Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.contributor.advisorGarcia Sucerquia, Jorge Iván
dc.contributor.authorZapata Valencia, Samuel Ignacio
dc.date.accessioned2024-05-03T13:26:18Z
dc.date.available2024-05-03T13:26:18Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86021
dc.description.abstractDigital Lensless Holographic Microscopy (DLHM) is an imaging technique that has been used to visualize micrometer-sized samples. The simplicity of the required hardware, the adaptability of digital processing, and its label-free attribute have positioned it as an attractive, portable, and cost-effective alternative for observing microscopic biological samples. Despite the simplicity of its implementation, the hardware used to record the digital holograms has limitations that directly affect the visualization of biological samples. In this master’s thesis in Engineering Physics, the identified limitations of the DLHM hardware and their impact on the visualization of micrometer-sized objects are studied. An improvement of those limitations is proposed by implementing opto-numerical methods, which are tested by visualizing biosamples. Given the importance of the Numerical Aperture (NA) for the performance of DLHM, a method for characterizing and validating the NA of propagating beam illuminations is developed. A method for expanding the field of view of the visualized samples is presented. Finally, a multiview method for correcting DLHM in-line holograms is proposed to eliminate illumination artifacts inherited from the illumination source, and also to recover the information of occluded structured samples visualized in DLHM. The results were reported on two manuscripts already published in indexed journals of international circulations and five proceedings or submitted abstracts of presentations at international conferences.
dc.description.abstractLa Microscopía Holográfica Digital sin Lentes (DLHM) es una técnica de imagen que ha sido utilizada para la visualización de muestras de tamaño micrométrico. La simplicidad en el hardware requerido, la adaptabilidad en el procesamiento digital y la no necesidad de marcadores la han posicionado como una alternativa atractiva, portable y eficiente en términos de costos para la visualización de muestras biológicas micrométricas. A pesar de la simplicidad en su implementación, los componentes de hardware utilizados para capturar los hologramas digitales tienen limitaciones que afectan directamente la correcta visualización de muestras. En la presente tesis de maestría en Ingeniería Física, se estudian las limitaciones en el hardware de DLHM y su impacto para la visualización de objetos microscópicos. A su vez, se proponen mejoras a estas limitaciones por medio de la implementación de métodos opto-numéricos los cuales son validados por la visualización de muestras biológicas. Dada la importancia de la apertura numérica (NA) para el rendimiento en DLHM, se presenta un método para la caracterización y validación de la NA en haces de luz. Se propone además un método para la expansión del campo de visión de los objetos observados. Finalmente, se propone un método para corregir los hologramas en línea de DLHM con el fin de eliminar artefactos inherentes a la fuente de iluminación y también para recuperar la información de objetos con estructura visualizados en DLHM. Además de esto, adjuntos con esta tesis se encuentran dos manuscritos publicados en revistas indexadas de circulación internacional y 5 resúmenes aprobados o actas de congresos internacionales, donde los resultados de esta tesis fueron presentados. (tomado de la fuente)
dc.format.extent75 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicada
dc.subject.ddc530 - Física
dc.titleImprovement of digital lensless holographic microscopy for the visualization of biosamples
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias - Maestría en Ingeniería Física
dc.contributor.researchgroupOptica y Procesamiento Opto-Digital
dc.description.degreelevelMaestría
dc.description.degreenameMágister en Ingeniería Física
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeMedellín
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.referencesJ. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, "Digital in-line holographic microscopy," Appl. Opt. 45, 836 (2006).
dc.relation.referencesH. Tobon-Maya, S. I. Zapata-Valencia, E. Zora-Guzmán, C. Buitrago-Duque, and J. Garcia-Sucerquia, "Open-source, cost-effective, portable, 3D-printed digital lensless holographic microscope," Appl. Opt. 60, A205 (2021).
dc.relation.referencesC. Trujillo, P. Piedrahita-Quintero, and J. Garcia-Sucerquia, "Digital lensless holographic microscopy: numerical simulation and reconstruction with ImageJ," Appl. Opt. 59, 5788 (2020).
dc.relation.referencesJ. F. Restrepo and J. Garcia-Sucerquia, "Magnified reconstruction of digitally recorded holograms by Fresnel-Bluestein transform," Appl. Opt. 49, 6430–6435 (2010).
dc.relation.referencesC. Buitrago-Duque and J. Garcia-Sucerquia, "Non-approximated Rayleigh–Sommerfeld diffraction integral: advantages and disadvantages in the propagation of complex wave fields," Appl. Opt. 58, G11 (2019).
dc.relation.referencesP. Ferraro, A. Wax, and Z. Zalevsky, eds., Coherent Light Microscopy, Springer Series in Surface Sciences (Springer Berlin Heidelberg, 2011), Vol. 46.
dc.relation.referencesW. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, "Digital in-line holography for biological applications," Proc. Natl. Acad. Sci. 98, 11301–11305 (2002).
dc.relation.referencesB. Ghosh and K. Agarwal, "Viewing life without labels under optical microscopes," Commun. Biol. 6, (2023).
dc.relation.referencesJ. A. Picazo-Bueno, K. Trindade, M. Sanz, and V. Micó, "Design, Calibration, and Application of a Robust, Cost-Effective, and High-Resolution Lensless Holographic Microscope," Sensors 22, 553 (2022).
dc.relation.referencesM. Sanz, J. A. Picazo-Bueno, J. García, and V. Micó, "Improved quantitative phase imaging in lensless microscopy by single-shot multi-wavelength illumination using a fast convergence algorithm," Opt. Express (2015).
dc.relation.referencesH. Tobón-Maya, A. Gómez-Ramírez, C. Buitrago-Duque, and J. Garcia-Sucerquia, "Adapting a Blu-ray optical pickup unit as a point source for digital lensless holographic microscopy," Appl. Opt. 62, D39 (2023).
dc.relation.referencesC. Buitrago-Duque, B. Patiño-Jurado, and J. Garcia-Sucerquia, "Robust and compact digital Lensless Holographic microscope for Label-Free blood smear imaging," HardwareX 13, e00408 (2023).
dc.relation.referencesB. Patiño-Jurado, J. F. Botero-Cadavid, and J. Garcia-Sucerquia, "Cone-shaped optical fiber tip for cost-effective digital lensless holographic microscopy," Appl. Opt. 59, 2969 (2020).
dc.relation.referencesB. Patiño-Jurado, J. F. Botero-Cadavid, and J. Garcia-Sucerquia, "Step-Index Optical Fibers with 0.88 Numerical Aperture," J. Light. Technol. 37, 3734–3739 (2019).
dc.relation.referencesM. J. Lopera and C. Trujillo, "Holographic point source for digital lensless holographic microscopy," Opt. Lett. 47, 2862 (2022).
dc.relation.referencesA. A. Adeyemi and T. E. Darcie, "Expansion of field of view in digital in-line holography with a programmable point source," Appl. Opt. 48, 3291–3301 (2009).
dc.relation.referencesH. Tobon-Maya, C. Trujillo, and J. Garcia-Sucerquia, "Preprocessing in digital lensless holographic microscopy for intensity reconstructions with enhanced contrast," Appl. Opt. 60, A215 (2021).
dc.relation.referencesW. Xu, M. H. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, "Tracking particles in four dimensions with in-line holographic microscopy," Opt. Lett. 28, 164 (2003).
dc.relation.referencesA. Buades, B. Coll, and J.-M. Morel, "A Non-Local Algorithm for Image Denoising," in 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) (IEEE, n.d.), pp. 60–65.
dc.relation.referencesK. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, Image Denoising with Block-Matching and 3D Filtering (2006).
dc.relation.referencesJ. J. Barton, "Photoelectron holography = holography + photoelectron diffraction," J. Electron Spectros. Relat. Phenomena 51, 37–53 (1990).
dc.relation.referencesS. K. K. Jericho, J. Garcia-Sucerquia, W. Xu, M. H. H. Jericho, and H. J. J. Kreuzer, "Submersible digital in-line holographic microscope," Rev. Sci. Instrum. 77, 43706–43710 (2006).
dc.relation.referencesS. K. Jericho, P. Klages, J. Nadeau, E. M. Dumas, M. H. Jericho, and H. J. Kreuzer, "In-line digital holographic microscopy for terrestrial and exobiological research," Planet. Space Sci. 58, 701–705 (2010).
dc.relation.referencesJ. S. Underkoffler, "Occlusion Processing and Smooth Surface Shading for Fully Computed Synthetic Holography," Pract. Hologr. XI Hologr. Mater. III 3011, 19–30 (1997).
dc.relation.referencesS. I. Zapata-Valencia, H. Tobon-Maya, and J. García-Sucerquia, "Automatic method to measure the numerical aperture of a propagating Gaussian light beam," Opt. Pura y Apl. 55, 1–8 (2022).
dc.relation.referencesS. I. Zapata-Valencia, H. Tobon-Maya, and J. Garcia-Sucerquia, "Image enhancement and field of view enlargement in digital lensless holographic microscopy by multi-shot imaging," J. Opt. Soc. Am. A 40, C150 (2023).
dc.relation.referencesS. I. Zapata-Valencia, H. Tobon-Maya, and J. Garcia-Sucerquia, Método Automático Para La Medición de La Apertura Numérica de Haces de Luz Gaussianos. (2021).
dc.relation.referencesS. I. Zapata-Valencia, H. Tobon-Maya, C. Buitrago-Duque, and J. Garcia-Sucerquia, "Cost-effective digital lensless holographic microscope," in OSA Imaging and Applied Optics Congress 2021 (3D, COSI, DH, ISA, PcAOP) (Optica Publishing Group, 2021), Vol. 60, p. DW4C.3.
dc.relation.referencesS. I. Zapata-Valencia and J. Garcia-Sucerquia, "Improvement of the image reconstruction in digital lensless holographic microscopy by scanning of the sample plane," in Latin America Optics and Photonics (LAOP) Conference 2022 (Optica Publishing Group, 2022), p. W1D.2.
dc.relation.referencesS. I. Zapata-Valencia, H. Tobon-Maya, and J. Garcia-Sucerquia, Removal of Perturbations from Optical-Pickup-Unit-Based Illumination for Digital Lensless Holographic Microscopy (2023).
dc.relation.referencesS. I. Zapata-Valencia, H. Tobon-Maya, and J. Garcia-Sucerquia, Recovery of Occluded Objects in Digital Lensless Holographic (2023).
dc.relation.referencesD. Gabor, "A new microscopic principle," Nature 161, 777–778 (1948).
dc.relation.referencesJ. F. Restrepo and J. Garcia-Sucerquia, "Diffraction-based modeling of high-numerical-aperture in-line lensless holograms," Appl. Opt. 50, 1745 (2011).
dc.relation.referencesU. Schnars and W. P. O. Jueptner, "Digital recording and numerical reconstruction of holograms," Meas. Sci. Technol. 13, 85–101 (2002).
dc.relation.referencesL. Repetto, F. Pellistri, E. Piano, and C. Pontiggia, "Gabor’s hologram in a modern perspective," Am. J. Phys. 72, 964–967 (2004).
dc.relation.referencesJ. W. Goodman, Introduction to Fourier Optics, 3rd Editio (Roberst & Company Publishers, 2005).
dc.relation.referencesM. J. Lopera and C. Trujillo, "Linear diattenuation imaging of biological samples with digital lensless holographic microscopy," Appl. Opt. 61, B77 (2022).
dc.relation.referencesJ. Garcia-Sucerquia, "Color lensless digital holographic microscopy with micrometer resolution," Opt. Lett. 37, 1724 (2012).
dc.relation.referencesE. Serabyn, K. Liewer, C. Lindensmith, K. Wallace, and J. Nadeau, "Compact, lensless digital holographic microscope for remote microbiology," Opt. Express 24, 28540–28548 (2016).
dc.relation.referencesM. Sanz, M. Trusiak, J. García, and V. Micó, "Variable zoom digital in-line holographic microscopy," Opt. Lasers Eng. 127, (2020).
dc.relation.referencesN. I. Lewis, X. Wenbo, S. K. Jericho, H. J. Kreuzer, M. H. Jericho, and A. D. Cembella, "Swimming speed of three species of Alexandrium (Dinophyceae) as determined by digital in-line holography," Phycologia 45, 61–70 (2006).
dc.relation.referencesE. Hecht, Optics, 4th ed. (Addison Wesley Publishing Company, 2002).
dc.relation.referencesJ. W. Goodman, Statistical Optics, 1st ed. (Wiley, 2000).
dc.relation.referencesS. Grare, "Compact, low-cost Blu-Ray pickup-based digital holographic microscope," Opt. Lasers Eng. 160, 107272 (2023).
dc.relation.referencesV. Bianco, P. Memmolo, P. Carcagnì, F. Merola, M. Paturzo, C. Distante, and P. Ferraro, "Microplastic Identification via Holographic Imaging and Machine Learning," Adv. Intell. Syst. 2, 1900153 (2020).
dc.relation.referencesJ. Maycock, C. P. McElhinney, B. M. Hennelly, T. J. Naughton, J. B. McDonald, and B. Javidi, "Reconstruction of partially occluded objects encoded in three-dimensional scenes by using digital holograms," Appl. Opt. 45, 2975–2985 (2006).
dc.relation.referencesB. Javidi, R. Ponce-Díaz, and S.-H. Hong, "Three-dimensional recognition of occluded objects by using computational integral imaging," Opt. Lett. 31, 1106 (2006).
dc.relation.referencesP. Hariharan, Optical Holography: Principles, Techniques, and Applications, 2nd ed. (Cambridge University Press, 1996).
dc.relation.referencesJ. P. Lewis, "Fast Template Matching," in Vision Interface 95 (Canadian Image Processing and Pattern Recognition Society, Quebec City, Canada, May 15-19, 1995), pp. 120–123.
dc.relation.referencesJ. Garcia-Sucerquia, D. Alvarez-Palacio, and J. Kreuzer, "Digital In-line Holographic Microscopy of Colloidal Systems of Microspheres," in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings, OSA, ed. (OSA, 2007).
dc.relation.referencesA. E. Siegman, Lasers, 1st ed. (University Science Books, 1986).
dc.relation.referencesK. Levenberg, "A method for the solution of certain non-linear problems in least squares," Q. Appl. Math. 2, 164–168 (1944).
dc.relation.referencesD. Gabor, "Microscopy by reconstructed wave-fronts," in Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences (1949), pp. 454–487.
dc.relation.referencesR. A. Frazor and W. S. Geisler, "Local luminance and contrast in natural images," Vision Res. 46, 1585–1598 (2006).
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalmicroscopía holográfica digital sin lentes
dc.subject.proposallimitaciones de DLHM
dc.subject.proposalapertura numérica
dc.subject.proposalcampo de visión
dc.subject.proposalartefactos en la iluminación
dc.subject.proposaloclusiones
dc.subject.proposaldigital lensless holographic microscopy
dc.subject.proposalDLHM limitations
dc.subject.proposalnumerical aperture
dc.subject.proposalfield of view
dc.subject.proposalillumination artifacts
dc.subject.proposalocclusions
dc.title.translatedMejoramiento en la visualización de muestras biológicas en microscopía holográfica digital sin lentes
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitle202010034333-NANOSCOPIA INTERFEROMÉTRICA SHEARING PARA LA DETECCIÓN DE BACTERIAS.
oaire.fundernameUniversidad Nacional de Colombia
dcterms.audience.professionaldevelopmentInvestigadores
dc.description.curricularareaÁrea Curricular en Física
dc.contributor.orcidhttps://orcid.org/0000-0002-0924-3776
dc.contributor.orcidZapata-Valencia, Samuel I. [:0000-0002-0924-3776]
dc.contributor.researchgatehttps://www.researchgate.net/profile/Samuel-Zapata-Valencia
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=om9YndgAAAAJ&hl=en
dc.subject.wikidataMicroscopia óptica
dc.subject.wikidataLentes
dc.subject.wikidataHolograma


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-CompartirIgual 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito