Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorCortés Rodríguez, Misael
dc.contributor.advisorRodríguez Fonseca, Pablo Emilio
dc.contributor.authorZuluaga Narváez, Juan Diego
dc.date.accessioned2024-04-30T13:55:00Z
dc.date.available2024-04-30T13:55:00Z
dc.date.issued2024
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86002
dc.descriptionilustraciones, fotografías
dc.description.abstractLa mora andina se cultiva ampliamente en los andes colombianos, alcanzando aproximadamente 140,000 ton/año (Agronet, 2021). Es una baya rica en azúcares, pero bajas en calorías, contienen sólo pequeñas cantidades de grasa. En buena proporción su ingesta aporta vitaminas, antioxidantes y compuestos fenólicos (cianidinas, elagitaninos, entre otros), los cuales son potencialmente benéficos para la salud; sin embargo, su vida poscosecha es corta, lo que limita su aprovechamiento industrial. El proceso de microfiltración tangencial (MFT) por membranas permite la remoción de microorganismos presentes en la materia prima, reteniéndolos por un mecanismo de tamizado basado en el tamaño de partículas. Esta particularidad, la hace un proceso muy útil para la agroindustria, obteniéndose bebidas de frutas lista para su consumo con una buena conservación de sus nutrientes y compuestos aromáticos (alto nivel de calidad); además, previene la formación de subproductos indeseables. El objetivo de la investigación fue evaluar la factibilidad técnica del proceso de microfiltración tangencial como tecnología para obtener jugos de mora con potencial efecto antioxidante, valorizando así la cadena agroindustrial con altas innovaciones tecnológicas. La investigación se realizó en la planta piloto de poscosecha y agroindustria de AGROSAVIA, Centro la Selva, Rionegro, Antioquia e implicó tres (3) etapas durante su desarrollo. En la 1ª etapa se desarrolló la formulación de la bebida de mora, para lo cual se utilizó mora tipo industrial proveniente del oriente de Antioquia, Colombia, suministrada por la Asociación de productores de mora y tomate de árbol (ASOFRUTAS). Inicialmente, el fruto fue desintegrado (molido), luego se sometió a un tratamiento enzimático (1h, 35Cº, PectinexSp-L-150ppm.) con el objetivo de reducir la viscosidad de la fase líquida y mejorar el rendimiento del filtrado y finalmente, se hidroprensó hasta obtener un extracto líquido 1 y una torta 1. Posteriormente, la torta 1 se lava y nuevamente se hidroprensa para recuperar algunos compuestos hidrosolubles (principalmente antocianinas), obteniéndose un extracto líquido 2. La bebida de mora se formuló con un contenido de sólidos solubles finales de 10.5% (10.5 °Bx) antes de ser microfiltrada, utilizando un 40% de extracto líquido 1, un 60% de extracto líquido 2 y azúcar añadida hasta alcanzar los °Bx finales. En la 2ª etapa, se determinó el delta de presión transmembranaria (DPTM) óptima, para lo cual la bebida fue microfiltrada sobre membranas tubulares de cerámica (Membralox EP 4840) de 0,2 µm x 1,6m2. El proceso MFT operó en modo continuo, manteniendo constante la temperatura de entrada de la bebida al módulo de las membranas (35ºC) y la velocidad tangencial proveída por la bomba (v) (6 HP). La evaluación del proceso MFT se realizó considerando la variable independiente: DPTM (1.0, 1.5, 2.5 y 3.5 bar) y las variables dependientes: flujo de permeado (jp) y el factor de reducción volumétrica (FCV). En los ensayos realizados, el mayor promedio de jp (86 L/h m2) para una mismo FCV se obtuvo a una DPTM de 1,5 bar. Se observó una disminución brusca del jp durante la fase inicial del proceso MFT, donde se forma la capa de colmatación; por otro lado, durante esta etapa un incremento en el DPTM supone un efecto positivo para el caudal de filtrado. Posteriormente, la incrustación de los componentes de la fruta en los poros de la membrana produce una disminución progresiva pero más lenta del jp. En esta zona el incremento del DPTM no necesariamente representa un mayor jp. El nivel de DPTM 1.5 bar fue asumido como control para evaluar el impacto de la aplicación de los pulsos inversos (back pulses en inglés) (BP) sobre las variables de proceso: jp, FCV y retención total de compuestos biológicamente activos (%R_CBA). Los parámetros establecidos para la aplicación de los pulsos fueron: amplitud de 4 bar (60 psi) y tiempo de duración del pulso de 0.2 s; además, se evaluaron dos frecuencias de aplicación (1.0 y 2.0 min). Durante el proceso se observó una colmatación en las membranas, generando una disminución en el jp; sin embargo, la aplicación de los BP favorece el volumen neto de permeado (10 L/h-1*m-2 adicional). En cuanto al %R_CBA, durante MFT para Cyanidin-3-O-Glucoside (Cy-3-Gl), Cyanidin-3-O-rutinoside (Cy-3-Rut) y Cyanidin-3-O-MalonilGlucoside (Cy3-MGl) fueron del 12, 12 y 10% respectivamente; mientras que, para los elagitaninos evaluados y Sanguiin H6 (Sng H6) Lambertianin C (Lamb_C) fueron 25 y 29% respectivamente. Se disminuyeron Con BP en ≈2% los coeficientes de retención para las ANCs y muy significativamente en ≈10% para los EGts estudiados. Finalmente, la bebida de mora obtenida fue envasada asépticamente, observándose que el proceso es capaz de remover completamente los sólidos suspendidos, resultando en un producto visualmente limpio, de mejor color y claridad, con alta calidad sensorial y sin recuento de microorganismos causantes de deterioro. Los atributos de calidad obtenidos en la bebida microfiltrada fueron los siguientes: Ac. Málico (1.7 ±0.03%), ºBx (10.50±0.02%), pH (2.97±0.03), color (L: 16.4±0.49, a 33.5±0.3, b 18.9±1.3), Cyanidin-3-O-Glucoside (Cy3Gl) (294.5±5.7 mg/L), Cyanidin-3-O-rutinoside (Cy3Rut) (284.5 ±4.2 mg/L), Cyanidin-3-O-MalonilGlucoside (Cy3MGl) (105.2±6.7 mg/L), Lambertianin C (Lamb_C) (210.2± 30.6 mg/L) y Sanguiin H6 (Sng_H6) (280.6±8.2 mg/L). En la 3ª etapa se realizó un estudio de la estabilidad de la bebida microfiltrada de mora durante el almacenamiento a 4ºC y tiempos de control (0, 15, 30, 45, 60 y 75 días. El perfil sensorial establecido por consenso determinó que la bebida conserva después del proceso el sabor dulce y frutal, la intensidad ácida y la sensación de astringencia que persiste al comer la fruta fresca. La valoración sensorial de los panelistas mostró que la aceptación del producto se conserva hasta los 45 días de almacenamiento con una calificación de “me agrada extremadamente”; a los 60 días como “ni me agrada ni me desagrada”, y a los 75 días fue rechazada. Los atributos de calidad a los 75 días de almacenamiento fueron los siguientes: Ac.Málico (2.1±0.02 mg/100g), ºBx (10.1±0.1 %), pH (2.6±0.1), L (6.3±0.01), a (27.3±0.1), b (10.0±0,0), Cy-3-Gl (225.5 ±2.05 mg/L), Cy-3-Rut (176.9 ±0.77 mg/L), Cy-3-MGl (92.3±0.06 mg/L), Lamb_C (184.5±0.9mg/L), y Sng_H6 (183.6±1.9 mg/L). Por otro lado, se evidenció una inconformidad en el crecimiento microbiano por un conteo inadmisible para mohos y levaduras, y la presencia de aerobios totales, lo cual causa un deterioro sensorial y rechazo en la bebida almacenada. (Tomado de la fuente)
dc.description.abstractThe Andean blackberry is widely cultivated in the Colombian mountains, reaching 140,000 tons/year (Agronet, 2021). This berry is rich in sugars, but low in calories, containing only small amounts of fat. In good proportion, its intake provides vitamins, antioxidants and phenolic compounds (cyanidins, ellagitannins, among others), which are potentially beneficial for health; however, its post-harvest life is short, which limits its industrial use. Cross flow microfiltration process (CFM)) allows the removal of microorganisms by membranes present in the raw material, retaining them by a sieving mechanism based on the size of the particles. This peculiarity makes it a very useful process for the agroindustry, obtaining high quality ready-to-drink fruit beverages with good preservation of its nutrients and aromatic compounds. The aim of the research was to evaluate the technical feasibility of CFM process as a technology to obtain blackberry juices with potential antioxidant effect, thus valuing the agro-industrial chain with high technological innovations. The research was carried out in the postharvest and agroindustry pilot plant of AGROSAVIA, Centro la Selva, Rionegro, Antioquia and involved three (3) stages during its development. In the 1st stage, the formulation of the blackberry drink was developed, for which an industrial type blackberry was obtained from the east of Antioquia, Colombia, supplied by the Association of Blackberry and Tree Tomato Producers (ASOFRUTAS). Initially, the fruit was disintegrated (ground), then it was subjected to an enzymatic treatment (1h, 35Cº, PectinexSp-L-150ppm.) with the objective of reducing the viscosity of the feed and improve filtration performance filtrate and finally, it is hydropressed until obtaining a liquid extract 1 and a cake 1. Subsequently, cake 1 is washed and hydropressed again to recover some water-soluble compounds (mainly anthocyanins), obtaining a liquid extract 2. The blackberry drink was formulated with a final soluble solids content of 10.5% (10.5 °Bx) before being microfiltered, using 40% liquid extract 1, 60% liquid extract 2 and added sugar until reaching °Bx. finals. In the 2nd stage, the óptimal transmembrane pressure (TMP) was determined, for which the beverage was microfiltered on ceramic tubular membranes (Membralox EP 4840) of 0.2 µm x 1.6m2. The CFM process operated in continuous mode, keeping the temperature at the entrance of the beverage to the membrane module constant (35ºC) and the tangential speed provided by the pump (µ) (6 HP). The evaluation of the CFM process was carried out considering the independent variable: TMP (1.0, 1.5, 2.5 and 3.5 bar) and the dependent variables: permeate flow (jp) and the volumetric reduction ratio (VCR). In the tests carried out, the highest average jp (86 L/h m2) for the same VCR was obtained at a TMP of 1.5 bar. A sharp decrease in jp was observed during the initial phase of the MFT process, where the clogging layer is formed; on the other hand, during this stage an increase in the TMP supposes a positive effect for the filtrate flow. Subsequently, the embedding of the fruit components in the membrane pores produces a progressive but slower decrease in jp. In this zone, the increase in TPM does not necessarily represent a higher jp. The TMP level of 1.5 bar was assumed as a control to evaluate the impact of the application of back pulses (BP) on the process variables: jp, VCR and total retention of biologically active compounds (%R_BAC). The parameters established for the application of the pulses were: amplitude of 4 bar (60 psi) and duration of the pulse of 0.2 s; In addition, two application frequencies (1.0 and 2.0 min) were evaluated. During the process, a clogging of the membranes was observed, generating a decrease in the jp; however, the application of the BP favors the net volume of permeate (10 additional L/H*m2). Regarding during MFT for Cy-3-Gl, Cy-3-Rut) and Cy3-MGl were 12, 12 and 10% respectively, while for the EGTs evaluated Sng H6 and Lamb_C were 25 and 29% respectively. Retention coefficients for ANCs were reduced by 2% with BP and very significantly by 10% for the EGts studied.Finally, the blackberry drink obtained was aseptically packaged, observing that the process is capable of completely removing suspended solids, resulting in a visually clean product, with better color and clarity, with high sensory quality and without the count of spoilage-causing microorganisms. The quality attributes obtained in the microfiltered drink were the following: Malic acid 1.7 ±0.03%), ºBx (10.50±0.02%), pH (2.97±0.03), color (L: 16.4±0.49, a 33.5±0.3, b 18.9±1.3), Cyanidin-3-O-Glucoside (Cy3Gl) (294.5±5.7 mg/L), Cyanidin-3-O-rutinoside (Cy3Rut) (284.5 ±4.2 mg/L), Cyanidin-3-O-MalonilGlucoside (Cy3MGl) (105.2±6.7 mg/L), Lambertianin C (Lamb_C) (210.2± 30.6 mg/L) y Sanguiin H6 (Sng_H6) (280.6±8.2 mg/L). In the 3rd stage, a study of the stability of the microfiltered blackberry beverage was carried out during storage at 4ºC and sample times (0, 15, 30, 45, 60 and 75 days). The sensory profile established by consensus determined that after the process, the beverage preserves the sweet and fruity flavor, the acid intensity and the sensation of astringency that persists when eating fresh fruit. The sensory evaluation of the panelists showed that the acceptance of the product is preserved up to 45 days of storage with a rating of "I like it extremely"; at 60 days as "I neither like it nor dislike it", and at 75 days it was rejected. The quality attributes at 75 days of storage were the following: Malic acid (2.1±0.02 mg/100g), ºBx (10.1±0.1 %), pH (2.6±0.1), L (6.3±0.01), a (27.3±0.1), b (10.0±0,0), Cy-3-Gl (225.5 ±2.05 mg/L), Cy-3-Rut (176.9 ±0.77 mg/L), Cy-3-MGl (92.3±0.06 mg/L), Lamb_C (184.5±0.9mg/L), y Sng_H6 (183.6±1.9 mg/L). On the other hand, a nonconformity in microbial growth was evidenced due to an inadmissible count for molds and yeasts, and the presence of total aerobes, which causes sensory deterioration and rejection in the stored beverage.
dc.description.sponsorshipAgrosavia, Sede la Selva
dc.description.sponsorshipUniversidad Nacional de Colombia, Sede Medellín
dc.format.extent105 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentos
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::634 - Huertos, frutas, silvicultura
dc.titleValidación de una línea de producción piloto de microfiltración tangencial para la obtención de jugo de mora (Rubus glaucus Benth.)
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos
dc.description.notesContiene información técnica sobre procesos de membranas y su iplementación piloto para un posible escalamiento agroindustrial
dc.contributor.projectleaderVaillant, Fabrice
dc.contributor.projectmemberAgrosavia
dc.contributor.projectmemberAsofruta
dc.contributor.researchgroupGaf (Grupo de Alimentos Funcionales)
dc.contributor.researchgroupITAV (Innovaciones tecnológicas para agregar valor a recursos agrícolas)
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ciencia y Tecnología de Alimentos
dc.description.researchareaInnovaciones tecnológicas
dc.description.technicalinfoDiagramas de flujos de procesos, esquemas de la línea de MFT para producción y envasado aséptico de jugo de fruta.
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedLaReferencia
dc.relation.referencesConidi, C., Castro-Muñoz, R., & Cassano, A. (2020). Membrane-Based Operations in the Fruit Juice Processing Industry: A Review. Beverages 6(1), 18;, https://doi.org/10.3390/beverages6010018.
dc.relation.referencesConstenla, D., & Crapiste., G. (1989). Propiedades Termofísicas de Jugos clarificados de fruta: Aplicación a jugo de manzana. Food technology, 663-668. https://doi.org/10.1111/j.1365-2621.1989.tb04677.x.
dc.relation.referencesCordero-Bueso, G., Mangieri, N., Maghradze, D., Foschino, R., Valdetara, F., Cantoral, J. M., & Vigentini, I. (2017). Wild Grape-Associated Yeasts as Promising Biocontrol Agents against Vitis vinifera Fungal Pathogens. Frontiers in Microbiology , 20-25. https://doi.org/10.3389/fmicb.2017.02025
dc.relation.referencesCórdoba, O., & Londoño, J. (1998). Evaluación de seis materiales de Mora (Rubus glaucus) bajo condiciones de clima frío moderado. CORPOICA. http://hdl.handle.net/20.500.12324/17724
dc.relation.referencesCORNARE. (2016). Agricultura en el oriente antioqueño : oportunidad de desarrollo local y regional. CORNARE.
dc.relation.referencesCrispim, J., Silva, N., & Vieira, R. (2018). Kinetics of anthocyanins thermal degradiation in blackberry juice. Conference: Congresso Brasileiro de Engenharia Química. Sao Pulo, Br. p. 737-740. DOI: 10.5151/cobeq2018-PT.0202
dc.relation.referencesD-Mores, W., & H-Davis., R. (2002). Direct observation of membrane cleaning via rapid backpulsings. Desalination, 125-140.
dc.relation.referencesDahdouh, L., Delalonde, M., Ricci, J., Ruiz, E., & Wisnewski, C. (2018). Influence of high shear rate on particles size, rheological behavior and fouling propensity of fruit juices during crossflow microfiltration: Case of orange juice. Innovative Food Science & Emerging Technologies. 48, 304-312. https://doi.org/10.1016/j.ifset.2018.07.006.
dc.relation.referencesDavoigniot, G., Vaillant, F., & Rodríguez, P. (2018). Création d’un atelier de fabrication de jus et nectar de mûre de haute qualité nutritionnelle dans le cadre d’un groupement de producteurs en Oriente Antioqueño. Rionegro: AGROSAVIA / CIRAD.
dc.relation.referencesDelgado-Vargas, AR, J., & O., P.-L. (2000). Natural pigments: carotenoids, anthocyanins, and betalains characteristics, biosynthesis, processing, and stability. Food Science Nutrition. DOI: 10.1080/10408690091189257
dc.relation.referencesDiaz Diez, C. (2011). Categorización de la latencia en semillas de mora (Rubus glaucus Benth.), para el apoyo a programas de mejoramiento y conservación de la especie. Tesis. Medellín, Colombia: Universidad Nacional. https://repositorio.unal.edu.co/handle/unal/8964.
dc.relation.referencesDíaz, C., Medina, C., & Saldarriaga., A. (2012). Aportes al conocimiento del sistema productivo del cultivo de la mora (Rubus glaucus Benth) en Colombia. Revisión. CORPOICA.
dc.relation.referencesDincheva, v., Badjakov, I., & Kondakova., V. (2015). Metabolic engineering of bioactive compounds in berries. En V. K. Gupta, M. G. Tuohy, M. Lohani, & A. O’Donovan., Biotechnology of Bioactive Compounds: Sources and Applications. (pág. 463.482). John Wiley & Sons, Ltd.
dc.relation.referencesDonato, M., Natsumi, R., Peruchi, B., & Rodrigues, S. (2012). Effect of enzymatic treatment on the cross-flow microfiltration of açaí pulp: Analysis of the fouling and recovery of phytochemicals. Journal of Food Engineering., 442-452. https://doi.org/10.1016/j.jfoodeng.2012.06.022.
dc.relation.referencesEchavarría Vélez, A. P., Torras, C., Pagán, J., & Ibarz, A. (2011). Fruit Juice Processing and Membrane Technology Application. Food Engineering Reviews 3, 136-158. DOI:10.1007/s12393-011-9039-3.
dc.relation.referencesEffect of microwaves and ultrasound on bioactive compounds and microbiological quality of blackberry juice. (2018). Lwt food Science and Technology, 47-53. DOI:10.1016/j.lwt.2017.08.059
dc.relation.referencesElejalde Guerra, J. (2001). Estrés oxidativo, enfermedades y tratamientos antioxidantes. Anales de Medicina Interna, 18(6), 50-59.
dc.relation.referencesEnciso, B., & Gómez, C. (2004). Comparación de las respuestas de cuatro cultivares de mora (Rubus sp.) a las variaciones del factor luz. Agronomía Colombiana.22, 46-52.
dc.relation.referencesEspinoza., C. L. (2017). Situación Actual y Perspectivas del Mercado de la Mora. Componente de Agronegocios. Programa MIDAS, 1–16.
dc.relation.referencesEsua, J. O., Chin, N. L., Yusof, Y. A., & Sukor, R. (2017). Antioxidant Bioactive Compounds and Spoilage Microorganisms of Wax Apple (Syzygium samarangense) during Room Temperature Storage. International Journal of Fruit Science. 188-201, DOI:10.1080/15538362.2017.1285263
dc.relation.referencesFan, L., Wang, Y., Xie, P., Zhang, L., Li, Y., & Zhou., J. (2019). Copigmentation effects of phenolics on color enhancement and stability of blackberry wine residue anthocyanins: Chromaticity, kinetics and structural simulation,. Food Chemistry, 275., 299-308. DOI: 10.1016/j.foodchem.2018.09.103
dc.relation.referencesFabian, W., & Lena Rebecca, L. (2017). Influence of fruit juice processing on anthocyanin stability. Food Research International, 354-365. DOI: 10.1016/j.foodres.2017.06.033
dc.relation.referencesFerreira, N., Azevedo, R., Alves, L., Nogueira, P., Evangelista, M., Rios, V., & PIO, R. (2021). Consumer profile: blackberry processing with different types of sugars. Food Sci. Technol (Campinas) 41 (3), https://doi.org/10.1590/fst.23020.
dc.relation.referencesField, R. (2010). Fundamentals of Fouling. En D. K.‐V. Nunes, Membrane Technology. WILEY. DOI:10.1002/9783527631407.ch1
dc.relation.referencesField, R., & Wu, J. (2022). Ultrafiltration Processes-Understandings and Misunderstandings. Membranes (Basel)., 5;12(2):187. doi: 10.3390/membranes12020187.
dc.relation.referencesField, R., Wu, D., Howell, J., & B.B. Gupta. (1995). Critical flux concept for microfiltration fouling. J. Membr. Sci. 100, 259–272. https://doi.org/10.1016/0376-7388(94)00265-Z
dc.relation.referencesFoley, G. (2013). Crossflow microfiltration. A Problem Solving Approach with MATLAB . Membrane Filtration pp. 48-87. doi:10.1017/CBO9781139236843.004
dc.relation.referencesFranco, G., & Bernal, J. (1998). Agronomía del cultivo de la mora. (http://hdl.handle.net/20.500.12324/21106., Ed.) La Selva, Colombia: Corpoica.
dc.relation.referencesGan, Q., Howell, J., Field, R., England, R., Bird, M., O’Shaughnessy, C., & MeKechinie., M. (2001). Beer clarification by microfiltration — product quality control and fractionation of particles and macromolecules. Journal of Membrane Science, 185-196. https://doi.org/10.1016/S0376-7388(01)00515-4.
dc.relation.referencesF. Van de Velde et al. (2016). Quantitative comparison of phytochemical profile, antioxidant, and anti-inflammatory properties of blackberry fruits adapted to Argentina. Journal of Food Composition and Analysis, 82–91. DOI:10.1016/j.jfca.2016.01.008.
dc.relation.referencesGancel, A., Feneuil, A., Acosta, O., Pérez, A., & Vaillant, F. (2011). Impact of industrial processing and storage on major polyphenols and the antioxidant capacity of tropical highland blackberry (Rubus adenotrichus). Food Research International. 44, 2243-2251. https://doi.org/10.1016/j.foodres.2010.06.013.
dc.relation.referencesGao, Y., Qin, J., Wang, Z., & Østerhus, S. (2019.). Backpulsing technology applied in MF and UF processes for membrane fouling mitigation. Journal of Membrane Science. 587., 117-136 .https://doi.org/10.1016/j.memsci.2019.05.060.
dc.relation.referencesGónzales, C., Vaillant, F., & Tapia, M. (2019). Tangential Microfiltration of blackberry (Rubus adenotrichus Schltdl.) juice sweetened with stevia (Stevia rebaudiana Bertoni). Revista de Ciencias Agrícolas. https://doi.org/10.22267/rcia.193602.115.
dc.relation.referencesGuizard, C., & Pierre, A. (2008). Current status and prospects for ceramic membrane applications. En A. M. Sastre, S. A. Rizvi, & A. K. Pabby., Handbook of membrane separations (págs. 139-175). Boca ratón: Taylor Francis.
dc.relation.referencesGutierrez, J. B. (2000). Ciencia Bromatológica: principios generales de los alimentos. Madrid: Ediciones DÌaz de Santos, S. A.
dc.relation.referencesHaminiuk, C. W., Maciel, G. M., Plata-Oviedo, M. S., & Peralta, R. M. (2012). Phenolic compounds in fruits – an overview. International Journal of Food Science and Technology, 2023–2044. DOI:10.1111/j.1365-2621.2012.03067.x
dc.relation.referencesHo-Ju, F.-C., & y Ronald-E, W. (2010). Anthocyanin Pigment Composition of Blackberries. Food Chemistry and Toxicology, 198-203. DOI:10.1111/j.1365-2621.2005.tb07125.x
dc.relation.referencesHorvitz, S., & Chanaguano, D. (2020). Microbial and sensory quality of an Andean blackberry (Rubus glaucus Benth) cultivar. Acta Hortic, 121-124. DOI: 10.17660/ActaHortic.2020.1275.17
dc.relation.referencesHorvitz, S., Chanaguano, D., & Iñigo, A. (2017). Andean blackberries (Rubus glaucus Benth) quality as affected by harvest maturity and storage conditions. Scientia Horticulturae, 293-301. DOI:10.1016/j.scienta.2017.09.002
dc.relation.referencesHoward, L. R. (2016). Improved Stability of Blueberry Juice Anthocyanins by Acidification and Refrigeration. Journal of Berry Research, 189 – 201. DOI: 10.3233/JBR-160133
dc.relation.referencesHuifang, Z., Lianfei, L., Weilin, L., & ., W. W. (2019). Effect of processing methods on quality of blackberry juice. Acta Hortic., 63-72. https://doi.org/10.17660/ActaHortic.2019.1265.9
dc.relation.referencesINTA. (2007). El análisis sensorial. En C. Catania, & S. Avagnina., Curso superior de degustación de vinos. Mendoza, Argentina.: INTA. Obtenido de https://inta.gob.ar/sites/default/files/script-tmp-29__el_anlisis_sensorial.pdf
dc.relation.referencesIoannis, A., & Theodoros, V. (2008 ). Treatment Methods and Potential Uses of Treated Waste. En Waste Management for the Food Industries (págs. 569-628,). Elsevier Inc.
dc.relation.referencesJ-Hager, T., R-Howard, L., Liyanage, R., O-Lay, J., & L-Prior, R. (2008,). Ellagitannin Composition of Blackberry As Determined by HPLC-ESI-MS and MALDI-TOF-MS. J. Agric. Food Chem. 56(3), 661–669. DOI: 10.1021/jf071990b.
dc.relation.referencesJakobek, L., Medvidović-Kosanović, M., & Šeruga., M. (2007). Anthocyanin content and antioxidant activity of various red fruit juices. DLR. Zeitschrift für Lebensmittelkunde und Lebensmittelrecht. 103 (2), 58-64.
dc.relation.referencesJiménez, N., Bohuon, P., Lima, J., Dornier, M., Vaillant, F., & Pérez., A. (2010). Kinetics of anthocyanin degradation and browning in reconstituted blackberry juice treated at high temperatures (100-180 degrees C). J Agric Food Chem., 314-22. DOI: 10.1021/jf902381e
dc.relation.referencesJing, P., & Giusti, M. (2007). Effects of Extraction Conditions on Improving the Yield and Quality of an Anthocyanin‐Rich Purple Corn (Zea mays L.) Color Extract. Journal of food science, 363-368. DOI: 10.1111/j.1750-3841.2007.00441.x
dc.relation.referencesKader, A. (2018). Flavor quality of fruits and vegetables. 88. Journal of the Science of Food and Agriculture, p. 1863-1868. https://doi.org/10.1002/jsfa.3293.
dc.relation.referenceskąpska, S., Marszałek, K., Woźniak, Ł., Szczepańska, J., Danielczuk, J., & Zawada, K. (2020). he Development and Consumer Acceptance of Functional Fruit-Herbal Beverages. . Foods, 9(12), 1819, Retrieved from http://dx.doi.org/10.3390/foods9121819.
dc.relation.referencesKelly, N., Kelly, A., & O'Mahony., J. (2019,). Strategies for enrichment and purification of polyphenols from fruit-based materials, Trends in Food Science & Technology, 83, 248-258. https://doi.org/10.1016/j.tifs.2018.11.010
dc.relation.referencesKerdi, S. A. (2021). Biofilm removal efficacy using direct electric current in cross-flow ultrafiltration processes for water treatment. Journal of Membrane Science. DOI:10.1016/j.memsci.2020.118808
dc.relation.referencesKhan, R. &. (2013). Functional food product development – Opportunities and challenges for food manufacturers. Trends in Food Science & Technology. 30., 27–37. https://doi.org/10.1016/j.tifs.2012.11.004
dc.relation.referencesKoponen, J., Happonen, A., Mattila, P., & Törrönen., R. (2007). Contents of Anthocyanins and Ellagitannins in Selected Foods Consumed in Finland . J. Agric. Food Chem. 55, 4, , 1612–1619. https://doi.org/10.1021/jf062897a.
dc.relation.referencesLachowicz, S., Oszmiański, J., Kolniak_Ostek, J., & . (2018.). Influence of different pectinolytic enzymes on bioactive compound content, antioxidant potency, colour and turbidity of chokeberry juice. European Food Research and Technology. (244), 1907-1920. https://doi.org/10.1007/s00217-018-3103-7.
dc.relation.referencesLachowicz, S., Oszmiański, J., Kolniak-Ostek, J., & Stokłosa, D. (2019). Effect of different sizes of ceramic membranes in the process of microfiltration on physicochemical parameters of chokeberry juice. European Food Research and Technology. (6), 1263-1275. https://doi.org/10.1007/s00217-019-03246-8.
dc.relation.referencesLandbo, A.-K., & Meyer., A. S. (2004). Effects of different enzymatic maceration treatments on enhancement of anthocyanins and other phenolics in black currant juice,. Innovative Food Science & Emerging Technologies,, 5, 503-516. DOI:10.1016/j.ifset.2004.08.003
dc.relation.referencesLaorko, A., & otros, y. (2008). Effect of gas sparging on flux enhancement and phytochemical properties of clarified pineapple juice by microfiltration. Separation and Purification Technology, 445–451. DOI:10.1016/j.seppur.2011.05.024
dc.relation.referencesLaorko, A., Tongchitpakdee, S., & Youravong., W. (2013). Storage quality of pineapple juice non-thermally pasteurized and clarified by microfiltration. Journal of Food Engineering, 116(2), 554-561. https://doi.org/10.1016/j.jfoodeng.2012.12.033
dc.relation.referencesLee, & Al, E. a. (2019). Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the pH Differential Method: Collaborative Study. Journal of AOAC International., 1269-1278. https://doi.org/10.1093/jaoac/88.5.1269.
dc.relation.referencesLeong, S. Y., & Oey, I. (2017). Chapter 6: Berry Juices. En I. A.-A. Plaza, “Innovative Technologies in Beverage Processing” (págs. 431 - 508). Lleida, Catalonia, Spain: Wiley blackwell.
dc.relation.referencesLi, F., Yan, H., Zhao, J., & Ming, J. (2019). A Comparative Study of the Effects of Ultrafiltration Membranes and Storage on Phytochemical and Color Properties of Mulberry Juice. Journal of food science. https://doi.org/10.1111/1750-3841.14935
dc.relation.referencesLi, Wen & otros (2017). Ceramic membrane fouling and cleaning during ultrafiltration of limed sugarcane juice. Separation and Purification Technology. DOI:10.1016/j.seppur.2017.08.046
dc.relation.referencesLin, Yang & otros (2020). Ripening affects the physicochemical properties, phytochemicals and antioxidant capacities of two blueberry cultivars. Postharvest Biology and Technology, https://doi.org/10.1016/j.postharvbio.2019.111097.
dc.relation.referencesLin, Z., Fischer, J., & ., L. W. (2016). Intermolecular binding of blueberry pectin-rich fractions and anthocyanin. Food Chemistry, 986–993. https://doi.org/10.1016/j.foodchem.2015.08.113
dc.relation.referencesLina, Z., Pattathil, S., Hahne, M. G., & Wickerf, L. (2019). Blueberry cell wall fractionation, characterization and glycome profiling. Food Hydrocolloids. 90, 385–393. https://doi.org/10.1016/j.foodhyd.2018.12.051.
dc.relation.referencesLu, C., Yiwen, b., Jen-Yi, H., & . (2021.). Fouling in membrane filtration for juices processing. Current Opinion in Food Science. 42., 76-85. doi.org/10.1016/j.cofs.2021.05.004.
dc.relation.referencesCarneiro L, Dos Santos I, Dos Santos I, Martins V, Corrêa L,. (2002). Cold sterilization and clarification of pineapple juice by tangential microfiltration,. Desalination,, 148, 93-98. https://doi.org/10.1016/S0011-9164(02)00659-8
dc.relation.referencesM.A. Kazemi et al. (2013. ). Mathematical modeling of crossflow microfiltration of diluted malt extract suspension by tubular ceramic membranes. Journal of Food Engineering 116., 926–933. http://dx.doi.org/10.1016/j.jfoodeng.2013.01.029.
dc.relation.referencesMadrigal, V., Jiménez, J., Hidalgo, O., Quesada, S., Pérez, A., & Azofeifa, G. (2021.). Membrane processing effect of blackberry (Rubus adenotrichos) on cytotoxic and pro‐apoptotic activities against cancer cell lines. Journal of Food Processing and Preservation. 45., https://doi.org/10.1111/jfpp.15575.
dc.relation.referencesMai, H. C. (2017). Application of Cross-Flow Filtration Technique in Purification and Concentration of Juice from Vietnamese Fruits. Beverages. 3(3), 44;, https://doi.org/10.3390/beverages3030044.
dc.relation.referencesMallek-Ayadi, S., Bahloul, N., Baklouti, S., & Kechaou, N. (2022.). Bioactive compounds from Cucumis melo L. fruits as potential nutraceutical food ingredients and juice processing using membrane technology. Food Science & Nutrition, 10., 2922–2934. https://doi.org/10.1002/fsn3.2888.
dc.relation.referencesManganaris, G. A., Goulas, V., Vicente, A., & Terry, L. A. (2014). Berry antioxidants: small fruits providing large benefits. J Sci Food Agric. 94, 825-833. DOI: 10.1002/jsfa.6432.
dc.relation.referencesManuel Dornier, M.-P. B. (2018). Chapter 8: Membrane Technologies for Fruit Juice Processing . En A. Rosenthal, R. Deliza, G. V. Barbosa-Cánovas, & J. Welti-Chanes, Fruit preservation: novel and conventional technologies. New York: Food engineering series (Springer).
dc.relation.referencesMartínez González, M. E., Balois Morales, R., Alia Tejacal, I., Cortes Cruz, M. A., Palomino Hermosillo, Y. A., & López Gúzman, G. G. (2017). Poscosecha de frutos: maduración y cambios bioquímicos. Revista Mexicana de Ciencias Agrícolas , 4075-4087.
dc.relation.referencesMartínez-Navarrete, N., Camacho-Vidal, M., & Martínez-Lahuerta., J. (2008). Los compuestos bioactivos de las frutas y sus efectos en la salud, 2008, Pages 64-68, ISSN 1138-0322,. Actividad Dietética, 12 (2), 64-68. https://doi.org/10.1016/.
dc.relation.referencesMartínez, J., Rojas, H., Borda, G., Hastamorir, A., & Medina, M. (2011). Estabilidad de Antocianinas en Jugo y Concentrado de Agraz (Vaccinium meridionale Sw.). Fac. Nac. Agron. Medellín, 6015-6022.
dc.relation.referencesMertz, C., Cheynier, V., Günata, Z., & Brat, P. (2007). Analysis of phenolic compounds in two blackberry species (Rubus glaucus and Rubus adenotrichus) by high-performance liquid chromatography with diode array detection and electrospray ion trap mass spectrometry. J. Agriculture., 8616–8624. https://doi.org/10.1021/jf071475d.
dc.relation.referencesMonroy, D., Cardona, W., García, C., & Bolaños, M. (2019). Relationship between variable doses of N, P, K and Ca and the physicochemical and proximal characteristics of andean blackberry (Rubus glaucus Benth.). Scientia Horticulturae. 256, https://doi.org/10.1016/j.scienta.2019.05.055.
dc.relation.referencesMonteiro, F., Viotto, L., & Cabral, L. (2011). Evaluation of anthocyanin content on blackberry juice (Rubus spp.) processed by microfiltration. Embrapa Agroindístria de Alimentos., Url:https://ainfo.cnptia.embrapa.br/digital/bitstream/item/54283/1/2011-113.pdf.
dc.relation.referencesMontero B, M. (2008). Tesis: Estudio del proceso para la elaboración de un jugo clarificado de mora por microfiltración tangencial. Universidad de Costa Rica. Escuela de tecnología de alimentos.
dc.relation.referencesMoreno, B. L., & Deaquiz Oyola, Y. A. (2015). Caracterización de parámetros fisicoquímicos en frutos de mora (Rubus alpinus Macfad). Acta Agronómica. Universidad Nacional. http://dx.doi.org/10.15446/acag.v65n2.45587
dc.relation.referencesMulder., M. (1996). Membrane Processes. En M. Mulder., Basic Principles of Membrane Technology (págs. 280-415). https://doi.org/10.1007/978-94-009-1766-8: Springer Dordrecht.
dc.relation.referencesNagy, E. (2019). Chapter 3 Mass Transport Through a Membrane Layer. En https://doi.org/10.1016/B978-0-12-813722-2.00003-0, Basic Equations of Mass Transport Through a Membrane Layer. (págs. 20-70). Elsevier Inc.
dc.relation.referencesMahnot, N., Kalita, D., Mahanta, C., Chaudhuri, M. (2014). Effect of additives on the quality of tender coconut water processed by nonthermal two stage microfiltration technique. LWT - Food Science and Technology, 59., 1191-1195. Doi: 10.1016/j.lwt.2014.06.040
dc.relation.referencesNile, S., & Park, S. (2014). Edible berries Bioactive components and their effect on human health. . Nutrition, 30, 134-144.DOI: 10.1016/j.nut.2013.04.007.
dc.relation.referencesNorton, R. D. (2017). Chapter 10 - Colombia: Crop Competitiveness by Region Evaluated via Tracks 1 and 2. En The Competitiveness of Tropical Agriculture (págs. 231-305). Elsevier Inc.
dc.relation.referencesOancea., S. (2021). A Review of the Current Knowledge of Thermal Stability of Anthocyanins and Approaches to Their Stabilization to Heat. Antioxidant, 1337. DOI:10.3390/antiox10091337
dc.relation.referencesOlivares-Tenorio, M.-L., Verkerk, R., Boekel, M. A., & Dekker., M. (2016). Thermal stability of phytochemicals, HMF and antioxidant activity in cape gooseberry (Physalis peruviana L.). Journal of Functional Foods, 46-57. 10.1016/j.jff.2017.02.021
dc.relation.referencesOliveira, M., Martins, C., & Teixeira, P. (2019). Microbiological quality of raw berries and their products: A focus on foodborne pathogens. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e02992
dc.relation.referencesOrtiz Jerez, M. J., Vélez Pasos, C. A., & Franco Mejía, E. (2008). Modelos matemáticos de la colmatación de membranas en microfiltración tangencial. Revista ingenieria e investigación, 123-132.
dc.relation.referencesOszmiański, J., Nowicka, P., Teleszko, M., Wojdyło, A., Cebulak, T., & Oklejewicz, K. (2015). Analysis of Phenolic Compounds and Antioxidant Activity in Wild Blackberry Fruits. International Journal of Molecular Sciences, 553-553. DOI: 10.3390/ijms160714540
dc.relation.referencesOverview of membrane science and technology. (2004). En R. W. Baker, Membrane Technology and Applications (págs. 1-14). California: John Wiley & Sons, Ltd.
dc.relation.referencesPall-Corporation. (2020). Modules Membralox® IC Ceramic Membranes. Obtenido de Innovaty industrials solution: https://shop.pall.com/us/en/industrial-manufacturing/automotive/stamping/membralox-ic-ceramic-membranes-and-modules-zidgri78m4a
dc.relation.referencesPap, N., Mahosenaho, M., Pongrácz, E. et al.. et al. (2012). Effect of Ultrafiltration on Anthocyanin and Flavonol Content of Black Currant Juice (Ribes nigrum L.). Food Bioprocess Technol , 5, 921–928. https://doi.org/10.1007/s11947-010-0371-z
dc.relation.referencesPérez-Grijalva, B., Herrera-Sotero, M., Mora-Escobedo, R., Zebadúa-García, J., Silva-Hernández, E., Oliart-Ros, R., . . . Guzmán-Gerónimo., R. (2018). Effect of microwaves and ultrasound on bioactive compounds and microbiological quality of blackberry juice. LWT. 87, 47-53. https://doi.org/10.1016/j.lwt.2017.08.059.
dc.relation.referencesPerfetti, J. J. (2017). Política comercial agrícola: nivel, costos y efectos de la protección en Colombia. FEDESARROLLO, 207p. http://hdl.handle.net/11445/3443.
dc.relation.referencesPinto, T., Alice, V., & Fernanda, C. (2022.). Chemical and Sensory Characteristics of Fruit Juice and Fruit Fermented Beverages and Their Consumer Acceptance. Beverages, 8, 33. https://doi.org/10.3390/beverages8020033
dc.relation.referencesPrommajak, T., Leksawasdi, N., & Rattanapanone, N. (2020.). Tannins in Fruit Juices and their Removal. Chiang Mai University Journal of Natural Sciences, 76-90. DOI:10.12982/CMUJNS.2020.0006.
dc.relation.referencesPrommajak, T., Leksawasdi, N., & Rattanapanone, N. (2020). Tannins in Fruit Juices and their Removal. Chiang Mai University Journal of Natural Sciences. DOI:10.12982/CMUJNS.2020.0006
dc.relation.referencesPutnik, P., Kresoja, Ž., Bosiljkov, T., Jambrak, A., Barba, J., Lorenzo, J., Kovačević., D. (2019). Comparing the effects of thermal and non-thermal technologies on pomegranate juice quality: A review. Food Chemestry, 150-161. https://doi.org/10.1016/j.foodchem.2018.11.131
dc.relation.referencesQin, G. L., Wei, W., Li, J., Cui, R., & Hu, S. (2015.). Microfiltration of kiwifruit juice and fouling mechanism using fly-ash-based ceramic membranes. Food and Bioproducts Processing. 96., 278-284. doi.org/10.1016/j.fbp.2015.09.006.
dc.relation.referencesQuesada-Morua, M. S., Olman Hidalgo, J. M., Rojas, G., Perez, A. M., Vaillant, F., & Fonseca., L. (2020). Hypolipidaemic, hypoglycaemic and antioxidant effects of a tropical highland blackberry beverage consumption in healthy individuals on a high-fat, high-carbohydrate diet challenge. Journal of berry research. 10, no. 3,, 459-474, DOI: 10.3233/JBR-190516.
dc.relation.referencesR_Howard, L., L_Prior, R., Liyanag, R., & O_Lay, J. (2012). Processing and Storage Effect on Berry Polyphenols: Challenges and Implications for Bioactive Properties. Food Bioactives and the Journal of Agricultural and Food Chemistry. DOI: 10.1021/jf2046575
dc.relation.referencesRamírez, A., & otros., y. (2011). Optimización del proceso de microfitración tangencial de jugo de araza (Eugenia stipitata) bajo diferentes modos de operación. Vitae. 18(2), 153-161.
dc.relation.referencesReis, M. H., Madrona, G. S., BerbertFerreira, F., Magalhães, F. S., Bindes, M. M., & Cardoso*, V. L. (2019). Membrane Filtration Processes for the Treatment of Nonalcoholic Beverages. En Engineering Tools in the Beverage Industry Volume 3: The Science of Beverages (págs. 175-207). Brazil: Elsevier.
dc.relation.referencesRibeiro, D., Henrique, S., Oliveira, L., Macedo, G., & Fleuri, L. (2010). Enzymes in juice processing: a review. International Journal of Food Science & Technology, 635-641. https://doi.org/10.1111/j.1365-2621.2010.02177.x.
dc.relation.referencesRibeiro, L., Costa, S., Silva, L., Ferreira, J., Freitas, S. P., & Matta, V. M. (2018). Bioactive compounds and shelf life of clarified umbu juice. International Food Research Journal.
dc.relation.referencesRipperger, S., & Altmann., J. (2002). Crossflow microfiltration – state of the art. Separation and Purification Technology, 19–31. https://doi.org/10.1016/S1383-5866(01)00113-7
dc.relation.referencesRobinson et al. (2020). Blackberry polyphenols: review of composition, quantity, and health impacts from in vitro and in vivo studies. Journal of Food Bioactives, 40-51. DOI: https://doi.org/10.31665/JFB.2020.9217.
dc.relation.referencesRocio Garcia-Villalba, J. C.-B. (2015). A validated method for the characterization and quantification of extractable and non-extractable ellagitannins after acid hydrolysis in pomegranate fruits, juices, and extracts. J. Agric. Food Chem., 1-39. https://doi.org/10.1021/acs.jafc.5b02062
dc.relation.referencesRodriguez-Amaya, D. B. (2019). Update on natural food pigments - A mini-review on carotenoids, T anthocyanins, and betalains. Food Res Int. 124, 200-205. DOI: 10.1016/j.foodres.2018.05.028.
dc.relation.referencesRodríguez, L. B., & otros., y. (2021). Tecnologías postcosecha para promover la vida de anaquel de frutos pequeños. Revista Iberoamericana de Tecnología Postcosecha. 22(1), https://www.redalyc.org/articulo.oa?id=81367929004.
dc.relation.referencesRodríguez, R., Gabriela, L., Mendoza, L., Van-Nieuwenhove, Carina, Pescuma, M. M., & Fernanda, B. (2020). Fermentación de jugos y bebidas a base de Frutas. Instituto Danone.
dc.relation.referencesRosero, M. C. (2017). La reestructuración agraría neoliberal en Colomboia: Un cambio agrario para un nuevo régimen alimentario. (págs. 172-194). España: Universidad Cooperativa de Colombia Universidad Complutense de Madrid.
dc.relation.referencesSalomão, B. d. (2018). Pathogens and Spoilage Microorganisms in Fruit Juice: An Overview,. Fruit Juices,, 291-308, https://doi.org/10.1016/B978-0-12-802230-6.00016-3.
dc.relation.referencesSánchez Velázquez, O. A., Montes Ávila, J., Milán Carrillo, J., Reyes Moreno, C., Mora Rochin, S., & Cuevas Rodríguez., E. O. (2019). Characterization of tannins from two wild blackberries (Rubus spp) by LC–ESI–MS/MS, NMR and antioxidant capacity. ournal of Food Measurement and Characterization.
dc.relation.referencesSantin, M., Treichel, H., Valduga, E., Cabral, L., & Luccio, M. (2012). Sensory analysis of enzyme- and membrane-treated peach juices. Fruits, 451-461. DOI:10.1051/fruits/2012041
dc.relation.referencesSantos, S., Paraíso, C., & Madrona, G. (2020). Blackberry pomace microspheres: An approach on anthocyanin degradation. Ciência E Agrotecnologia, 44,. https://doi.org/10.1590/1413-7054202044014420
dc.relation.referencesSarode, A., Verma, N., & Bhattacharya, P. (2001). Analysis of retention and flux decline during ultrafiltration of limed sugarcane (clarified) juice. Chemical Engineering Communications. 188, 179-206. https://doi.org/10.1080/00986440108912903.
dc.relation.referencesSavez, E., Miranda, W., Espinoza, D., Minchán, H., Mendoza, J., Yalta, J., . . . Ricse, D. (2021). Desarrollo de modelos matemáticos para el cálculo del tiempo de tratamiento térmico de conservas vegetales envasadas. Savez Editorial. DOI: https://doi.org/10.53887/se.vi.40
dc.relation.referencesSchmidt, H. d., Rockett, F. C., Sartori, G. V., Rezzadori, K., Tischer, B., Rodrigues, E., Manfroi., V. (2022). Influence of processing conditions on the composition of feijoa (Acca sellowiana) juices during storage. Journal of Food Composition and Analysis, 114. https://doi.org/10.3390/agronomy12081802
dc.relation.referencesSchulz, M., & Chim, J. (2019). Nutritional and bioactive value of Rubus berries. 31. Food Science, https://doi.org/10.1016/j.fbio.2019.100438.
dc.relation.referencesSeyed Mohsen, S., Shirley, G.-T., & Altaee., A. (2018). The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters – A review. Separation and Purification Technology, 198-220.
dc.relation.referencesSharoba, A. M., & Ramadan, M. F. (2011). Rheological behavior and physicochemical characteristics of goldenberry (physalis peruviana) juice as affected by enzymatic treatment. ournal of Food Processing and Preservation, 201-2019. DOI:10.1111/j.1745-4549.2009.00471.x
dc.relation.referencesShi, C., Rackemann, D., Moghaddam, L., Wei, B., Li, K., Lu, H., Doherty, W. (2018). Ceramic Membrane Filtration of Factory Sugarcane Juice: Effect of Pretreatment on Permeate Flux, Juice Quality and Fouling. Journal of Food Engineering. https://doi.org/10.1016/j.jfoodeng.2018.09.012
dc.relation.referencesShu, B. L. (2021). Chapter 4: Biosynthesis and Chemistry of Anthocyanins. En Anthocyanins Chemistry, Processing & Bioactivity (págs. https://doi.org/10.1007/978-981-16-7055-8 ). Singapore : Springer Nature .
dc.relation.referencesSiddiq, M., Dolan, K., Perkins-Veazie, P., & Collins, J. (2018). Effect of pectinolytic and cellulytic enzymes on the physical, chemical, and antioxidant properties of blueberry (Vaccinium corymbosum L.) juice. LWT - Food Science and Technology., 127-132. https://doi.org/10.1016/j.lwt.2018.02.008.
dc.relation.referencesSiebert, K. J. (2006). Haze formation in beverages. food science and technology, 987–994. DOI:10.1016/j.lwt.2006.02.012
dc.relation.referencesSinela, A., Mertz, C., Achir, N., Rawat, N., Vidot, K., Fulcrand, H., & Dornier., M. (2017). Exploration of reaction mechanisms of anthocyanin degradation in a roselle extract through kinetic studies on formulated model media. Food Chemistry,, 67-75. https://doi.org/10.1016/j.foodchem.2017.05.027.
dc.relation.referencesSiriwoharn, T., Wrolstad, R., & Durst, R. (2007). Identification of Ellagic Acid in Blackberry Juice Sediment. Journal of Food Science, 70, 189-197. https://doi.org/10.1111/j.1365-2621.2005.tb07124.x.
dc.relation.referencesSkrovankova, S., Sumczynski, D., Mlcek, J., & Jurikova., T. (2015). Bioactive Compounds and Antioxidant Activity in Different Types of Berries. J. Int J Mol Sci. 16, 673-706.doi:10.3390/ijms161024673.
dc.relation.referencesSolis, c., Velez, c., & Ramírez-Navas, J. (2016). Tecnología de membranas: desarrollo histórico. Entre ciencia e ingenieria. 19, 89-98. https://www.researchgate.net/publication/304175336.
dc.relation.referencesSong, H., Ji, S., Park, H., Kim, H., & Hogstrand., C. (2018). Impact of Various Factors on Color Stability of Fresh Blueberry Juice during Storage. Prev Nutr Food Sci.23(1), 46-51. doi: 10.3746/pnf.2018.23.1.46
dc.relation.referencesSoto, M., Acosta, O., Vaillant, F., & Pérez, A. (2016). Effects of Mechanical and Enzymatic Pretreatments on Extraction of Polyphenols from Blackberry Fruits. J Food Process Eng. 39., 492-500. https://doi.org/10.1111/jfpe.12240.
dc.relation.referencesSoto, M., Acosta, O., Vaillant, F., & Pérez., A. (2015). Effects of Mechanical and Enzymatic Pretreatments on Extraction of Polyphenols from Blackberry Fruits . Journal of Food Process Engineering. https://doi.org/10.1111/jfpe.12240
dc.relation.referencesStebbins, N. B. (2017). Characterization and Mechanisms of Anthocyanin Degradation and Stabilization. Graduate Theses and Dissertations . University of Arkansas, Fayetteville, Retrieved from https://scholarworks.uark.edu/etd/2618.
dc.relation.referencesStrawn, L., Schneider, K., & Danyluk., M. (2011.). Microbial safety of tropical fruits. Rev Food Sci Nutr. 51 (2)., 132-145. doi: 10.1080/10408390903502864.
dc.relation.referencesSwer, T. L., & Chauhan., K. (2019). Stability studies of enzyme aided anthocyanin extracts from Prunus nepalensis L,. LWT, 102., 181-189, https://doi.org/10.1016/j.lwt.2018.12.016.
dc.relation.referencesTajchakavit, S., Boye, J., Bélanger, D., & Couture., R. (2001). Kinetics of haze formation and factors influencing the development of haze in clarified apple juice,. Food Research International,, 431-440.
dc.relation.referencesTajchakavit, S., Boye, J., Bélanger, D., & Couture., R. (2001). Kinetics of haze formation and factors influencing the development of haze in clarified apple juice,. Food Research International,, 431-440. https://doi.org/10.1016/S0963-9969(00)00188-5
dc.relation.referencesTania, A., & Helena, C. (2018). analysis, identification, and quantification of anthocyanins in fruit juices. In G. R. Tiwari, Fruit Juices: Extraction, Composition, Quality and Analysis (pp. 693-737). https://doi.org/10.1016/B978-0-12-802230-6.00034-5: Elsevier.
dc.relation.referencesTiwari, B., O'Donnell, C., & Cullen., P. (2009). Effect of non thermal processing technologies on the anthocyanin content of fruit juices,. Trends in Food Science & Technology, 20 (4), 137-145. https://doi.org/10.1016/j.tifs.2009.01.058.
dc.relation.referencesTournas, V., & Katsoudas, E. (2005). Mould and yeast flora in fresh berries, grapes and citrus fruits. International Journal of Food Microbiology, 11-17. DOI: 10.1016/j.ijfoodmicro.2005.05.002
dc.relation.referencesUenojo, M., & Pastore, G. (2008). Pectinolytic enzymes: industrial applications and future perspectives. Química Nova, 388-394. DOI:10.1590/S0100-40422007000200028
dc.relation.referencesUrošević, T., Povrenović, D., Vukosavljević, P., Urošević, I., & Stevanović., S. (2017). Recent developments in microfiltration and ultrafiltration of fruit juices,. Food and Bioproducts Processing. 106., 147-161. DOI: 10.1016/j.fbp.2017.09.009
dc.relation.referencesVahapoglu, B., Erskine, E., Gultekin, B., & Capanoglu, E. (2022). Recent Studies on Berry Bioactives and Their Health-Promoting Roles. Molecules. 24;27(1):108., 108. 10.3390/molecules27010108.
dc.relation.referencesVaillant, F., Millan, A., Dornier, M., Decloux, M., & Reynes, M. (2001.). Strategy for economical optimisation of the clarification of pulpy fruit juices using crossflow microfiltration. Journal of Food Engineering. 48(1)., 83-90. DOI:10.1016/S0260-8774(00)00152-7.
dc.relation.referencesVaillant, F., Millan, P., OÕBrien, G., Dornier, M., Decloux, M., & M., R. (1999). Cross Flow microfiltration of passion fruit juice after partial enzymatic liquefaction. Journal of Food Engineering., 215-224 https://doi.org/10.1016/S0260-8774(99)00124-7.
dc.relation.referencesVaillant, F., Pérez, A., Acosta, O., & Dornier, M. (2008). Turbidity of pulpy fruit juice: a key factor for predicting cross-flow microfiltration performance. J. Membr. Sci. 325., 404–412. https://doi.org/10.1016/j.memsci.2008.08.003.
dc.relation.referencesValverde C, P. (2011). Tesis: Evaluación del efecto de la operación de microfiltración tangencial sobre la concentración de taninos del ácido elagico, antocianinas y capacidad antioxidante en un jugo de mora (Rubus adenothricus). Universidad de Costa Rica, escuela de tecnología de alimentos. .
dc.relation.referencesVázquez-Araújo, L., K, C., & Carbonell-Barrachina, Á. (2010). Sensory and physicochemical characterization of juices made with pomegranate and blueberries, blackberries, or raspberries. J Food Sci., 398-404. DOI: 10.1111/j.1750-3841.2010.01779.x
dc.relation.referencesVergara, M., Vargas, J., & Acuña, J. (2016). Características físicoquímicas de frutos de mora de Castilla (Rubus glaucus Benth.) provenientes de cuatro zonas productoras de Cundinamarca, Colombia. Agronomía colombiana. 34, 336-345. https://doi.org/10.15446/agron.colomb.v34n3.62755.
dc.relation.referencesViana, J., Ximenes, S., deSouza, A., de Abreu, F., & Petrus, J. (2021). Process optimization in the obtention of microfiltered banana (Musa cavendish) juice by response surface methodology. Journal of Food Processing and Preservation, 45,, https://doi.org/10.1111/jfpp.15987.
dc.relation.referencesVieira, A., Balthazar, C., Guimaraes, J., Rocha, R., Pagani, M. M., Esmerino, E., Cruz, A. (2020). Advantages of microfiltration processing of goat whey orange juice beverage. Food Research International. 132, 963-969. https://doi.org/10.1016/j.foodres.2020.109060.
dc.relation.referencesVillareal, Y., & Osorio, O. (2013). fecto de pasteurización sobre características sensoriales y contenido de vitamina c en jugos de frutas. Biotecnología en el Sector Agropecuario y Agroindustrial. 11, 66-75. http://www.scielo.org.co/pdf/bsaa/v11n2/v11n2a08.pdf.
dc.relation.referencesVladisavljevic, G. T., Vukosavljevic, P., & Veljovic., M. S. (2013). Clarification of red raspberry juice using microfiltration with gas backwashing: A viable strategy to maximize permeate flux and minimize a loss of anthocyanins. Food and Bioproducts Processing, 473-480. DOI:10.1016/j.fbp.2013.05.004
dc.relation.referencesWang, W.‐D., Xu, S.‐Y., & Jin, M.‐K. (2009). Effects of different maceration enzymes on yield, clarity and anthocyanin and other polyphenol contents in blackberry juice. International Journal of Food Science & Technology. https://doi.org/10.1111/j.1365-2621.2007.01637.x
dc.relation.referencesWhiitaker, & R., J. (2006). Enzimas. En O. R. Fenemma, Química de los Alimentos (págs. 515-625).
dc.relation.referencesXiaonan, S., Solène, B., & Zhou, W. (2016). Changes in the color, chemical stability and antioxidant capacity of thermally treated anthocyanin aqueous solution over storage,. Food Chemistry, 192., 516-524,. DOI: 10.1016/j.foodchem.2015.07.021
dc.relation.referencesZapata, M., Manuel, J., Fabio, C., Evelin, Mariana, & Cecilia., a. (2016). Estabilidad De Antocianinas Durante El Almacenamiento De Jugos De arándanos. VItae, 23 (3), 173-83. DOI: https://doi.org/10.17533/udea.vitae.v23n3a03
dc.relation.referencesZeb, A. (2021). Chapter 2 Chemistry of Phenolic Antioxidants. En Springer, Phenolic Antioxidants in FoodsChemistry, Biochemistry and Analysis (págs. 25-40). Pakistan: Department of Biochemistry University of Makaland Chakdara.
dc.relation.referencesZhang, L., Zhou, J., Liu, H., Ammar-Khan, M., Huang, K., & Gu, Z. (2012). Compositions of anthocyanins in blackberry juice and their thermal degradation in relation to antioxidant activity. Euro Food Research Technol ogy, 637–645. DOI:10.1007/s00217-012-1796-6
dc.relation.referencesZhuangsheng, L., Pattathil, S., Hahne, M., & Wickerf, L. (2019). Blueberry cell wall fractionation, characterization and glycome profiling. Food Hydrocolloids, 385–393. https://doi.org/10.1016/j.foodhyd.2018.12.051
dc.relation.referencesZozio, S., Pallet, D., & Dornier, M. (2011). Evaluation of anthocyanin stability during storage of a coloured drink made from extracts of the Andean blackberry ( Rubus glaucus Benth.), açai ( Euterpe oleracea Mart.)and black carrot ( Daucus carota L.). Fruits. 66 (3), 203-215. 10.1051/fruits/2011030.
dc.relation.referencesAbd-Razak, N. H., Chew, Y. J., & Bird, M. R. (2019.). .Membrane fouling during the fractionation of phytosterols isolated from orange juice. Food and Bioproducts Processing., 113, 10-21. https://doi.org/10.1016/j.fbp.2018.09.005.
dc.relation.referencesAcosta-Ruales, M., Viera, W. F., Jackson, T., & Wilson, V.-C. (2020). Alternativas tecnológicas para el control de Botrytis sp. en mora de castilla (Rubus glaucus). Enfoque UTE, 11-20. https://doi.org/10.29019/enfoque.v11n2.521 .
dc.relation.referencesAcosta, O., Vaillant, F., Pérez, A. M., & Dornier., M. (2014). Potential of ultrafiltration for separation and purification of ellagitannins in blackberry (Rubus adenotrichus S.) jiuce. Separation and Purification Technology, 120-125. DOI: 10.1016/j.seppur.2014.01.037.
dc.relation.referencesAgudelo-martínez, P., luna-ramírez, J., & quintero-castaño., V. (2019). Formulación y evaluación fisicoquímica de jugo de mora (Rubus glaucus Benth) enriquecido con calcio y vitamina C . Revista Biotecnología en el Sector Agropecuario y Agroindustrial,18(1). 56-63. DOI:http:/dx.doi.org/10.18684/bsaa.v18n1.1411
dc.relation.referencesAhmed, I., Balkhair, K. S., Albeiruttye, M. H., & Amer, J. S. (2017). Importance and Significance of UF/MF Membrane Systems in Desalination Water Treatment. En T. Yonar, Desalination DOI: 10.5772/intechopen.68694.
dc.relation.referencesArikrishnan, D., & Keshav, A. (2023.). Pineapple juice clarification by continuous dead-end microfiltration using a low-cost ceramic membrane. Food Measure 17, , 863–881. https://doi.org/10.1007/s11694-022-01634-5 .
dc.relation.referencesAlbuquerque, T., & Costa., H. (2018). analysis, identification, and quantification of anthocyanins in fruit juices. In Fruit Juices: Extraction, Composition, Quality and Analysis (pp. 693-737). https://doi.org/10.1016/B978-0-12-802230-6.00034-5:
dc.relation.referencesAli, L., Alsanius, B., Rosberg, A., & et_al. (2012). Effects of nutrition strategy on the levels of nutrients and bioactive compounds in blackberries. Eur Food Res Technol. 234(1), 33-44. DOI:10.1007/s00217-011-1604-8.
dc.relation.referencesAltendorf, S. (2017). Perspectivas mundiales de las principales frutas tropicales." Perspectivas, retos y oportunidades a corto plazo en un mercado pujante. . FAO.
dc.relation.referencesCisse, M., Vaillant, F., Acosta, O., Dhuique, C., & Dornier, M. (2009.). Thermal degradation kinetics of anthocyanins from blood orange, blackberry, and roselle using the arrhenius, eyring, and ball models. J Agric Food Chem., 6285-91. doi.org/10.1021/jf900836b.
dc.relation.referencesChew, J. W., Kilduffc, J., & Belfortd, G. (2020). The behavior of suspensions and macromolecular solutions in crossflow microfiltration: An update. Journal of Membrane Science. 601, 1, https://doi.org/10.1016/j.memsci.2020.117865.
dc.relation.referencesChen, J.-y., Du, J., Li, M.-l., & Li., C.-m. (2020). Degradation kinetics and pathways of red raspberry anthocyanins in model and juice systems and their correlation with color and antioxidant changes during storage. Food Science and Technology. https://doi.org/10.1016/j.lwt.2020.109448
dc.relation.referencesChaparro, L., & Soraya Castillo. (2016). Procesamiento de jugos de frutas empleando tecnología de membranas. Revista de la Facultad de Ingeniería U.C.V, 79-90.
dc.relation.referencesCeci, C., Lacal, P., Tentori, L., De Martino, M., Miano, R., & Graziani, G. (2018.). Experimental Evidence of the Antitumor, Antimetastatic and Antiangiogenic Activity of Ellagic Acid. . Nutrients, 10(11),, http://dx.doi.org/10.3390/nu10111756.
dc.relation.referencesCastro-Muñoz, R., Boczkaj, G., Gontarek, E., Cassano, A., & Fíla., V. (2019). Membrane technologies assisting plant-based and agro-food by-products processing: A comprehensive review. Trends in Food Science & Technology. https://doi.org/10.1016/j.tifs.2019.12.003
dc.relation.referencesCassano, A., Conidi, C., Timpone, R., D’Avella, M., & Drioli., E. (2007). A membrane-based process for the clarification and the concentration of the cactus pear juice,. Journal of Food Engineering, 80, 914-921. https://doi.org/10.1016/j.jfoodeng.2006.08.005.
dc.relation.referencesCasati, C. B., Sánchez, V., Baeza, R., Magnani, N., Evelson, P., & Zamora., M. C. (2012). Relationships between colour parameters, phenolic content and sensory changes of processed blueberry, elderberry and blackcurrant commercial juices. Inernational Journal of food science and technology, 1728-1736. DOI:10.1111/j.1365-2621.2012.03027.x
dc.relation.referencesCarvalho, L. d., Castro, I. M., & Silva., C. A. (2008). A study of retention of sugars in the process of clarification of pineapple juice (Ananas comosus, L.) by micro- and ultra-filtration. Journal of Food Engineering, 87, 447- 454. DOI:10.1016/j.jfoodeng.2007.12.015
dc.relation.referencesCarvalho, C. P., & Betancur, J. A. (2015). Caracterización de la calidad del fruto de mora de Castilla (Rubus glaucus Benth) en diferentes estados de madurez en Antioquia. Agronomia Colombiana, 74-83. https://doi.org/10.15446/agron.colomb.v33n1.
dc.relation.referencesCarrillo-Perdomo, Aller, E., Cruz-Quintana, A., M, S., Giampieri, F., & Alvarez-Suarez, J. M. (2015). Andean berries from Ecuador: A review on botany, agronomy, chemistry and health potential. Journal of Berry Research, 49-69. DOI:10.3233/JBR-140093
dc.relation.referencesCarneiro L, Dos Santos I, Dos Santos I, Martins V, Corrêa L,. (2002). Cold sterilization and clarification of pineapple juice by tangential microfiltration,. Desalination,, 148, 93-98. https://doi.org/10.1016/S0011-9164(02)00659-8
dc.relation.referencesCardona Buitrago Amalita (2016). Agricultura en el oriente antioqueño : oportunidad de desarrollo local y regional / Área geográfica de impacto Punto de partida Juego de actores Tiempo de ejecución Recursos financieros Recursos humanos Actividades realizadas Logros y resultados. 5–7.
dc.relation.referencesCarcamo, L., & ordoñez-santos., L. (2019). Cambios en los compuestos bioactivos del jugo de uchuva (Physalis peruviana L.) pasteurizado. Tecnológicas ITM.
dc.relation.referencesCamille Rouquié, L. D. (2019). Immersed membranes configuration for the microfiltration of fruit-based suspensions,. Separation and Purification Technology,, 216, 25-33.
dc.relation.referencesCalderón, Luz_Andrea, Grijalba, C., & Pérez, M. (2010). Rendimiento y calidad de la Fruta en Mora de castilla (Rubus glaucus Benth), con y sin espinas, cultivada en camPo abierto en caJicá (cundinamarca, colombia). Revista Facultad de Ciencias Básicas 6(1), 24-41. https://doi.org/10.18359/rfcb.2079.
dc.relation.referencesBubans, I., Hamerski, F., Pinto, C., & daSilva., V. (2021 ). Clarification of Byrsonima ligustrifolia Extract by Porous Membranes: Retention of Bioactive Compounds and Stability During Storage. Food and Bioprocess Technology (14), 518 - 529 .https://doi.org/10.1007/s11947-021-02597-z.
dc.relation.referencesBrunda, G., Kavyashree, U., Shetty, S., & Sharma, K. (2022). Comparative study of not from concentrate and reconstituted from concentrate of pomegranate juices on nutritional and sensory profile. . Food Sci Technol Int. 28(1):93-104.
dc.relation.referencesBrito, B., Rodríguez, M., Samaniego, I., Jaramillo, I., & Vaillant, F. (2008). Characterising polysaccharides in cherimoya (Annona cherimola Mill.) purée and their enzymatic liquefaction. European food research & technology, 226., 355-361. DOI:10.1007/s00217-006-0545-0
dc.relation.referencesBhattacharjee, C., Saxena, V., & Dutta, S. (2017). Fruit juice processing using membrane technology: A review. Innovative Food Science & Emerging Technologies. 43, 136-153. https://doi.org/10.1016/j.ifset.2017.08.002.
dc.relation.referencesBernjak B., &. K. (2021). A Review of Tannins in Berries. Agricultura, 17(1-2),, 27-36. DOI:10.18690/agricultura.17.1-2.27-36.2020
dc.relation.referencesBendokas, V., Stanys, V., Mažeikiene, I., Trumbeckaite, S., & Liobika, R. B. (2020). Review Anthocyanins: From the Field to the Antioxidants in the Body. MDPI-Antioxidants, 1-17.
dc.relation.referencesBarrero Meneses, L. S. (2009). Caracterización, evaluación y producción de material limpio de mora con alto valor agregado. Compilación de archivos técnicos. Colombia: CORPOICA. AGROSAVIA http://hdl.handle.net/20.500.12324/12870.
dc.relation.referencesBadui Dregal, S. (2006). Química de los alimentos. Cuarta edición. México: Pearson Educación.
dc.relation.referencesB.Orhan Dereli et al. (2023). Clarification of pomegranate and strawberry juices: Effects of various clarification agents on turbidity, anthocyanins, colour, phenolics and antioxidant activity. food Chemistry, 413.
dc.relation.referencesB.K. Tiwari et al. (2009). Anthocyanin and colour degradation in ozone treated blackberry juice. Innovative Food Science and Emerging Technologies (2009), 10, 70–75. https://doi.org/10.1016/j.ifset.2008.08.002
dc.relation.referencesAzofeifa, G., Quesada, S., Pérez, A. M., Vaillant, F., & Michel., A. (2015). Pasteurization of blackberry juice preserves polyphenol-dependent inhibition for lipid peroxidation and intracellular radicals. Journal of Food Composition and Analysis. 42, 56-62. https://doi.org/10.1016/j.jfca.2015.01.015.
dc.relation.referencesAyala, L., Valenzuela, C., & Bohórquez, Y. (2013). Caracterización fisicoquímica de mora de castilla (Rubus glaucus benth) en seis estados de madurez. biotecnología en el sector agropecuario y agroindustrial vol 11 no. 2 (10-18).
dc.relation.referencesAyala, L., Valenzuela, C., & Bohórquez, Y. (2013.). Caracterización fisicoquímica de mora de castilla (Rubus glaucus Benth) en siete estados de madurez. Biotecnología en el Sector Agropecuario y Agroindustrial Vol 11 No. 2 (10-18)., 10-18. https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/306.
dc.relation.referencesAsociación Argentina de Microbiología. (2017). Manual de Microbiología aplicada a las Industrias Farmacéutica, Cosmética y de Productos Médicos. Buenos Aires.: División de Alimentos, Medicamentos y Cosméticos Subcomisión de Buenas Prácticas.
dc.relation.referencesArozarena, Í., Ortiz, J., Hermosín-Gutiérrez, I., Urretavizcaya, I., Salvatierra, S., Córdova, I., Navarro., M. (2012). Color, Ellagitannins, Anthocyanins, and Antioxidant Activity of Andean Blackberry (Rubus glaucus Benth.) Wines. Journal of Agricultural and Food Chemistry., 60, 7463-7473
dc.relation.referencesAraujo, M. C., Gouvêa, A. C., Couto, D. S., Cabral, L. M., Godoy, R. L., & Freitas., S. P. (2011). Effect of enzymatic treatment on the viscosity of raw juice and anthocyanins content in the microfiltrated blackberry juice. Desalination and Water Treatment, 27, 37-41.
dc.relation.referencesAmit, J., & Sirshendu, D. (2019). Proccesing of beverages by membrane. En D. o. Engineering, Manufacturing of furit beverages and concentrate. Kharagpur, India: Indian Institute of Technology.
dc.relation.referencesÁlvarez, J., Fischer, G., & Vélez, J. (2016). Producción de frutos de uchuva (Physalis peruviana L) bajo diferentes láminas de riego, frecuencias de riego y dosis de calcio. Revista Colombiana De Ciencias Hortícolas, 222-233.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocMora - Frutas
dc.subject.agrovocJugos de frutas
dc.subject.agrovocMicrofiltración
dc.subject.agrovocFiltración tangencial
dc.subject.agrovocIndustria de bebidas
dc.subject.agrovocAlmacenamiento de alimentos
dc.subject.agrovocTecnología de alimentos
dc.subject.agrovocJugo de mora
dc.subject.agrovocProcesamiento de alimentos
dc.subject.proposalRubus glaucus benth
dc.subject.proposalBebida funcional
dc.subject.proposalMicrofiltración tangencial
dc.subject.proposalCross flow microfiltration
dc.subject.proposalFunctional beverage
dc.title.translatedValidation of a tangential microfiltration pilot production line for obtaining blackberry juice (Rubus glaucus Benth.)
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleValorización agroindustrial de frutas pequeñas con potencial funcional basado en altas innovaciones tecnológicas viables a pequeña y mediana escala, mediante estrategia de prototipado, simulación comercial y escalamiento empresarial
oaire.fundernameConvocatoria 805 Colciencias
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dc.description.curricularareaAgro Ingeniería Y Alimentos.Sede Medellín
dc.contributor.orcidZuluaga Narváez, Juan Diego [0000-0003-0140-603X]
dc.contributor.cvlacJuan Diego Zuluaga


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito