Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorHiguera Garzón, Mario Armando
dc.contributor.advisorHuang, Ko-Yun
dc.contributor.authorMéndez Robayo, Eva Juliana
dc.date.accessioned2024-04-23T01:54:39Z
dc.date.available2024-04-23T01:54:39Z
dc.date.issued2024
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85957
dc.descriptionilustraciones, diagramas
dc.description.abstractThe behavior of methanol (CH3OH) in the composite galaxy NGC 1068 was analyzed to investigate its effectiveness as an extragalactic shock tracer and to study the effect of shock velocity and formation routes on the predicted interstellar abundance of CH3OH. With a parameterized C-shock physical model, C-shock chemistry was investigated with UCLCHEM to study the chemical abundance of CH3OH as a function of time in different locations of the Circumnuclear Disc (CND) near the Active Galactic Nuclei (AGN) and the Starburst (SB) ring of NGC 1068. It is concluded that gas-phase methanol can trace C-type shocks as its abundance increases significantly due to ice-dust grain sputtering or sublimation during shock propagation. This increase in the abundance of gaseous methanol is comparable from both low- (∼10 km/s) and high- (∼50 km/s) velocity shocks. Comparing our models with the multi-line molecular observations and analysis performed by Huang et al. (submitted), we concluded that the observed CH3OH abundance may result from C-shock influence or from thermal sublimation of ice due to protostellar core heating, as both models can account for the observed CH3OH in the gas phase. This work also demonstrated for the first time that the primary reaction leading to the formation of methanol in interstellar ice-dust grains is the radical-molecule H-atom abstraction route under shocked-influenced environments, such as the CND of NGC 1068, from the modeling point of view. This finding is consistent with the results of Simons et al. (2020) and Santos et al. (2022) in dark molecular clouds. However, its dominance is dependent on the gas kinetic temperature (Tk), gas volume density (nH2 ), velocity of the C-shock wave (vshock), and cosmic ray ionisation rate (ζ).
dc.description.abstractSe analizó el comportamiento del metanol (CH3OH) en la galaxia compuesta NGC 1068 para investigar su eficacia como trazador de choques extragalácticos y estudiar el efecto de la velocidad del choque y las rutas de formación sobre la abundancia interestelar prevista de CH3OH. Con un modelo físico parametrizado de choque tipo C, se investigó la química del choque con UCLCHEM para estudiar la abundancia química de CH3OH en función del tiempo en diferentes localizaciones del Disco Circumnuclear (CND) cerca del Núcleo Activo de Galaxia (AGN) y del anillo Starburst (SB) de NGC 1068. Se concluye que el metanol en fase gaseosa puede rastrear choques de tipo C, ya que su abundancia aumenta significati- vamente debido a la pulverización o sublimación de granos helados durante la propagación del choque. Este aumento en la abundancia de metanol gaseoso es comparable para choques de baja (∼10 km/s) y alta velocidad (∼50 km/s). Comparando nuestros modelos con las observaciones moleculares multilíneares y los análisis realizados por Huang et al. (remetido), llegamos a la conclusión de que la abundancia observada de CH3OH puede deberse a la influencia del choque tipo C o a la sublimación térmica del hielo debido al calentamiento del núcleo protoestelar, ya que ambos modelos pueden explicar la abundancia observada de CH3OH en fase gaseosa. Este trabajo también mostró por primera vez que la reacción primaria que conduce a la formación de metanol en los granos de polvo interestelar es la vía de abstracción de átomos de H en entornos influenciados por choques, como el CND de NGC 1068, desde el punto de vista del modelamiento. Este hallazgo concuerda con los re- sultados de Simons et al. (2020) y Santos et al. (2022) en nubes moleculares oscuras. Sin embargo, su predominio depende de la temperatura cinética del gas (Tk), la densidad volumétrica del gas (nH2), la velocidad de la onda de choque (vshock) y la tasa de ionización de rayos cósmicos (ζ). (Texto tomado de la fuente).
dc.format.extent82 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc520 - Astronomía y ciencias afines::522 - Técnicas, procedimientos, aparatos, equipos, materiales
dc.titleChemical modeling of methanol as an extragalactic shock tracer
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Astronomía
dc.contributor.researcherViti, Serena
dc.contributor.researchgroupMolecular Astrophysics Group - Universiteit Leiden and University College London
dc.contributor.researchgroupGrupo SAGAN - Universidad Nacional de Colombia
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Astronomía
dc.description.researchareaAstrochemistry and Active Galactic Nuclei
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAikawa, Yuri ; Herbst, Eric ; Roberts, Helen ; Caselli, Paola: Molecular Evolution in Collapsing Prestellar Cores. III. Contraction of a Bonnor-Ebert Sphere. En: ApJ 620 (2005), Februar, Nr. 1, p. 330–346
dc.relation.referencesÁlvarez-Barcia, S. ; Russ, P. ; Kästner, J. ; Lamberts, T.: Hydrogen transfer reactions of interstellar complex organic molecules. En: MNRAS 479 (2018), September, Nr. 2, p. 2007–2015
dc.relation.referencesAnicich, Vincent G.: Evaluated Bimolecular Ion-Molecule Gas Phase Kinetics of Positive Ions for Use in Modeling Planetary Atmospheres, Cometary Comae, and In- terstellar Clouds. En: Journal of Physical and Chemical Reference Data 22 (1993), November, Nr. 6, p. 1469–1569
dc.relation.referencesAsplund, Martin ; Grevesse, Nicolas ; Sauval, A. J. ; Scott, Pat: The Chemical Composition of the Sun. En: Annual Review of Astron and Astrophys 47 (2009), September, Nr. 1, p. 481–522
dc.relation.referencesAwad, Zainab ; Viti, Serena ; Collings, Mark P. ; Williams, David A.: Warm cores around regions of low-mass star formation. En: MNRAS 407 (2010), Oktober, Nr. 4, p. 2511–2518
dc.relation.referencesBaxter, R. J. ; Hu, P.: Insight into why the Langmuir-Hinshelwood mechanism is generally preferred. En: J. Chem. Phys. 116 (2002), März, Nr. 11, p. 4379–4381
dc.relation.referencesBland-Hawthorn, J. ; Gallimore, J. F. ; Tacconi, L. J. ; Brinks, E. ; Baum, S. A. ; Antonucci, R. R. J. ; Cecil, G. N.: The Ringberg Standards for NGC 1068. En: Ap&SS 248 (1997), Februar, Nr. 1-2, p. 9–19
dc.relation.referencesBrown, Peter N. ; Byrne, George D. ; Hindmarsh, Alan C.: VODE: A Variable- Coefficient ODE Solver. En: SIAM Journal on Scientific and Statistical Computing 10 (1989), Nr. 5, p. 1038–1051
dc.relation.referencesCazaux, S. ; Tielens, A. G. G. M.: H2 Formation on Grain Surfaces. En: ApJ 604 (2004), März, Nr. 1, p. 222–237
dc.relation.referencesChang, Q. ; Cuppen, H. M. ; Herbst, E.: Gas-grain chemistry in cold interstellar cloud cores with a microscopic Monte Carlo approach to surface chemistry. En: A&A 469 (2007), Juli, Nr. 3, p. 973–983
dc.relation.referencesCharnley, S. B. ; Rodgers, S. D. ; Kuan, Y. J. ; Huang, H. C.: Biomolecules in the interstellar medium and in comets. En: Advances in Space Research 30 (2002), Januar, Nr. 6, p. 1419–1431
dc.relation.referencesCharnley, S. B. ; Tielens, A. G. G. M. ; Millar, T. J.: On the Molecular Com- plexity of the Hot Cores in Orion A: Grain Surface Chemistry as “The Last Refuge of the Scoundrel”. En: ApJL 399 (1992), November, p. L71
dc.relation.referencesChuang, K. J. ; Fedoseev, G. ; Ioppolo, S. ; van Dishoeck, E. F. ; Linnartz, H.: H-atom addition and abstraction reactions in mixed CO, H2CO and CH3OH ices - an extended view on complex organic molecule formation. En: MNRAS 455 (2016), Januar, Nr. 2, p. 1702–1712
dc.relation.referencesChuang, K. J. ; Fedoseev, G. ; Qasim, D. ; Ioppolo, S. ; van Dishoeck, E. F. ; Linnartz, H.: Reactive Desorption of CO Hydrogenation Products under Cold Pre-stellar Core Conditions. En: ApJ 853 (2018), Februar, Nr. 2, p. 102
dc.relation.referencesCordiner, M. A. ; Biver, N. ; Crovisier, J. ; Bockelée-Morvan, D. ; Mumma, M. J. ; Charnley, S. B. ; Villanueva, G. ; Paganini, L. ; Lis, D. C. ; Milam, S. N. ; Remijan, A. J. ; Coulson, I. M. ; Kuan, Y. J. ; Boissier, J.: Thermal Physics of the Inner Coma: ALMA Studies of the Methanol Distribution and Excitation in Comet C/2012 K1 (PanSTARRS). En: ApJ 837 (2017), März, Nr. 2, p. 177
dc.relation.referencesde Mijolla, D. ; Viti, S. ; Holdship, J. ; Manolopoulou, I. ; Yates, J.: Incor- porating astrochemistry into molecular line modelling via emulation. En: A&A 630 (2019), Oktober, p. A117
dc.relation.referencesDrabek-Maunder, E. ; Greaves, J. ; Fraser, H. J. ; Clements, D. L. ; Alcon- cel, L. N.: Ground-based detection of a cloud of methanol from Enceladus: when is a biomarker not a biomarker? En: International Journal of Astrobiology 18 (2019), Februar, Nr. 1, p. 25–32
dc.relation.referencesFedoseev, G. ; Chuang, K. J. ; van Dishoeck, E. F. ; Ioppolo, S. ; Linnartz, H.: Simultaneous hydrogenation and UV-photolysis experiments of NO in CO-rich interstellar ice analogues; linking HNCO, OCN−, NH2CHO, and NH2OH. En: MNRAS 460 (2016), August, Nr. 4, p. 4297–4309
dc.relation.referencesFiedler, Robert A. ; Mouschovias, Telemachos C.: Ambipolar Diffusion and Star Formation: Formation and Contraction of Axisymmetric Cloud Cores. I. Formulation of the Problem and Method of Solution. En: ApJ 391 (1992), Mai, p. 199
dc.relation.referencesFiedler, Robert A. ; Mouschovias, Telemachos C.: Ambipolar Diffusion and Star Formation: Formation and Contraction of Axisymmetric Cloud Cores. II. Results. En: ApJ 415 (1993), Oktober, p. 680
dc.relation.referencesFlower, David ; Rabli, D. ; Pineau des Forêts, G.: Quantum mechanical and astrophysical studies of methanol. En: European Physical Journal Web of Conferences Vol. 34, 2012, p. 04001
dc.relation.referencesFuchs, G. W. ; Cuppen, H. M. ; Ioppolo, S. ; Romanzin, C. ; Bisschop, S. E. ; Andersson, S. ; van Dishoeck, E. F. ; Linnartz, H.: Hydrogenation reactions in interstellar CO ice analogues. A combined experimental/theoretical approach. En: A&A 505 (2009), Oktober, Nr. 2, p. 629–639
dc.relation.referencesGarcía-Burillo, S. ; Combes, F. ; Ramos Almeida, C. ; Usero, A. ; Alonso- Herrero, A. ; Hunt, L. K. ; Rouan, D. ; Aalto, S. ; Querejeta, M. ; Viti, S. ; van der Werf, P. P. ; Vives-Arias, H. ; Fuente, A. ; Colina, L. ; Martín- Pintado, J. ; Henkel, C. ; Martín, S. ; Krips, M. ; Gratadour, D. ; Neri, R. ; Tacconi, L. J.: ALMA images the many faces of the <ASTROBJ>NGC 1068</AS- TROBJ>torus and its surroundings. En: A&A 632 (2019), Dezember, p. A61
dc.relation.referencesGarcía-Burillo, S. ; Combes, F. ; Usero, A. ; Aalto, S. ; Krips, M. ; Viti, S. ; Alonso-Herrero, A. ; Hunt, L. K. ; Schinnerer, E. ; Baker, A. J. ; Boone, F. ; Casasola, V. ; Colina, L. ; Costagliola, F. ; Eckart, A. ; Fuente, A. ; Henkel, C. ; Labiano, A. ; Martín, S. ; Márquez, I. ; Muller, S. ; Planesas, P. ; Ramos Almeida, C. ; Spaans, M. ; Tacconi, L. J. ; van der Werf, P. P.: Molecular line emission in NGC 1068 imaged with ALMA. I. An AGN-driven outflow in the dense molecular gas. En: A&A 567 (2014), Juli, p. A125
dc.relation.referencesGarrod, R. T. ; Pauly, T.: On the Formation of CO2 and Other Interstellar Ices. En: ApJ 735 (2011), Juli, Nr. 1, p. 15
dc.relation.referencesGarrod, Robin T. ; Widicus Weaver, Susanna L. ; Herbst, Eric: Complex Che- mistry in Star-forming Regions: An Expanded Gas-Grain Warm-up Chemical Model. En: ApJ 682 (2008), Juli, Nr. 1, p. 283–302
dc.relation.referencesGeppert, W. D. ; Hamberg, M. ; Thomas, R. D. ; Österdahl, F. ; Hellberg, F. ; Zhaunerchyk, V. ; Ehlerding, A. ; Millar, T. J. ; Roberts, H. ; Semaniak, J. ; Ugglas, M. A. ; Källberg, A. ; Simonsson, A. ; Kaminska, M. ; Larsson, M.: Dissociative recombination of protonated methanol. En: Faraday Discussions 133 (2006), Januar, p. 177
dc.relation.referencesGeppert, W. D. ; Hellberg, F. ; Österdahl, F. ; Semaniak, J. ; Millar, T. J. ; Roberts, H. ; Thomas, R. D. ; Hamberg, M. ; Ugglas, M. A. ; Ehlerding, A. ; Zhaunerchyk, V. ; Kaminska, M. ; Larsson, M.: Dissociative Recombination of CD 3 OD 2 +. En: Lis, Dariusz C. (Ed.) ; Blake, Geoffrey A. (Ed.) ; Herbst, Eric (Ed.): Astrochemistry: Recent Successes and Current Challenges Vol. 231, 2005, p. 117–124
dc.relation.referencesGrim, R. J. A. ; Baas, F. ; Geballe, T. R. ; Greenberg, J. M. ; Schutte, W. A.: Detection of solid methanol toward W 33A. En: A&A 243 (1991), März, p. 473
dc.relation.referencesHasegawa, Tatsuhiko I. ; Herbst, Eric ; Leung, Chun M.: Models of Gas-Grain Chemistry in Dense Interstellar Clouds with Complex Organic Molecules. En: ApJS 82 (1992), September, p. 167
dc.relation.referencesHastings, Janna ; Owen, Gareth ; Dekker, Adriano ; Ennis, Marcus ; Kale, Nam- rata ; Muthukrishnan, Venkatesh ; Turner, Steve ; Swainston, Neil ; Mendes, Pedro ; Steinbeck, Christoph: ChEBI in 2016: Improved services and an expanding collection of metabolites. En: Nucleic acids research 44 (2016), January, Nr. D1, p. D1214—9. – ISSN 0305–1048
dc.relation.referencesHeays, A. N. ; Bosman, A. D. ; van Dishoeck, E. F.: Photodissociation and photoionisation of atoms and molecules of astrophysical interest. En: A&A 602 (2017), Juni, p. A105
dc.relation.referencesHernández-Hernández, Vicente ; Kurtz, Stan ; Kalenskii, Sergei ; Golysheva, Polina ; Garay, Guido ; Zapata, Luis ; Bergman, Per: APEX Millimeter Obser- vations of Methanol Emission Toward High-mass Star-forming Cores. En: AJ 158 (2019), Juli, Nr. 1, p. 18
dc.relation.referencesHidaka, H. ; Watanabe, M. ; Kouchi, A. ; Watanabe, N.: Reaction Routes in the CO-H2CO-dn -CH3OH-dm System Clarified from H(D) Exposure of Solid Formal- dehyde at Low Temperatures. En: ApJ 702 (2009), September, Nr. 1, p. 291–300
dc.relation.referencesHiraoka, Kenzo ; Ohashi, Nagayuki ; Kihara, Yosihide ; Yamamoto, Kazuyosi ; Sato, Tetsuya ; Yamashita, Akihiro: Formation of formaldehyde and methanol from the reactions of H atoms with solid CO at 10-20 K. En: Chemical Physics Letters 229 (1994), November, Nr. 4, p. 408–414
dc.relation.referencesHoldship, J. ; Viti, S. ; Jiménez-Serra, I. ; Makrymallis, A. ; Priestley, F.: UCLCHEM: A Gas-grain Chemical Code for Clouds, Cores, and C-Shocks. En: AJ 154 (2017), Juli, Nr. 1, p. 38
dc.relation.referencesHuang, K.-Y. ; Abbink, D. ; Viti, S. ; García-Burillo, S.: Multi-transition study of methanol towards NGC 1068 with ALMA. Submitted to the A&A Journal. Oktober 2023. – Manuscript submitted for publication
dc.relation.referencesHuang, K. Y. ; Viti, S. ; Holdship, J. ; García-Burillo, S. ; Kohno, K. ; Taniguchi, A. ; Martn, S. ; Aladro, R. ; Fuente, A. ; Sánchez-García, M.: The chemical footprint of AGN feedback in the outflowing circumnuclear disk of NGC 1068. En: A&A 666 (2022), Oktober, p. A102
dc.relation.referencesHuang, Ko-Yun ; Viti, Serena: Tracing the chemical footprint of shocks in AGN- host and starburst galaxies with ALMA multi-line molecular studies. En: Faraday Discussions 245 (2023), September, p. 181–198
dc.relation.referencesJames, T. A. ; Viti, S. ; Holdship, J. ; Jiménez-Serra, I.: Tracing shock type with chemical diagnostics. An application to L1157. En: A&A 634 (2020), Februar, p. A17
dc.relation.referencesJiménez-Serra, I. ; Caselli, P. ; Martín-Pintado, J. ; Hartquist, T. W.: Pa- rametrization of C-shocks. Evolution of the sputtering of grains. En: A&A 482 (2008), Mai, Nr. 2, p. 549–559
dc.relation.referencesJohnson, D. G. ; Blitz, M. A. ; Seakins, P. W.: The reaction of methylidene (CH) with methanol isotopomers. En: Physical Chemistry Chemical Physics (Incorporating Faraday Transactions) 2 (2000), Januar, Nr. 11, p. 2549–2553
dc.relation.referencesKelly, G. ; Viti, S. ; García-Burillo, S. ; Fuente, A. ; Usero, A. ; Krips, M. ; Neri, R.: Molecular shock tracers in NGC 1068: SiO and HNCO. En: A&A 597 (2017), Januar, p. A11
dc.relation.referencesKim, S. ; Chen, J. ; Cheng, T. ; Gindulyte, A. ; He, J. ; He, S. ; Li, Q. ; Shoema- ker, B A. ; Thiessen, P A. ; Yu, B. ; Zaslavsky, L. ; Zhang, J. ; Bolton, E E.: PubChem 2023 update. En: Nucleic Acids Res 51 (2023), Nr. D1, p. D1373–D1380
dc.relation.referencesKormendy, John ; Ho, Luis C.: Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies. En: Annual Review of Astron and Astrophys 51 (2013), August, Nr. 1, p. 511–653
dc.relation.referencesLeurini, S. ; Codella, C. ; Gusdorf, A. ; Zapata, L. ; Gómez-Ruiz, A. ; Testi, L. ; Pillai, T.: Evidence of a SiO collimated outflow from a massive YSO in IRAS 17233-3606. En: A&A 554 (2013), Juni, p. A35
dc.relation.referencesLeurini, S. ; Gusdorf, A. ; Wyrowski, F. ; Codella, C. ; Csengeri, T. ; van der Tak, F. ; Beuther, H. ; Flower, D. R. ; Comito, C. ; Schilke, P.: Water emission from the high-mass star-forming region IRAS 17233-3606. En: A&A 564 (2014), April, p. L11
dc.relation.referencesLevine, I.N.: Physical chemistry. 6. New York : McGraw-Hill, 2009
dc.relation.referencesLi, Xiaolong ; Lu, Bo ; Wang, Lina ; Xue, Junfei ; Zhu, Bifeng ; Trabelsi, Tarek ; Francisco, Joseph S. ; Zeng, Xiaoqing: Unraveling sulfur chemistry in interstellar carbon oxide ices. En: Nature Communications 13 (2022), November, p. 7150
dc.relation.referencesLinnartz, Harold ; Ioppolo, Sergio ; Fedoseev, Gleb: Atom addition reactions in interstellar ice analogues. En: arXiv e-prints (2015), Juli, p. arXiv:1507.02729
dc.relation.referencesLiszt, H. S. ; Pety, J. ; Lucas, R.: Limits on chemical complexity in diffuse clouds: search for CH3OH and HC5N absorption. En: A&A 486 (2008), August, Nr. 2, p. 493–496
dc.relation.referencesLuca, A. ; Voulot, D. ; Gerlich, D.: Low temperature reactions between stored ions and condensable gases: formation of protonated methanol via radiative association. En: WDS’02 Proceedings of Contributed Papers, PART II (2002), p. 294–300
dc.relation.referencesMangum, Jeffrey G. ; Ginsburg, Adam G. ; Henkel, Christian ; Menten, Karl M. ; Aalto, Susanne ; van der Werf, Paul: Fire in the Heart: A Characterization of the High Kinetic Temperatures and Heating Sources in the Nucleus of NGC 253. En: ApJ 871 (2019), Februar, Nr. 2, p. 170
dc.relation.referencesMathew, Thomas ; Esteves, Pierre M. ; Prakash, G. K. S.: Methanol in the RNA world: An astrochemical perspective. En: Frontiers in Astronomy and Space Sciences 9 (2022), August, p. 809928
dc.relation.referencesMcCarthy, Tiege P. ; Ellingsen, Simon P. ; Chen, Xi ; Breen, Shari L. ; Vo- ronkov, Maxim A. ; Qiao, Hai-hua: Detection of 36 GHz Class I Methanol Maser Emission toward NGC 4945. En: ApJ 846 (2017), September, Nr. 2, p. 156
dc.relation.referencesMcElroy, D. ; Walsh, C. ; Markwick, A. J. ; Cordiner, M. A. ; Smith, K. ; Millar, T. J.: The UMIST database for astrochemistry 2012. En: A&A 550 (2013), Februar, p. A36
dc.relation.referencesMillar, T. J. ; Williams, D. A.: Dust and Chemistry in Astronomy. 1. Manchester : CRC, 2019
dc.relation.referencesMinissale, M. ; Dulieu, F. ; Cazaux, S. ; Hocuk, S.: Dust as interstellar catalyst. I. Quantifying the chemical desorption process. En: A&A 585 (2016), Januar, p. A24
dc.relation.referencesMorisset, S. ; Aguillon, F. ; Sizun, M. ; Sidis, V.: Wave-packet study of H2 formation on a graphite surface through the Langmuir-Hinshelwood mechanism. En: J. Chem. Phys. 122 (2005), Mai, Nr. 19, p. 194702–194702
dc.relation.referencesNakajima, T. ; Takano, S. ; Kohno, K. ; Harada, N. ; Herbst, E. ; Tamura, Y. ; Izumi, T. ; Taniguchi, A. ; Tosaki, T.: High-Resolution Imaging in 3-mm and 0.8-mm Bands and Abundances of Shock/Dust Related Molecules Toward the Seyfert Galaxy NGC 1068 Observed with ALMA. En: Iono, D. (Ed.) ; Tatematsu, K. (Ed.); Wootten, A. (Ed.) ; Testi, L. (Ed.): Revolution in Astronomy with ALMA: The Third Year Vol. 499, 2015, p. 109
dc.relation.referencesNakajima, Taku ; Takano, Shuro ; Kohno, Kotaro ; Harada, Nanase ; Herbst, Eric: A molecular line survey toward the nearby galaxies NGC 1068, NGC 253, and IC 342 at 3 mm with the Nobeyama 45 m radio telescope: Impact of an AGN on 1 kpc scale molecular abundances. En: PASJ 70 (2018), Januar, Nr. 1, p. 7
dc.relation.referencesNakamura, Fumitaka ; Hanawa, Tomoyuki ; Nakano, Takenori: Fragmentation of Filamentary Molecular Clouds with Longitudinal Magnetic Fields: Formation of Disks and Their Collapse. En: ApJ 444 (1995), Mai, p. 770
dc.relation.referencesNASA ; ESA ; Filippenko (UC Berkeley), Alex ; Sparks (STScI), William ; Ho (KIAA-PKU), Luis C. ; Malkan (UCLA), Matthew A. ; Capetti (STS- cI), Alessandro ; Pagan (STScI), Alyssa.: Black-Hole-Driven Outflow From Active Galaxy NGC 1068. HUBBLESITE. 2021. – Accessed on 18 November 2023
dc.relation.referencesNational Center for Biotechnology Information: PubChem Compound Summary for CID 887, Methanol. https://pubchem.ncbi.nlm.nih.gov/compound/ Methanol. 2024. – Retrieved January 22, 2024
dc.relation.referencesPeterson, Bradley M.: An Introduction to Active Galactic Nuclei. 1997
dc.relation.referencesPrasad, S. S. ; Huntress, Jr.: A model for gas phase chemistry in interstellar clouds: I. The basic model, library of chemical reactions, and chemistry among C, N, and O compounds. En: ApJS 43 (1980), Mai, p. 1–35
dc.relation.referencesPriestley, F. D. ; Viti, S. ; Williams, D. A.: An Efficient Method for Determining the Chemical Evolution of Gravitationally Collapsing Prestellar Cores. En: AJ 156 (2018), August, Nr. 2, p. 51
dc.relation.referencesQasim, D. ; Chuang, K. J. ; Fedoseev, G. ; Ioppolo, S. ; Boogert, A. C. A. ; Linnartz, H.: Formation of interstellar methanol ice prior to the heavy CO freeze-out stage. En: A&A 612 (2018), April, p. A83
dc.relation.referencesQiu, Jianjie ; Wang, Junzhi ; Shi, Yong ; Zhang, Jiangshui ; Fang, Min ; Li, Fei: Deep millimeter spectroscopy observations toward NGC 1068. En: A&A 613 (2018), Mai, p. A3
dc.relation.referencesQuénard, David ; Jiménez-Serra, Izaskun ; Viti, Serena ; Holdship, Jonathan ; Coutens, Audrey: Chemical modelling of complex organic molecules with peptide-like bonds in star-forming regions. En: MNRAS 474 (2018), Februar, Nr. 2, p. 2796–2812
dc.relation.referencesRoberge, W. G. ; Jones, D. ; Lepp, S. ; Dalgarno, A.: Interstellar Photodissociation and Photoionization Rates. En: ApJS 77 (1991), Oktober, p. 287
dc.relation.referencesRuaud, M. ; Loison, J. C. ; Hickson, K. M. ; Gratier, P. ; Hersant, F. ; Wa- kelam, V.: Modelling complex organic molecules in dense regions: Eley-Rideal and complex induced reaction. En: MNRAS 447 (2015), März, Nr. 4, p. 4004–4017
dc.relation.referencesRuaud, Maxime ; Wakelam, Valentine ; Hersant, Franck: Gas and grain chemical composition in cold cores as predicted by the Nautilus three-phase model. En: MNRAS 459 (2016), Juli, Nr. 4, p. 3756–3767
dc.relation.referencesSánchez-García, M. ; García-Burillo, S. ; Pereira-Santaella, M. ; Colina, L. ; Usero, A. ; Querejeta, M. ; Alonso-Herrero, A. ; Fuente, A.: Spatially resolved star-formation relations of dense molecular gas in NGC 1068. En: A&A 660 (2022), April, p. A83
dc.relation.referencesSantos, Julia C. ; Chuang, Ko-Ju ; Lamberts, Thanja ; Fedoseev, Gleb ; Iop- polo, Sergio ; Linnartz, Harold: First Experimental Confirmation of the CH3O + H2CO → CH3OH + HCO Reaction: Expanding the CH3OH Formation Mechanism in Interstellar Ices. En: ApJL 931 (2022), Juni, Nr. 2, p. L33
dc.relation.referencesSchinnerer, E. ; Eckart, A. ; Tacconi, L. J. ; Genzel, R. ; Downes, D.: Bars and Warps Traced by the Molecular Gas in the Seyfert 2 Galaxy NGC 1068. En: ApJ 533 (2000), April, Nr. 2, p. 850–868
dc.relation.referencesScourfield, M. ; Viti, S. ; García-Burillo, S. ; Saintonge, A. ; Combes, F. ; Fuente, A. ; Henkel, C. ; Alonso-Herrero, A. ; Harada, N. ; Takano, S. ; Nakajima, T. ; Martín, S. ; Krips, M. ; van der Werf, P. P. ; Aalto, S. ; Usero, A. ; Kohno, K.: ALMA observations of CS in NGC 1068: chemistry and excitation. En: MNRAS 496 (2020), August, Nr. 4, p. 5308–5329
dc.relation.referencesSimons, M. A. J. ; Lamberts, T. ; Cuppen, H. M.: Formation of COMs through CO hydrogenation on interstellar grains. En: A&A 634 (2020), Februar, p. A52
dc.relation.referencesSmith, D. ; Adams, N. G.: Binary and ternary reactions of CH3+ ions with several molecules at thermal energies. En: Chemical Physics Letters 54 (1978), Januar, p. 535–540
dc.relation.referencesSmith, David ; Spanel, Patrik ; Mayhew, Christhopher A.: A selected ion-flow tube study of the reactions of O+, H+ and HeH]+ with several molecular gases at 300 K. En: International Journal of Mass Spectrometry and Ion Processes 117 (1992), September, p. 457–473
dc.relation.referencesSmith, I.W.M. ; Cockell, C.S. ; Leach, S.: Astrochemistry and Astrobiology. 1. Berlin Heidelberg : Springer, 2013
dc.relation.referencesSmith, Lucas R. ; Gudipati, Murthy S. ; Smith, Rachel L. ; Lewis, Robert D.: Isoto- pe effect on the sublimation curves and binding energies of 12CO and 13CO interstellar ice analogues. En: A&A 656 (2021), Dezember, p. A82
dc.relation.referencesSung Lee, Hack ; Drucker, Mark ; Adams, Nigel G.: Thermal energy reactions of H+3 and H3O+ with a series of small organic molecules. En: International Journal of Mass Spectrometry and Ion Processes 117 (1992), September, p. 101–114
dc.relation.referencesTakano, Shuro ; Nakajima, Taku ; Kohno, Kotaro ; Harada, Nanase ; Herbst, Eric ; Tamura, Yoichi ; Izumi, Takuma ; Taniguchi, Akio ; Tosaki, Tomoka: Dis- tributions of molecules in the circumnuclear disk and surrounding starburst ring in the Seyfert galaxy NGC 1068 observed with ALMA. En: PASJ 66 (2014), Juli, Nr. 4, p. 75
dc.relation.referencesTanner, S. D. ; Mackay, G. I. ; Hopkinson, A. C. ; Bohme, D. K.: Proton transfer reactions of HCO+ at 298 K. En: International Journal of Mass Spectrometry and Ion Processes 29 (1979), Februar, Nr. 2, p. 153–169
dc.relation.referencesTielens, A.: The Physics and Chemistry of the Interstellar Medium. 1. Cambridge : Cambridge University Press, 2005
dc.relation.referencesTielens, A. G. G. M. ; Hagen, W.: Model calculations of the molecular composition of interstellar grain mantles. En: A&A 114 (1982), Oktober, Nr. 2, p. 245–260
dc.relation.referencesTosaki, Tomoka ; Kohno, Kotaro ; Harada, Nanase ; Tanaka, Kunihiko ; Egusa, Fumi ; Izumi, Takuma ; Takano, Shuro ; Nakajima, Taku ; Taniguchi, Akio ; Tamura, Yoichi: A statistical study of giant molecular clouds traced by 13CO, C18O, CS, and CH3OH in the disk of NGC 1068 based on ALMA observations. En: PASJ 69 (2017), April, Nr. 2, p. 18
dc.relation.referencesTurner, B. E.: The Physics and Chemistry of Small Translucent Molecular Clouds. XI. Methanol. En: ApJ 501 (1998), Juli, Nr. 2, p. 731–748
dc.relation.referencesvan der Tak, F. F. S. ; Black, J. H. ; Schöier, F. L. ; Jansen, D. J. ; van Dishoeck, E. F.: A computer program for fast non-LTE analysis of interstellar line spectra. With diagnostic plots to interpret observed line intensity ratios. En: A&A 468 (2007), Juni, Nr. 2, p. 627–635
dc.relation.referencesvan Dishoeck, E. F. ; Kristensen, L. E. ; Benz, A. O. ; Bergin, E. A. ; Caselli, P. ; Cernicharo, J. ; Herpin, F. ; Hogerheijde, M. R. ; Johnstone, D. ; Liseau, R. ; Nisini, B. ; Shipman, R. ; Tafalla, M. ; van der Tak, F. ; Wyrowski, F. ; Aikawa, Y. ; Bachiller, R. ; Baudry, A. ; Benedettini, M. ; Bjerkeli, P. ; Blake, G. A. ; Bontemps, S. ; Braine, J. ; Brinch, C. ; Bruderer, S. ; Chavarría, L. ; Codella, C. ; Daniel, F. ; de Graauw, Th. ; Deul, E. ; di Giorgio, A. M. ; Dominik, C. ; Doty, S. D. ; Dubernet, M. L. ; Encrenaz, P. ; Feuchtgruber, H. ; Fich, M. ; Frieswijk, W. ; Fuente, A. ; Giannini, T. ; Goicoechea, J. R. ; Helmich, F. P. ; Herczeg, G. J. ; Jacq, T. ; Jørgensen, J. K. ; Karska, A. ; Kaufman, M. J. ; Keto, E. ; Larsson, B. ; Lefloch, B. ; Lis, D. ; Marseille, M. ; McCoey, C. ; Melnick, G. ; Neufeld, D. ; Olberg, M. ; Pagani, L. ; Panić, O. ; Parise, B. ; Pearson, J. C. ; Plume, R. ; Risacher, C. ; Salter, D. ; Santiago-García, J. ; Saraceno, P. ; Stäuber, P. ; van Kempen, T. A. ; Visser, R. ; Viti, S. ; Walmsley, M. ; Wampfler, S. F. ; Yıldız, U. A.: Water in Star-forming Regions with the Herschel Space Observatory (WISH). I. Overview of Key Program and First Results. En: PASP 123 (2011), Februar, Nr. 900, p. 138
dc.relation.referencesvan Dishoeck, Ewine F. ; Jonkheid, Bastiaan ; van Hemert, Marc C.: Photo- processes in protoplanetary disks. En: Faraday Discussions 133 (2006), Januar, p. 231
dc.relation.referencesViti, S. ; García-Burillo, S. ; Fuente, A. ; Hunt, L. K. ; Usero, A. ; Henkel, C. ; Eckart, A. ; Martin, S. ; Spaans, M. ; Muller, S. ; Combes, F. ; Krips, M. ; Schinnerer, E. ; Casasola, V. ; Costagliola, F. ; Marquez, I. ; Planesas, P. ; van der Werf, P. P. ; Aalto, S. ; Baker, A. J. ; Boone, F. ; Tacconi, L. J.: Molecular line emission in NGC 1068 imaged with ALMA. II. The chemistry of the dense molecular gas. En: A&A 570 (2014), Oktober, p. A28
dc.relation.referencesViti, Serena ; Collings, Mark P. ; Dever, John W. ; McCoustra, Martin R. S. ; Williams, David A.: Evaporation of ices near massive stars: models based on labora- tory temperature programmed desorption data. En: MNRAS 354 (2004), November, Nr. 4, p. 1141–1145
dc.relation.referencesWakelam, V. ; Herbst, E. ; Loison, J. C. ; Smith, I. W. M. ; Chandrasekaran, V. ; Pavone, B. ; Adams, N. G. ; Bacchus-Montabonel, M. C. ; Bergeat, A. ; Béroff, K. ; Bierbaum, V. M. ; Chabot, M. ; Dalgarno, A. ; van Dishoeck, E. F. ; Faure, A. ; Geppert, W. D. ; Gerlich, D. ; Galli, D. ; Hébrard, E. ; Hersant, F. ; Hickson, K. M. ; Honvault, P. ; Klippenstein, S. J. ; Le Picard, S. ; Nyman, G. ; Pernot, P. ; Schlemmer, S. ; Selsis, F. ; Sims, I. R. ; Talbi, D. ; Tennyson, J. ; Troe, J. ; Wester, R. ; Wiesenfeld, L.: A KInetic Database for Astrochemistry (KIDA). En: ApJS 199 (2012), März, Nr. 1, p. 21
dc.relation.referencesWakelam, V. ; Smith, I. W. M. ; Herbst, E. ; Troe, J. ; Geppert, W. ; Linnartz, H. ; Öberg, K. ; Roueff, E. ; Agúndez, M. ; Pernot, P. ; Cuppen, H. M. ; Loison, J. C. ; Talbi, D.: Reaction Networks for Interstellar Chemical Modelling: Improvements and Challenges. En: Space Science Reviews 156 (2010), Oktober, Nr. 1-4, p. 13–72
dc.relation.referencesWalsh, Catherine ; Loomis, Ryan A. ; Öberg, Karin I. ; Kama, Mihkel ; van ’t Hoff, Merel L. R. ; Millar, Tom J. ; Aikawa, Yuri ; Herbst, Eric ; Widicus Weaver, Susanna L. ; Nomura, Hideko: First Detection of Gas-phase Methanol in a Protoplanetary Disk. En: ApJL 823 (2016), Mai, Nr. 1, p. L10
dc.relation.referencesWang, Junzhi ; Zhang, Jiangshui ; Gao, Yu ; Zhang, Zhi-Yu ; Li, Di ; Fang, Min ; Shi, Yong: SiO and CH3OH mega-masers in NGC 1068. En: Nature Communications 5 (2014), November, p. 5449
dc.relation.referencesWatanabe, Naoki ; Kouchi, Akira: Efficient Formation of Formaldehyde and Metha- nol by the Addition of Hydrogen Atoms to CO in H2O-CO Ice at 10 K. En: ApJL 571 (2002), Juni, Nr. 2, p. L173–L176
dc.relation.referencesWatanabe, Naoki ; Nagaoka, Akihiro ; Shiraki, Takahiro ; Kouchi, Akira: Hy- drogenation of CO on Pure Solid CO and CO-H2O Mixed Ice. En: ApJ 616 (2004), November, Nr. 1, p. 638–642
dc.relation.referencesWilliams, D.A. ; Hartquist, T.W. ; Rawlings, J.M.C. ; Cecchi-Pestellini, C. ; Viti, S.: Dynamical Astrochemistry. 1. London : Royal Society of Chemistry, 2018
dc.relation.referencesWirström, E. S. ; Geppert, W. D. ; Hjalmarson, Å. ; Persson, C. M. ; Black, J. H. ; Bergman, P. ; Millar, T. J. ; Hamberg, M. ; Vigren, E.: Observational tests of interstellar methanol formation. En: A&A 533 (2011), September, p. A24
dc.relation.referencesWoods, Paul M. ; Slater, Ben ; Raza, Zamaan ; Viti, Serena ; Brown, Wendy A. ; Burke, Daren J.: Glycolaldehyde Formation via the Dimerization of the Formyl Radical. En: ApJ 777 (2013), November, Nr. 2, p. 90
dc.relation.referencesYamamoto, Satoshi: Introduction to Astrochemistry: Chemical Evolution from In- terstellar Clouds to Star and Planet Formation. 1. Japan : Springer Tokyo, 2017
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalAstrochemistry
dc.subject.proposalMolecules
dc.subject.proposalShock waves
dc.subject.proposalActive Galactic Nuclei
dc.subject.proposalQuantum tunneling
dc.subject.proposalAstroquímica
dc.subject.proposalMoléculas
dc.subject.proposalTúnelamiento cuántico
dc.subject.proposalOndas de choque
dc.subject.proposalNúcleo activo de galaxia
dc.subject.unescoAstrofísica
dc.subject.unescoAstrophysics
dc.subject.unescoQuímica experimental
dc.subject.unescoExperimental chemistry
dc.subject.unescoModelo de simulación
dc.subject.unescoSimulation models
dc.title.translatedModelamiento químico del metanol como trazador de choques extragalácticos
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentMedios de comunicación
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.orcidHiguera Garzón, Mario Armando [0000-0001-6617-1046]
dc.contributor.orcidViti, Serena [0000-0001-8504-8844]
dc.contributor.orcidHuang, Ko-Yun [0000-0002-1227-8435]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito