesZhai, Q., Yu, L., Li, T., Zhu, J., Zhang, C., Zhao, J., Zhang, H., & Chen, W. (2017). Effect of dietary probiotic supplementation on intestinal microbiota and physiological conditions of Nile tilapia (Oreochromis niloticus) under waterborne cadmium exposure. Antonie van Leeuwenhoek, 110(4), 501–513. https://doi.org/10.1007/s10482-016-0819-x
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocEspecies endémicas - Colombia
dc.subject.agrovocEspecies vulnerables - Colombia
dc.subject.agrovocPeces de agua dulce - Colombia
dc.subject.agrovocPanaque cochliodon
dc.subject.agrovocNutrición animal
dc.subject.agrovocFlora microbiana
dc.subject.agrovocMicrobiomas
dc.subject.lembPeces de agua dulce - Digestión
dc.subject.proposalPanaque cochliodon
dc.subject.proposalcucha de ojos azules
dc.subject.proposalmicrobiota intestinal
dc.subject.proposalMetagenómica
dc.subject.proposalgen ADN 16S
dc.subject.proposalblue-eyed pleco
dc.subject.proposalmetagenomics
dc.subject.proposalbacterial 16S rRNA
dc.subject.proposalintestinal microbiota
dc.title.translatedCharacterization of the microbial diversity associated with the gastrointestinal tract of the Panaque cochliodon (Blue-eyed Panaque)
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentDataPaper
dc.type.contentImage
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleIdentificación molecular del microbioma en el tracto gastrointestinal de la especie Panaque cochliodon (cucha de ojos azules)
oaire.fundernameCorporación Universitaria Lasallista
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dc.description.curricularareaProducción Agraria Sostenible.Sede Medellín
dc.contributor.orcidCano Gil, Juan David (0000000245747509)
dc.contributor.cvlacCano Gil, Juan David (0001821334)


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-CompartirIgual 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito