Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorGarcía Sucerquia, Jorge Iván
dc.contributor.authorTobon-Maya, Heberley
dc.date.accessioned2024-05-02T14:35:19Z
dc.date.available2024-05-02T14:35:19Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86006
dc.description.abstractLa microscopia holográfica digital sin lentes (DLHM) es tal vez la tecnología más simple en términos de hardware para la observación de muestras sin tinción; una fuente de iluminación coherente de ondas esféricas, un sistema digital de registro y un cuerpo mecánico para integrarlos, constituyen el hardware necesario para su implementación, lo cual perfila a DLHM como una tecnología con un alto potencial de ser desarrollada de forma abierta, portable y accesible a un bajo costo. A pesar de este potencial las soluciones comerciales de DLHM se encuentran lejos de ser una tecnología accesible a diversos sectores de la educación, investigación y producción debido alto costo y baja portabilidad. En esta tesis de maestría en Ingeniería Física se condensan, refinan y articulan los diseños de DLHM producidos por el grupo de Óptica y Procesamiento Opto-Digital (GODP) relativos a los elementos constituyentes de la tecnología, para desarrollar un prototipo de microscopio DLHM certificable como hardware open-source. Para lograrlo se realizó un levantamiento del estado del arte de las características necesarias para que un prototipo de DLHM sea considerado como hardware open-source, se estudiaron los diferentes desarrollos del GDOP respecto a la fuente de iluminación y sistemas de registros en DLHM y finalmente se desarrolló un prototipo con base en los elementos constituyentes de mejor desempeño y las características necesarias su certificación. Los resultados de esta tesis se encuentran condensados en 2 artículos publicados en revistas indexadas, en la participación en 4 congresos de carácter internacional (LAOP 2022, RIAO 2023, ENO 2021, ETOP 2023) con 7 contribuciones en forma de presentación y un workshop de holografía digital dictado en el marco del 10th International Symposium "Optics & its applications” patrocinado por el ICTP. 8Texto tomado de la fuente)
dc.description.abstractDigital Lensless Holographic Microscopy (DLHM) is perhaps the simplest technology in terms of hardware for label-free sample observation. A coherent spherical wave illumination source, a digital recording system, and a mechanical body for integration, are the necessary hardware components for its implementation. This simplicity of hardaware sets DLHM as a technology with high potential for open, portable, and cost-effective development. Despite this potential, commercial DLHM solutions are far from being accessible to many sectors in education, research, and production, mainly due to its high costs and low portability. In this Master's thesis in Engineering in Physics, the designs of DLHM developed by the Optics and Opto-Digital Processing group (GODP) concerning the constituent elements of the technology are condensed, refined, and articulated in the development of a certifiable open-source hardware prototype of a DLHM microscope. To achieve this, a survey of the state-of-the-art characteristics necessary for a DLHM prototype to be considered as opensource hardware was conducted. The different developments of GOPD regarding the illumination source and recording systems in DLHM were studied, and finally, a prototype was developed based on the best-performing constituent elements and the necessary certification characteristics. The results of this thesis are condensed in two articles published in indexed journals and the participation in four international congresses (LAOP 2022, RIAO 2023, ENO 2021, ETOP 2023) with seven contributions in the form of presentations, and a workshop on digital holography delivered within the framework of the 10th International Symposium "Optics & its applications," sponsored by the ICTP
dc.format.extent1 recurso en línea (91 páginas)
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subject.ddc530 - Física
dc.titleDesarrollo de un prototipo de microscopio holográfico digital sin lentes certificable open-source
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias - Maestría en Ingeniería Física
dc.contributor.researchgroupOptica y Procesamiento Opto-Digital
dc.description.degreelevelMaestría
dc.description.degreenameMaestría en Ciencias - Física
dc.description.researchareaÓptica Aplicada
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesH. Tobon-Maya, S. Zapata-Valencia, E. Zora-Guzmán, C. Buitrago-Duque, and J. Garcia-Sucerquia, "Open-source, cost-effective, portable, 3D-printed digital lensless holographic microscope," Appl. Opt. 60, A205 (2021).
dc.relation.referencesH. Tobon, C. Trujillo, and J. Garcia-Sucerquia, "Preprocessing in digital lensless holographic microscopy for intensity reconstructions with enhanced contrast," Appl. Opt. 60, A215 (2021).
dc.relation.referencesH. Tobón-Maya, A. Gómez-Ramírez, C. Buitrago-Duque, and J. Garcia-Sucerquia, "Adapting a Blu-ray optical pickup unit as a point source for digital lensless holographic microscopy," Appl. Opt. 62, D39 (2023).
dc.relation.referencesS. I. Zapata-Valencia, H. Tobon-Maya, and J. Garcia-Sucerquia, "Image enhancement and field of view enlargement in digital lensless holographic microscopy by multi-shot imaging," J. Opt. Soc. Am. A 40, C150 (2023).
dc.relation.referencesH. Tobón-Maya, A. Gómez-Ramírez, and J. Garcia-Sucerquia, "Digital Lensless holographic microscopy based on an optical pick-up unit," in Latin America Optics and Photonics (LAOP) Conference 2022 (Optica Publishing Group, 2022), p. W1D.3.
dc.relation.referencesS. I. Zapata-Valencia, H. Tobon-Maya, and J. García-Sucerquia, "Automatic method to measure the numerical aperture of a propagating Gaussian light beam," Opt. Pura y Apl. 55, 1–8 (2022).
dc.relation.referencesC. A. Buitrago-Duque, S. I. Zapata-Valencia, H. Tobon-Maya, A. Gomez-Ramirez, and J. Garcia-Sucerquia, "Introduction to holography at undergraduate level using research-grade open-source software," in Seventeenth Conference on Education and Training in Optics and Photonics: ETOP 2023, M. McKee and D. J. Hagan, eds. (SPIE, 2023), Vol. 12723, p. 127231V. 122. S. I. Zapata-Valencia, A. Gómez-Ramírez, H.
dc.relation.referencesS. I. Zapata-Valencia, A. Gómez-Ramírez, H. Tobon-Maya, C. A. Buitrago-Duque, and J. Garcia-Sucerquia, "Beyond maxima and minima: a hands-on approach for undergraduate teaching of diffraction," in Seventeenth Conference on Education and Training in Optics and Photonics: ETOP 2023, M. McKee and D. J. Hagan, eds. (SPIE, 2023), Vol. 12723, p. 1272302.
dc.relation.referencesS. Amann, M. von Witzleben, Breuer, and Stefan, "3D-printable portable opensource platform for low-cost lens-less holographic cellular imaging," arXiv Prepr. arXiv1904.04497 (2019)
dc.relation.referencesB. Patiño-Jurado, J. F. Botero-Cadavid, and J. Garcia-Sucerquia, "Step-Index Optical Fibers With 0.88 Numerical Aperture," J. Light. Technol. 37, 3734–3739 (2019).
dc.relation.referencesB. Patiño-Jurado, J. F. Botero-Cadavid, and J. Garcia-Sucerquia, "Digital Lensless Holographic Microscopy with Engineered Optical Fiber Point Source," in Digital Holography and Three-Dimensional Imaging 2019 (OSA, 2019), p. Th3A.5.
dc.relation.referencesP. Piedrahita-Quintero, C. Trujillo, and J. Garcia-Sucerquia, "JDiffraction: A GPGPU-accelerated JAVA library for numerical propagation of scalar wave fields," Comput. Phys. Commun. 214, 128–139 (2017).
dc.relation.referencesR. Antoniou, J. Bonvoisin, P.-Y. Hsing, E. Dekoninck, and D. Defazio, "Defining success in open source hardware development projects: a survey of practitioners," Des. Sci. 8, e8 (2022).
dc.relation.referencesA. Powell, "Democratizing production through open source knowledge: from open software to open hardware," Media, Cult. Soc. 34, 691–708 (2012).
dc.relation.referencesN. Chakravorty, C. S. Sharma, K. A. Molla, and J. K. Pattanaik, "Open Science: Challenges, Possible Solutions and the Way Forward," Proc. Indian Natl. Sci. Acad. 88, 456–471 (2022).
dc.relation.referencesM. P. da COSTA and F. C. L. LEITE, "Open access in the world and Latin America: A review since the Budapest Open Access Initiative," Transinformação 28, 33–46 (2016).
dc.relation.referencesE. Commission, D.-G. for Research, Innovation, C. Cabello Valdes, B. Rentier, E. Kaunismaa, J. Metcalfe, F. Esposito, D. McAllister, K. Maas, K. Vandevelde, and C. O’Carroll, Evaluation of Research Careers Fully Acknowledging Open Science Practices : Rewards, Incentives and/or Recognition for Researchers Practicing Open Science (Publications Office, 2017).
dc.relation.referencesJ. M. Pearce, "Economic savings for scientific free and open source technology: A review," HardwareX 8, e00139 (2020)
dc.relation.referencesG. Niezen, P. Eslambolchilar, and H. Thimbleby, "Open-source hardware for medical devices," BMJ Innov. 2, 78–83 (2016).
dc.relation.referencesM. Vázquez, L. Anfossi, H. Ben-Yoav, L. Diéguez, T. Karopka, B. Della Ventura, S. Abalde-Cela, A. Minopoli, F. Di Nardo, V. K. Shukla, A. Teixeira, A. Tvarijonaviciute, and L. Franco-Martínez, "Use of some cost-effective technologies for a routine clinical pathology laboratory," Lab Chip 21, 4330–4351 (2021)
dc.relation.referencesJ. T. Collins, J. Knapper, J. Stirling, J. Mduda, C. Mkindi, V. Mayagaya, G. A. Mwakajinga, P. T. Nyakyi, V. L. Sanga, D. Carbery, L. White, S. Dale, Z. Jieh Lim, J. J. Baumberg, P. Cicuta, S. McDermott, B. Vodenicharski, and R. Bowman, "Robotic microscopy for everyone: the OpenFlexure microscope," Biomed. Opt. Express 11, 2447 (2020)
dc.relation.referencesG. Popescu, Quantitative Phase Imaging of Cells and Tissues (McGraw Hill Professional, 2011).
dc.relation.referencesA. Saetchnikov, V. Saetchnikov, E. Tcherniavskaia, and A. Ostendorf, "Effect of a thin reflective film between substrate and photoresin on two-photon polymerization," Addit. Manuf. 24, 658–666 (2018).
dc.relation.referencesL. Xu, X. Peng, J. Miao, and A. K. Asundi, "Studies of digital microscopic holography with applications to microstructure testing," Appl. Opt. 40, 5046 (2001).
dc.relation.referencesJ. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, "Digital in-line holographic microscopy," Appl. Opt. 45, 836 (2006).
dc.relation.referencesJ. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts & Company Publishers, 2005).
dc.relation.referencesJ. Garcia-Sucerquia, W. Xu, S. K. K. Jericho, M. H. H. Jericho, P. Klages, and H. J. J. Kreuzer, "Resolution power in digital in-line holography," in Proceedings of SPIE - The International Society for Optical Engineering (2006), Vol. 6027 I.
dc.relation.referencesE. J. Davis, M. Jones, D. A. Thiel, and S. Pauls, "Using Open-Source, 3D Printable Optical Hardware To Enhance Student Learning in the Instrumental Analysis Laboratory," J. Chem. Educ. 95, 672–677 (2018)
dc.relation.referencesM. Sanz, J. Á. Picazo-Bueno, L. Granero, J. García, and V. Micó, "Multi-illumination single-holographic-exposure lensless Fresnel (MISHELF) microscopy using 4 channels," in Imaging and Applied Optics 2019 (COSI, IS, MATH, PcAOP), OSA Technical Digest (Optical Society of America, 2019), p. JW2A.1
dc.relation.referencesHamilton Company, "Needle Gauge Chart," https://www.hamiltoncompany.com/laboratory-products/needles-knowledge/needlegauge-chart
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembProcesamiento óptico de daos
dc.subject.proposalMicroscopia holográfica digital
dc.subject.proposalOpen-source Hardware
dc.subject.proposalOpen-Science
dc.subject.proposalDigital holographic microscopy
dc.title.translatedDevelopment of digital lensless holographic microscope prototype certifiable as open-source
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores
dc.description.curricularareaÁrea Curricular en Física
dc.contributor.orcidTobón-Maya, Heberley [:0000-0002-3258-1861]
dc.contributor.researchgatehttps://www.researchgate.net/profile/Heberley-Tobon-Maya
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=_JdH3vMAAAAJ&hl=es
dc.subject.wikidataCiencia abierta
dc.subject.wikidataMicroscopía holográfica digital
dc.subject.wikidataMicroscopia óptica


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-CompartirIgual 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito