Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorUmaña Péres, Yadi Adriana
dc.contributor.authorGaitán Albarracín, Felipe Andrés
dc.date.accessioned2024-05-07T13:31:49Z
dc.date.available2024-05-07T13:31:49Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86037
dc.descriptionilustraciones, gráficas, mapas, tablas
dc.description.abstractLa desnutrición proteica es la causa más frecuente de inmunodeficiencia secundaria que conlleva a alteraciones del sistema inmune innato y adaptativo, generando la colonización y proliferación de agentes patogénicos, convirtiéndose en uno de los principales factores de riesgo para el desarrollo de formas clínicas de leishmania visceral (LV). Usando como modelo biológico ratones BALB/c, nuestro grupo de investigación mostró que animales sometidos a restricción proteica e infección con L. infantum, presentan graves atrofias en órganos linfoides, alteraciones en las subpoblaciones de linfocitos T y en niveles de expresión de factores quimiotácticos en timo y bazo. Esas alteraciones sugieren que una precondición de desnutrición proteica afecta la respuesta inmune frente a L. infantum, modificando la migración de células T y la capacidad de controlar la proliferación de parásitos. Aunque un patrón diseminación y respuesta inmune órgano especifica aún no ha sido claramente elucidado para el tracto gastrointestinal, algunos estudios reportan la aparición de estos parásitos en mucosa intestinal. Nuestro objetivo fue evaluar la influencia de la restricción proteica en la respuesta inmune en tracto gastrointestinal de ratones BALB/c frente a la infección con L. infantum, observando como la infección y desnutrición generaron alteraciones inmunes en función del reclutamiento linfocitario tisular, alteraciones estructurales del tejido intestinal y alteraciones en la respuesta inmune adaptativa celular mediada por citoquinas y humoral a través de la secreción de Inmunoglobulina A de forma diferencial para el intestino delgado y grueso. (Texto tomado de la fuente)
dc.description.abstractProtein malnutrition is the most frequent cause of secondary immunodeficiency that leads to alterations of the innate and adaptive immune system, generating the colonization and proliferation of pathogenic agents, becoming one of the main risk factors for the development of clinical forms of visceral leishmania (LV). Using BALB/c mice as a biological model, our research group showed that animals subjected to protein restriction and infection with L. infantum present severe atrophies in lymphoid organs, alterations in T lymphocyte subpopulations and in expression levels of chemotactic factors in thymus and spleen. These alterations suggest that a precondition of protein malnutrition affects the immune response against L. infantum, modifying the migration of T cells and the ability to control the proliferation of parasites. Although a pattern of dissemination and organ-specific immune response has not yet been clearly elucidated for the gastrointestinal tract, some studies report the appearance of these parasites in the intestinal mucosa. Our objective was to evaluate the influence of protein restriction on the immune response in the gastrointestinal tract of BALB/c mice against infection with L. infantum, observing how infection and malnutrition generated immune alterations based on tissue lymphocyte recruitment, structural alterations of the intestinal tissue and alterations in the cellular adaptive immune response mediated by cytokines and humoral through the secretion of Immunoglobulin A differentially for the small and large intestine.
dc.format.extentxii, 74 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rightsDerechos reservados al autor, 2024
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc570 - Biología::572 - Bioquímica
dc.titleEfecto de la restricción proteica como modulador de la respuesta inmune del Tracto gastrointestinal de ratones BALB/c infectados con Leishmania infantumntum
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Estadística
dc.contributor.researchgroupGrupo de Investigación en Hormonas
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias - Bioquímica
dc.description.researchareaEje GH/IGF-I y Nutrición
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.references1. Antinori, S., Schifanella, L., Corbellino, M., Leishmaniasis: new insights from an old and neglected disease. Eur J Clin Microbiol Infect Dis, 2012. 31(2): p. 109-18.
dc.relation.references2. Cecilio, P., et al., Deception and manipulation: the arms of leishmania, a successful parasite. Front Immunol, 2014. 5: p. 1-16.
dc.relation.references3. McGwire, B.S., Satoskar, A. R., Leishmaniasis: clinical syndromes and treatment. QJM, 2014. 107(1): p. 7-14.
dc.relation.references4. Lima Maciel, B.L., Lacerda, H. G., Queiroz, J. W., Galvão, J., Pontes, N. N., Dimenstein, R., McGowan,S. E., Pedrosa, L. F. C., and Jerônimo, S. M. B., Association of Nutritional Status with the Response to Infection with Leishmania chagasi. Am. J. Trop. Med. Hyg., 2008. 79(4): p. 591–598.
dc.relation.references5. Cuervo, E.S., Losada, B. M., Umana P. A., Porrozzi, R., Saboia, V. L., Miranda,L., Morgado, F. N., Menezes, R. C., Sanchez G. M., Cuervo, P., T-cell populations and cytokine expression are impaired in thymus and spleen of protein malnourished BALB/c mice infected with Leishmania infantum. PLoS One, 2014. 9(12): p. e114584.
dc.relation.references6. Schaible, U.E., Kaufmann, S. H., Malnutrition and infection: complex mechanisms and global impacts. PLoS Med, 2007. 4(5): p. e115.
dc.relation.references7. Borelli, P., Mariano, M., and Borojevic, R., Protein Malnutrition : Effect On Myeloid Cell Production And Mobilization Into Inflammatory Reactions In Mice. Nutrition Research, 1995. 15(10): p. 1477-1485.
dc.relation.references8. Losada, B.M., Umaña, P. A., Cuervo, E. S., Berbert, L. R., Porrozzi,R., Morgado, N.F., Mendes-daCruz, A. D., Savino, W., Gómez, S. M., and Cuervo, P., Protein malnutrition promotes dysregulation of molecules involved in T cell migration in the thymus of mice infected with Leishmania infantum. Scientific RepoRts 2017. 7(45991): p. 1-13.
dc.relation.references9. Worbs, T., Bode, U., Sheng Yan, S., Hoffmann, M. W., Hintzen, G., Bernhardt, G., Förster, R., and Pabst, O., Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. JEM, The Rockefeller University Press 2006. 203(3): p. 519–527.
dc.relation.references10. Iweala, O.I., Nagler C. R., Immune privilege in the gut: the establishment and maintenance of non-responsiveness to dietary antigens and commensal flora. Immunological Reviews 2006. 213: p. 82–100.
dc.relation.references11. Meleney, H.E., The Histopathology of Kala-Azar in the Hamster, Monkey, and Man. Am J Pathol, 1925. 1(2): p. 147-168.
dc.relation.references12. Barati, M., Sharifi, I., Daie Parizi, M., and M. Fasihi Harandi, Bacterial infections in children with visceral leishmaniasis: observations made in Kerman province, southern Iran, between 1997 and 2007. Ann Trop Med Parasitol, 2008. 102(7): p. 635-41.
dc.relation.references13. Kleber, G.L., Tuon, F. F., Duarte, M. I. S., Maia, G. M., Matos, P., de Oliveira Ramos, A. M., and Nicodemo, A. C., Cytokine expression in the duodenal mucosa of patients with visceral leishmaniasis. Revista da Sociedade Brasileira de Medicina Tropical 2010. 43(4): p. 393-395.
dc.relation.references14. Adamama-Moraitou, K.K., Rallis, T. S., Koytinas, A. F., Tontis, D., Plevraki, K., and Kritsepi, M., Asymptomatic Colitis In Naturally Infected Dogs With Leishmania Infantum: A Prospective Study. Am. J. Trop. Med. Hyg., 2007. 76(1): p. 53–57.
dc.relation.references15. P. C. Sen Gupta, et al., Avitaminosis in Kala-Azar: Preliminary Observations. Ind Med Gaz. , 1952. 87(10): p. 444–448.
dc.relation.references16. Quinnell, R.J. and O. Courtenay, Transmission, reservoir hosts and control of zoonotic visceral leishmaniasis. Parasitology, 2009. 136(14): p. 1915-34.
dc.relation.references17. Akhoundi, M., et al., A Historical Overview of the Classification, Evolution, and Dispersion of Leishmania Parasites and Sandflies. PLoS Negl Trop Dis, 2016. 10(3): p. e0004349.
dc.relation.references18. Steverding, D., The history of leishmaniasis. Parasit Vectors, 2017. 10(1): p. 82.
dc.relation.references19. Volf*, A.D.a.P., Leishmania development in sand flies: parasite-vector interactions overview. Dostálová and Volf Parasites & Vectors 2012. 5(5): p. 276.
dc.relation.references20. Carlos E. Muskus, M.M.V., Metaciclogénesis: un proceso fundamental en la biología de Leishmania. Biomédica: revista del Instituto Nacional de Salud, 2002 22(2): p. Biomédica: revista del Instituto Nacional de Salud.
dc.relation.references21. C Bogdan 1, N.D., R Döring, M Röllinghoff, A Diefenbach, M G Rittig, Fibroblasts as Host Cells in Latent Leishmaniosis. J Exp Med., 2000. 191(12): p. 2121–2129.
dc.relation.references22. Kaye, P. and P. Scott, Leishmaniasis: complexity at the host-pathogen interface. Nat Rev Microbiol, 2011. 9(8): p. 604-15.
dc.relation.references23. WHO, Weekly epidemiological record.
dc.relation.references24. Alvar, J., et al., Leishmaniasis worldwide and global estimates of its incidence. PLoS One, 2012. 7(5): p. e35671.
dc.relation.references25. McCall, L.I., W.W. Zhang, and G. Matlashewski, Determinants for the development of visceral leishmaniasis disease. PLoS Pathog, 2013. 9(1): p. e1003053.
dc.relation.references26. Mathers, C.D., M. Ezzati, and A.D. Lopez, Measuring the burden of neglected tropical diseases: the global burden of disease framework. PLoS Negl Trop Dis, 2007. 1(2): p. e114.
dc.relation.references27. Pavli, A. and H.C. Maltezou, Leishmaniasis, an emerging infection in travelers. Int J Infect Dis, 2010. 14(12): p. e1032-9.
dc.relation.references28. P.D., R., Climate change: impact on the epidemiology and control of animal diseases. Revue Scientifique et Technique, 2008. 27(2): p. 399-412.
dc.relation.references29. Purse, B.V., et al., How will climate change pathways and mitigation options alter incidence of vector-borne diseases? A framework for leishmaniasis in South and Meso-America. PLoS One, 2017. 12(10): p. e0183583.
dc.relation.references30. Peacock, C.S., et al., Comparative genomic analysis of three Leishmania species that cause diverse human disease. Nat Genet, 2007. 39(7): p. 839-47.
dc.relation.references31. William H Markle 1 and K. Makhoul, Cutaneous leishmaniasis: recognition and treatment. Am Fam Physician, 2004. 69(6): p. 1455-60.
dc.relation.references32. Valdir Sabbaga Amato a, Heitor Franco de Andrade Jr b, and M.I.S.D. c, Mucosal leishmaniasis: in situ characterization of the host inflammatory response, before and after treatment. Acta Tropica 2003. 85: p. 39-49.
dc.relation.references33. McGwire, B.S. and A.R. Satoskar, Leishmaniasis: clinical syndromes and treatment. QJM, 2014. 107(1): p. 7-14.
dc.relation.references34. Salud., O.P.d.l., Leishmaniasis: informe epidemiológico de las Américas [Internet]. Washington, D.C.: OPS, 2021. 10.
dc.relation.references35. Salud., I.N.d., Boletín Epidemiológico Semanal. Diciembre 2019. Reporte No. 41. 2019.
dc.relation.references36. Salud., I.N.d., Boletín Epidemiológico Semanal. Diciembre 2021. Reporte No. 52. 2021.
dc.relation.references37. Salgado-Almario, J., C.A. Hernandez, and C.E. Ovalle, Geographical distribution of Leishmania species in Colombia, 1985-2017. Biomedica, 2019. 39(2): p. 278-290.
dc.relation.references38. Khadem, F. and J.E. Uzonna, Immunity to visceral leishmaniasis: implications for immunotherapy. Future Microbiol, 2014. 9(7).
dc.relation.references39. Antinori, S., L. Schifanella, and M. Corbellino, Leishmaniasis: new insights from an old and neglected disease. Eur J Clin Microbiol Infect Dis, 2012. 31(2): p. 109-118.
dc.relation.references40. Kumar, R. and S. Nylen, Immunobiology of visceral leishmaniasis. Front Immunol, 2012. 3: p. 251.
dc.relation.references41. Rodrigues, V., et al., Regulation of immunity during visceral Leishmania infection. Parasit Vectors, 2016. 9: p. 118.
dc.relation.references42. Gupta, G., S. Oghumu, and A.R. Satoskar, Mechanisms of immune evasion in leishmaniasis. Adv Appl Microbiol, 2013. 82: p. 155-184.
dc.relation.references43. Asad, M.D. and N. Ali, Dynamicity of Immune Regulation during Visceral Leishmaniasis. Proceedings of the Indian National Science Academy, 2014. 80(2): p. 247.
dc.relation.references44. Vieira de Morais, C.G., et al., The Dialogue of the Host-Parasite Relationship: Leishmania spp. and Trypanosoma cruzi Infection. Biomed Res Int, 2015. 2015: p. 324915.
dc.relation.references45. Vannier-Santos, M.A., A. Martiny, and W. de Souza, Cell Biology of Leishmania spp.: Invading and Evading. Current Pharmaceutical Design, 2002. 8(4): p. 297-318.
dc.relation.references46. Mougneau, E., F. Bihl, and N. Glaichenhaus, Cell biology and immunology of Leishmania. Immunological Reviews, 2011. 240 p. 286-296.
dc.relation.references47. Stanley, A.C. and C.R. Engwerda, Balancing immunity and pathology in visceral leishmaniasis. Immunology and Cell Biology 2007. 85: p. 138-147.
dc.relation.references48. Wilson, M.E., S.M. Jeronimo, and R.D. Pearson, Immunopathogenesis of infection with the visceralizing Leishmania species. Microb Pathog, 2005. 38(4): p. 147-160.
dc.relation.references49. Gollob, K.J., et al., Immunoregulatory mechanisms and CD4-CD8- (double negative) T cell subpopulations in human cutaneous leishmaniasis: a balancing act between protection and pathology. Int Immunopharmacol, 2008. 8(10): p. 1338-43.
dc.relation.references50. Nylen, S. and D. Sacks, Interleukin-10 and the pathogenesis of human visceral leishmaniasis. Trends Immunol, 2007. 28(9): p. 378-384.
dc.relation.references51. Faleiro, R.J., et al., Immune regulation during chronic visceral leishmaniasis. PLoS Negl Trop Dis, 2014. 8(7): p. e2914.
dc.relation.references52. Diro, E., et al., Atypical manifestations of visceral leishmaniasis in patients with HIV in north Ethiopia: a gap in guidelines for the management of opportunistic infections in resource poor settings. The Lancet Infectious Diseases, 2015. 15(1): p. 122-129.
dc.relation.references53. Mowat, A.M. and W.W. Agace, Regional specialization within the intestinal immune system. Nature Reviews - Immunology, 2014. 14: p. 667-685.
dc.relation.references54. Steenwinckel, V., et al., IL-9 promotes IL-13-dependent paneth cell hyperplasia and up-regulation of innate immunity mediators in intestinal mucosa. J Immunol, 2009. 182(8): p. 4737-43.
dc.relation.references55. Ouellette, A.J., Paneth cells and innate mucosal immunity. Curr Opin Gastroenterol, 2010. 26(6): p. 547-553.
dc.relation.references56. Bain, C.C. and A.M. Mowat, Macrophages in intestinal homeostasis and inflammation. Immunological Reviews 2014. 260: p. 102–117.
dc.relation.references57. Maynard, C.L., et al., Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3- precursor cells in the absence of interleukin 10. Nat Immunol, 2007. 8(9): p. 931-941.
dc.relation.references58. Veenbergen, S. and J.N. Samsom, Maintenance of small intestinal and colonic tolerance by IL-10-producing regulatory T cell subsets. Curr Opin Immunol, 2012. 24(3): p. 269-276.
dc.relation.references59. Mabbott, N.A., et al., Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol, 2013. 6(4): p. 666-77.
dc.relation.references60. Zeissig, S. and R.S. Blumberg, Commensal microbiota and NKT cells in the control of inflammatory diseases at mucosal surfaces. Curr Opin Immunol, 2013. 25(6): p. 690-6.
dc.relation.references61. Aldair J.W, et al., Unusual Small Intestine Inflamatory Lesions in a Dog Whith Visceral Leishmaniasis. Brazilian Journal of Veterinary Pathology, 2013. 6(1): p. 19- 25.
dc.relation.references62. F. Purchiaroni, et al., The role of intestinal microbiota and the immune system. European Review for Medical and Pharmacological Sciences, 2013. 17: p. 323-333.
dc.relation.references63. Cornes, J.S., Number, size, and distribution of Peyer's patches in the human small intestine. Part I The development of Peyer's patches. Gut, 1965. 6: p. 225 - 229.
dc.relation.references64. J.L. Gonzailez, et al., Intestinal amyloidosis in hamsters with visceral leishmaniasis. British Journal of Experimental Pathology, 1986. 67: p. 353-360.
dc.relation.references65. Pinto, A.J., et al., Histopathological and parasitological study of the gastrointestinal tract of dogs naturally infected with Leishmania infantum. Acta Vet Scand, 2011. 53: p. 67.
dc.relation.references66. Figueiredo, M.M., et al., Expression of regulatory T cells in jejunum, colon, and cervical and mesenteric lymph nodes of dogs naturally infected with Leishmania infantum. Infect Immun, 2014. 82(9): p. 3704-12.
dc.relation.references67. Silva, D.T., et al., Correlation study and histopathological description of intestinal alterations in dogs infected with Leishmania infantum. Rev Bras Parasitol Vet, 2016. 25(1): p. 24-36.
dc.relation.references68. FAO, F.y.P., El estado de la inseguridad alimentaria en el mundo 2015. Cumplimiento de los objetivos internacionales para 2015 en relación con el hambre: balance de los desiguales progresos. 2015.
dc.relation.references69. Black, R.E., et al., Maternal and child undernutrition: global and regional exposures and health consequences. The Lancet, 2008. 371(9608): p. 243-260.
dc.relation.references70. FAO, Panorama de la Inseguridad Alimentaria en América Latina y el Caribe. 2015.
dc.relation.references71. Mejía Naranjo, W. and M. Sánchez Gomez, Protein malnutrition up-regulates growth hormone receptor expression in rat splenic B lymphocytes. Biomédica 2004. 24: p. 403-412.
dc.relation.references72. Malafaia, G., Protein-energy malnutrition as a risk factor for visceral leishmaniasis: a review. Parasite Immunol, 2009. 31(10): p. 587-96.
dc.relation.references73. Mejia Naranjo, W., et al., Protein Calorie Restriction Affects Nonhepatic IGF-I Production and the Lymphoid System: Studies Using the Liver-Specific IGF-I Gene-Deleted Mouse Model. Endocrinology 2002. 143(6): p. 2233–2241.
dc.relation.references76. Hughes, S. and P. Kelly, Interactions of malnutrition and immune impairment, with specific reference to immunity against parasites. Parasite Immunol, 2006. 28(11): p. 577-88.
dc.relation.references77. Howes, A., et al., Differential Production of Type I IFN Determines the Reciprocal Levels of IL-10 and Proinflammatory Cytokines Produced by C57BL/6 and BALB/c Macrophages. J Immunol, 2016. 197(7): p. 2838-53.
dc.relation.references78. Grover, Z. and L.C. Ee, Protein energy malnutrition. Pediatr Clin North Am, 2009. 56(5): p. 1055-68.
dc.relation.references79. Evering, T. and L.M. Weiss, The immunology of parasite infections in immunocompromised hosts. Parasite Immunol, 2006. 28(11): p. 549-565.
dc.relation.references80. Ibrahim MK, et al., The Malnutrition-Related Increase in Early Visceralization of Leishmania donovani Is Associated with a Reduced Number of Lymph Node Phagocytes and Altered Conduit System Flow. PLoS Negl Trop Dis 2013. 7(8): p. e2329.
dc.relation.references81. Barragána, L.M., Adriana Umaña, P.A., Vega, R. A., Escobar, C. S., Renata Azevedo, R., Morgado, F.,de Frias-Carvalho, V., Aquino, P., Carvalho, C. P., Porrozzia, R., Gómez, S. M., Padron, G., Cuervo, P., Proteomic profiling of splenic interstitial fluid of malnourished mice infected with Leishmania infantum reveals defects on cell proliferation and pro-inflammatory response. Journal of Proteomics 2019. 208: p. 103492-14.
dc.relation.references82. Prevatto, P.J., Torres,C.R., Diaz,L.B., Silva,R.M.P.,Martins, A.M., and Carvalho,F. V., Antioxidant Treatment Induces Hyperactivation of the HPA Axis by Upregulating ACTH Receptor in the Adrenal and Downregulating Glucocorticoid Receptors in the Pituitary. Hindawi Oxidative Medicine and Cellular Longevity 2017. 2017: p. 1-10.
dc.relation.references83. Gómez, F., Galvan, R. R., Frenk, S., Muñoz, J. C., Chávez, R., and Vázquez, J., Mortality in second and third degree malnutrition. Bull World Health Organ, 2000. 78(10): p. 1275–1280.
dc.relation.references84. Anstead, G.M., Chandrasekar, B., Zhao, W., Yang, J., Perez, L. E., and Melby, P. C., Malnutrition Alters the Innate Immune Response and Increases Early Visceralization following Leishmania donovani Infection. Infection And Immunity, 2001. 69(8): p. 4709–4718.
dc.relation.references85. Pérez, M., Rojas, C., Hernández, O., Díaz, S., Alarcón, M., Zulay Maizo de Segnini, Z.,Loredana Goncalves, L., Sánchez, M., Determinación de la especificidad de IgA sérica producida en respuesta a antígenos de Leishmania (Leishmania) mexicana en leishmaniosis murina. Invest Clin 2011. 53(2): p. 216 - 229.
dc.relation.references86. Marshall, S., Protein-energy malnutrition in the rehabilitation setting: Evidence to improve identification. Maturitas 2016. 86: p. 77-85.
dc.relation.references87. Attia, S., Feenstra, M., Swain, N., Cuesta, M., and Bandsma, R. H. J., Starved Guts: Morphologic and Functional Intestinal Changes in Malnutrition. JPGN, 2017. 65(5): p. 491-495.
dc.relation.references88. Savino, W., The thymus gland is a target in malnutrition. European Journal of Clinical Nutrition 2002. 56: p. 46-49.
dc.relation.references89. Rytter, M.J.H., Kolte, L., Briend, A., Friis, H., Christensen, V. B., The Immune System in Children with Malnutrition—A Systematic Review. PLoS ONE 2014. 9(8).
dc.relation.references90. Nascimento, M.S.L., Carregaro, V., Lima-Júnior, D. S., Costa, D. L., Ryffel, B., Duthie, D. S., de Jesus, A.,Pacheco de Almeida, R., and Santana da Silva, J., Interleukin 17A Acts Synergistically With Interferon γ to Promote Protection Against Leishmania infantum Infection. The Journal of Infectious Diseases, 2015. 211: p. 1015–26.
dc.relation.references91. Maurya, R., Bhattacharya, P., Dey, R., Nakhasi, H. L., Leptin Functions in Infectious Diseases. Front Immunol, 2018. 9: p. 2741.
dc.relation.references92. Soares, R.O., Oliveira, L. M., Marchini, J. S., Rodrigues, A. J., Elias, L. L., Almeida, S. S., Effects of early protein malnutrition and environmental stimulation on behavioral and biochemical parameters in rats submitted to the elevated plus-maze test. Nutr Neurosci, 2013. 16(3): p. 104-12.
dc.relation.references93. Maurya, R., Bhattacharya, P., Ismail, N., Dagur, P. K., Joshi, A. B., Razdan, K., Philip McCoy J. P. Jr., Ascher, J., Dey, R., and Nakhasi, H. L., Differential Role of Leptin as an Immunomodulator in Controlling Visceral Leishmaniasis in Normal and Leptin-Deficient Mice. Am. J. Trop. Med. Hyg., 2016. 95(1): p. 109–119.
dc.relation.references94. Khadem, F., and Uzonna, J. E., Immunity to visceral leishmaniasis: implications for immunotherapy. Future Microbiol., 2014. 9(7): p. 901-15.
dc.relation.references95. Faleiro, R.J., Kumar, R., Hafner, L. M., Engwerda, C. R., Immune regulation during chronic visceral leishmaniasis. PLoS Negl Trop Dis, 2014. 8(7): p. e2914.
dc.relation.references96. Rodrigues, V., Cordeiro-da-Silva, A., Laforge, M., Silvestre, R., Estaquier, J., Regulation of immunity during visceral Leishmania infection. Parasit Vectors, 2016. 9: p. 118-31.
dc.relation.references97. Pinto, A.J.W., Figueiredo, M. M., Ferreira, R. A., Caliari, M. V., Tafuri, L. W., Unusual Small Intestine Inflammatory Lesions in a Dog with Visceral Leishmaniasis. Brazilian Journal of Veterinary Pathology, 2013. 6(1): p. 19-25.
dc.relation.references98. Gonzailez, J.L., Insa, F., Novoa, C., and Pizarro, M., Intestinal amyloidosis in hamsters with visceral leishmaniasis. Br. J. exp. Path. , 1986. 67: p. 353-360.
dc.relation.references99. Amann, K., Bogdan, C., Harrer, T., and Rech, J., Renal Leishmaniasis as Unusual Cause of Nephrotic Syndrome in an HIV Patient. J Am Soc Nephrol, 2012. 23: p. 586–590.
dc.relation.references100. Alwazzeh, M.J., Alhashimalsayed, Z. H., Visceral Leishmaniasis and Glomerulonephritis: A Case Report. Saudi J Med Med Sci 2019. 7: p. 40-3.
dc.relation.references101. Bispo, A.J.B., Almeida, M. L. D., de Almeida, R. P., Bispo Neto, J., de Oliveira Brito A. V., Franc¸a, C. M., Pulmonary involvement in human visceral leishmaniasis: Clinical and tomographic evaluation. PLoS ONE 2020. 15(1): p. 1-12.
dc.relation.references102. Alves, G.B.B., Pinho, F. A., Silva, S. M. M. S., Cruz, M. S. P., and Costa, F. A. L. , Cardiac and pulmonary alterations in symptomatic and asymptomatic dogs infected naturally with Leishmania (Leishmania) chagasi. Braz J Med Biol Res, 2010. 43(3): p. 310-315.
dc.relation.references103. Silva, D.T., Neves, M. F., de Queiroz, N. M., Spada, J. C., Alves, M. L., Floro e Silva, M., Coelho, W. M., Panosso, A. R., Noronha Junior, A. C., Starke-Buzetti, W. A., Correlation study and histopathological description of intestinal alterations in dogs infected with Leishmania infantum. Rev Bras Parasitol Vet, 2016. 25(1): p. 24-36.
dc.relation.references104. Figueiredo, M.M., Deoti, B., Amorim, I. F., Pinto, A. J., Moraes, A., Carvalho, C. S., da Silva, S. M., de Assis, A. C., de Faria, A. M., Tafuri, W. L., Expression of regulatory T cells in jejunum, colon, and cervical and mesenteric lymph nodes of dogs naturally infected with Leishmania infantum. Infect Immun, 2014. 82(9): p. 3704-12.
dc.relation.references105. Pinto, A.J., Figueiredo, M. M., Silva, F. L., Martins, T., Michalick, M. S., Tafuri, W. L., Tafuri, W. L., Histopathological and parasitological study of the gastrointestinal tract of dogs naturally infected with Leishmania infantum. Acta Vet Scand, 2011. 53: p. 53-67.
dc.relation.references106. Opazo, M.C., Ortega-Rocha, E. M., Coronado-Arrazola, I., Bonifaz, L. C., Boudin, H., Neunlist, M., Bueno, S. M., Kalergis, A. M., Riedel, C. A., Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases. Front Microbiol, 2018. 9: p. 432.
dc.relation.references107. Dayakar, A., Chandrasekaran, S., Kuchipudi, S., and Kalangi S., Cytokines: Key Determinants of Resistance or Disease Progression in Visceral Leishmaniasis: Opportunities for Novel Diagnostics and Immunotherapy. Front. Immunol, 2019. 10(670).
dc.relation.references108. Murray, H., Flanders, K., Donaldson, D., Sypek, J., Gotwals, P., Liu, L., and Ma, X., Antagonizing Deactivating Cytokines To Enhance Host Defense and Chemotherapy in Experimental Visceral Leishmaniasis. Infection And Immunity, 2005. 73(7): p. 3903–3911.
dc.relation.references109. Adjei-Frempong, M., Minkah, B., Quaye, L., Acquah, S., Opoku, A., and Imrana, M., Evaluation of changes in pro-inflammatory cytokines in malnourished children: A Ghanaian case study. Journal of Medical and Biomedical Sciences 2012. 1(3): p. 21-28.
dc.relation.references110. Maran, N., Gomes, P. S., Freire-de-Lima, L., Freitas, E. O., Freire-de-Lima, C. G., Morrot, A., Host resistance to visceral leishmaniasis: prevalence and prevention. Expert Rev Anti Infect Ther, 2016. 14(4): p. 435-42.
dc.relation.references111. Gantt, K., Schultz-Cherry, S., Rodriguez, N., Jeronimo, S., Nascimento, E., Goldman, T., Recker, T., Miller, M., and Wilson, M., Activation of TGF- β by Leishmania chagasi : Importance for Parasite Survival in Macrophages. J Immunol March 2003. 170(5): p. 2613-2620.
dc.relation.references112. Rolão, N., Cortes, S., Gomes-Pereira, S., Campino, L., Leishmania infantum: Mixed T-helper-1/T-helper-2 immune response in experimentally infected BALB/c mice. Experimental Parasitology 2007. 115: p. 270–276.
dc.relation.references113. Pérez-Cabezas, B., Cecílio, P., Gaspar, T.B., Gärtner, F., Vasconcellos, R., and Cordeiro-da-Silva, A. , Understanding Resistance vs. Susceptibility in Visceral Leishmaniasis Using Mouse Models of Leishmania infantum Infection. Front. Cell. Infect. Microbiol, 2019. 9(30).
dc.relation.references114. Das, V., Bimal, S., Siddiqui, N., Kumar, A., Pandey, K., Sinha, S., Conversion of asymptomatic infection to symptomatic visceral leishmaniasis: A study of possible immunological markers. PLoS Negl Trop Dis 2020. 14(6): p. e0008272.
dc.relation.references115. Sirisinha, S., Suskind, R., Edelman, R., Asvapaka, C., and Olson, R.E., Secretory and Serum IgA in Children With Protein-Calorie Malnutrition. Pediatrics 1975. 55(2): p. 166-170.
dc.relation.references116. McMurray, D.N., Rey, H., Casazza, L.J., Watson, R.R, Effect of moderate malnutrition on concentrations of immunoglobulins and enzymes in tears and saliva of young Colombian children. The American Journal of Clinical Nutrition, 1877. 30(12): p. 1944–1948.
dc.relation.references117. Mcgee, D.W., and Mcmurray, D.N., The effect of protein malnutrition on the IgA immune response in mice. Immunology 1988. 63: p. 25-29.
dc.relation.references118. Macpherson, A.J., Yilmaz, B., Limenitakis, J. P., Ganal-Vonarburg, S. C., IgA Function in Relation to the Intestinal Microbiota. Annu Rev Immunol, 2018. 36: p. 359-381.
dc.relation.references119. Yel, L., Selective IgA deficiency. J Clin Immunol, 2010. 30(1): p. 10-6.
dc.relation.references120. Green, F., and Heyworth, B., Immunoglobulin-containing cells in jejunal mucosa of children with protein-energy malnutrition and gastroenteritis. Archives of Disease in Childhood, 1980. 55: p. 380-383.
dc.relation.references121. Reddy, V., Raghuramulu, N., and Bhaskaram, C., Secretory IgA in protein-calorie malnutrition. Archives of Disease in Childhood, 1976. 51: p. 871-4.
dc.relation.references122. Amaral, J.F., Foschetti, D.A., Assis, F.A., Menezes,J.S., Vaz N.M., and Faria,A.M.C.,, Immunoglobulin production is impaired in protein-deprived mice and can be restored by dietary protein supplementation. Brazilian Journal of Medical and Biological Research 2006. 39: p. 1581-1586.
dc.relation.references123. Korpe, P.S., Petri, W. A., Jr., Environmental enteropathy: critical implications of a poorly understood condition. Trends Mol Med, 2012. 18(6): p. 328-36.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsDeficiencia de Proteína
dc.subject.decsProtein Deficiency
dc.subject.decsLeishmania
dc.subject.decsTracto Gastrointestinal
dc.subject.decsGastrointestinal Tract
dc.subject.proposalIgA
dc.subject.proposalLeishmania infantum
dc.subject.proposalDuodeno
dc.subject.proposalGUT
dc.subject.proposalInflamación
dc.subject.proposalMalnutrición
dc.subject.proposalleishmaniasis visceral
dc.title.translatedEffect of protein restriction as a modulator of the immune response of the gastrointestinal tract of BALB/c mice infected with Leishmania infantum
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito