Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorJaramillo Álvarez, Gloria Patricia
dc.contributor.authorDíaz Guerra, Jaime Andrés
dc.date.accessioned2024-05-08T19:39:43Z
dc.date.available2024-05-08T19:39:43Z
dc.date.issued2024-05-07
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86053
dc.descriptionilustraciones, gráficos
dc.description.abstractEl presente trabajo propone una metodología que permite que un decisor incluya las preferencias que experimenta sobre un problema, utilizando un Sistema de Inferencia Difusa en un algoritmo genético de optimización multiobjetivo. Esta metodología se logra a través del diseño de un método denominado Algoritmo Genético Multiobjetivo con Sistema de Inferencia de Preferencias Difusas (AGMOSIPD). Este algoritmo es una técnica de incorporación de preferencias a priori que le ofrece al decisor una etapa de aprendizaje inicial donde, a través de la obtención de un conjunto de soluciones a través de simulación Monte Carlo, podrá construir su estructura de preferencias mediante el diseño de un Sistema de Inferencia Difusa (SID). Posteriormente, el SID se incorpora en un algoritmo genético a través de una restricción para dirigir los individuos hacia la zona de la Frontera de Pareto más preferida por el decisor y ofrecer un conjunto reducido de alternativas. Este trabajo se ejecuta en 60 casos de prueba que involucran 6 problemas y 2 algoritmos genéticos, se presentan los resultados gráficos, se verifica la obtención de soluciones eficientes y se comparan las soluciones obtenidas mediante AGMOSIPD con las soluciones obtenidas a través de la optimización de los problemas de prueba en un algoritmo genético sin preferencias. AGMOSIPD obtiene soluciones eficientes en la mayoría de los casos probados y presenta desafíos y oportunidades de mejora en otras circunstancias. (Tomado de la fuente)
dc.description.abstractThis work proposes a methodology that includes the decision maker preferences about a problem using a Fuzzy Inference System in a multiobjective genetic optimization algorithm. This methodology is achieved through the design of a method called Multiobjective Genetic Algorithm with Fuzzy Preference Inference System (AGMOSIPD). This algorithm is an a priori preference incorporation technique that offers an initial learning stage where, by obtaining a set of solutions through Monte Carlo simulation, the decision maker can build a preference structure through the design of a Fuzzy Inference System (FIS). Subsequently, the FIS is incorporated into a genetic algorithm through a constraint to direct the individuals towards the Pareto Frontier zone most preferred by the decision maker and offer a reduced set of alternatives. This work is run on 60 test cases involving 6 problems and 2 genetic algorithms, the graphical results are presented, the obtaining of efficient solutions is verified, and the solutions obtained through AGMOSIPD are compared with the solutions obtained through the optimization of test problems in a genetic algorithm without preferences. AGMOSIPD obtains efficient solutions in most of the tested cases and presents challenges and opportunities for improvement in other circumstances.
dc.format.extent141 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
dc.titleInclusión dinámica de las preferencias del decisor en un algoritmo genético multiobjetivo mediante un SID
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Ingeniería de Sistemas
dc.contributor.researchgroupCiencias de la Decision
dc.description.degreelevelMaestría
dc.description.researchareaOptimización Multiobjetivo
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedLaReferencia
dc.relation.referencesAguilar Arroyo, E. A. (2023). Un nuevo sistema inmune artificial para problemas de optimización multi-objetivo [Tesis de maestría, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional]. https://repositorio.cinvestav.mx/bitstream/handle/cinvestav/4776/SSIT0018189.pdf?sequence=1
dc.relation.referencesBechikh, S., Kessentini, M., Said, L. B., & Ghédira, K. (2015). Preference Incorporation in Evolutionary Multiobjective Optimization. En Advances in Computers (Vol. 98, pp. 141-207). Elsevier. https://doi.org/10.1016/bs.adcom.2015.03.001
dc.relation.referencesBlank, J., & Deb, K. (2020). Pymoo: Multi-Objective Optimization in Python. IEEE Access, 8, 89497-89509. https://doi.org/10.1109/ACCESS.2020.2990567
dc.relation.referencesBonissone, S. R. (2001). Evolutionary algorithms for multi-objective optimization: Fuzzy preference aggregation and multisexual EAs (B. Bosacchi, D. B. Fogel, & J. C. Bezdek, Eds.; pp. 157-164). https://doi.org/10.1117/12.448334
dc.relation.referencesBranke, J., Kaußler, T., & Schmeck, H. (2001). Guidance in evolutionary multi-objective optimization. Advances in Engineering Software, 32(6), 499-507. https://doi.org/10.1016/S0965-9978(00)00110-1
dc.relation.referencesChoon, O. H., & Tilahun, S. L. (2011). Integration fuzzy preference in genetic algorithm to solve multiobjective optimization problems. Far East Math. Sci, 55, 165-179.
dc.relation.referencesCoello, C. A. C. (2019). Introduccion a la Computación Evolutiva (Notas de Curso) [Notas de Curso]. https://gc.scalahed.com/recursos/files/r161r/w25199w/s1_introduccionalacomputacionevolutiva.pdf
dc.relation.referencesCoello, C. A. C., Lamont, G. B., & Veldhuizen, D. A. V. (2007). Evolutionary Algorithms for Solving Multi-Objective Problems Second Edition (2.a ed.). Springer. http://tinyurl.com/4b2cp7ef
dc.relation.referencesCortez, V. F., Cruz, D. V., & Margolis, P. E. L. (2019). Optimización de Portafolios de Inversión con Algoritmos Genéticos. Revista de Investigación en Ciencias Contables y Administrativas, 4(2), Article 2.
dc.relation.referencesCuartas Torres, B. A. C. (2009). Metodología para la optimización de múltiples objetivos basada en ag y uso de preferencias [Tesis de maestría]. https://repositorio.unal.edu.co/handle/unal/70080
dc.relation.referencesCvetković, D., & Coello, C. A. C. (2005). Human Preferences and their Applications in Evolutionary Multi—Objective Optimization. En Y. Jin (Ed.), Knowledge Incorporation in Evolutionary Computation (Vol. 167, pp. 479-502). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-44511-1_22
dc.relation.referencesDeb, K., & Chaudhuri, S. (2005). I-EMO: An Interactive Evolutionary Multi-objective Optimization Tool. En S. K. Pal, S. Bandyopadhyay, & S. Biswas (Eds.), Pattern Recognition and Machine Intelligence (Vol. 3776, pp. 690-695). Springer Berlin Heidelberg. https://doi.org/10.1007/11590316_111
dc.relation.referencesDeb, K., & Jain, H. (2014). An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems With Box Constraints. IEEE Transactions on Evolutionary Computation, 18(4), 577-601. https://doi.org/10.1109/TEVC.2013.2281535
dc.relation.referencesDeb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-197. https://doi.org/10.1109/4235.996017
dc.relation.referencesDuarte, O. G. (1999). Sistemas de lógica difusa: Fundamentos. Ingeniería e Investigación, 42, 22-30. https://doi.org/10.15446/ing.investig.n42.21065
dc.relation.referencesDuarte, O., Sarmiento, C., Barrera, M., Márquez, M., Culma, J. E., & Ramirez, J. J. (2022). Modelos matemáticos para la gestión curricular (1.a ed.). Universidad Nacional de Colombia, Facultad de Ingeniería. https://repositorio.unal.edu.co/handle/unal/83381
dc.relation.referencesFonseca, C., & Fleming, P. (1999). Genetic Algorithms for Multiobjective Optimization: Formulation Discussion and Generalization. the fifth Intl conference on Genetic Algorithms, 93.
dc.relation.referencesIshibuchi, H., Imada, R., Setoguchi, Y., & Nojima, Y. (2016). Performance comparison of NSGA-II and NSGA-III on various many-objective test problems. 2016 IEEE Congress on Evolutionary Computation (CEC), 3045-3052. https://doi.org/10.1109/CEC.2016.7744174
dc.relation.referencesJamwal, P. K., Abdikenov, B., & Hussain, S. (2019). Evolutionary Optimization Using Equitable Fuzzy Sorting Genetic Algorithm (EFSGA). IEEE Access, 7, 8111-8126. https://doi.org/10.1109/ACCESS.2018.2890274
dc.relation.referencesJin, Y., & Sendhoff, B. (2002). Incorporation of fuzzy preferences into evolutionary multiobjective optimization. En 4th Asia-Pacific Conference on Simulated Evolution and Learning (Vol. 1, pp. 26-30).
dc.relation.referencesKaci, S. (2011). Working with Preferences: Less Is More. Springer Science & Business Media.
dc.relation.referencesKahneman, D. (2012). Pensar rápido, pensar despacio. Debate. http://tinyurl.com/4rf8zpjk
dc.relation.referencesKim, J.-H., Han, J.-H., Kim, Y.-H., Choi, S.-H., & Kim, E.-S. (2012). Preference-Based Solution Selection Algorithm for Evolutionary Multiobjective Optimization. IEEE Transactions on Evolutionary Computation, 16(1), 20-34. https://doi.org/10.1109/TEVC.2010.2098412
dc.relation.referencesKingsley, D. C. (2006). Preference Uncertainty, Preference Refinement and Paired Comparison Choice Experiments. University of Colorado, Boulder.
dc.relation.referencesLai, G., Liao, M., & Li, K. (2021). Empirical Studies on the Role of the Decision Maker in Interactive Evolutionary Multi-Objective Optimization. 2021 IEEE Congress on Evolutionary Computation (CEC), 185-192. https://doi.org/10.1109/CEC45853.2021.9504980
dc.relation.referencesLeyva-Lopez, J. C., & Aguilera-Contreras, M. A. (2005). A Multiobjective Evolutionary Algorithm for Deriving Final Ranking from a Fuzzy Outranking Relation. En C. A. Coello Coello, A. Hernández Aguirre, & E. Zitzler (Eds.), Evolutionary Multi-Criterion Optimization (Vol. 3410, pp. 235-249). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-31880-4_17
dc.relation.referencesLi, B., Li, J., Tang, K., & Yao, X. (2015). Many-Objective Evolutionary Algorithms: A Survey. ACM Computing Surveys, 48(1), 1-35. https://doi.org/10.1145/2792984
dc.relation.referencesLi, J., Li, Y., & Wang, Y. (2021). Fuzzy Inference NSGA-III Algorithm-Based Multi-Objective Optimization for Switched Reluctance Generator. IEEE Transactions on Energy Conversion, 36(4), 3578-3581. https://doi.org/10.1109/TEC.2021.3099961
dc.relation.referencesLi, K., Chen, R., Min, G., & Yao, X. (2018). Integration of Preferences in Decomposition Multiobjective Optimization. IEEE Transactions on Cybernetics, 48(12), 3359-3370. https://doi.org/10.1109/TCYB.2018.2859363
dc.relation.referencesLi, K., Chen, R., Savic, D., & Yao, X. (2019). Interactive Decomposition Multiobjective Optimization Via Progressively Learned Value Functions. IEEE Transactions on Fuzzy Systems, 27(5), 849-860. https://doi.org/10.1109/TFUZZ.2018.2880700
dc.relation.referencesLi, K., Liao, M., Deb, K., Min, G., & Yao, X. (2020). Does Preference Always Help? A Holistic Study on Preference-Based Evolutionary Multiobjective Optimization Using Reference Points. IEEE Transactions on Evolutionary Computation, 24(6), 1078-1096. https://doi.org/10.1109/TEVC.2020.2987559
dc.relation.referencesLichtenstein, S., & Slovic, P. (Eds.). (2006). The Construction of Preference (1.a ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511618031
dc.relation.referencesLuo, B., Lin, L., & Zhong, S. (2018). PGA/MOEAD: A preference-guided evolutionary algorithm for multi-objective decision-making problems with interval-valued fuzzy preferences. International Journal of Systems Science, 49(3), 595-616. https://doi.org/10.1080/00207721.2017.1412537
dc.relation.referencesPedrycz, W., Ekel, P., & Parreiras, R. (2011). Fuzzy Multicriteria Decision-Making: Models, Methods and Applications. John Wiley & Sons.
dc.relation.referencesRachmawati, L., & Srinivasan, D. (2006). Preference Incorporation in Multi-objective Evolutionary Algorithms: A Survey. 2006 IEEE International Conference on Evolutionary Computation, 962-968. https://doi.org/10.1109/CEC.2006.1688414
dc.relation.referencesRamakrishnan, S., & Hasan, Y. A. (2013). Fuzzy preference-based multi-objective optimization method. Artificial Intelligence Review, 39(2), 165-181. https://doi.org/10.1007/s10462-011-9264-4
dc.relation.referencesREAL ACADEMIA ESPAÑOLA. (2023). Diccionario de la lengua española (23.a ed.). https://dle.rae.es
dc.relation.referencesRosenthal, R. E. (1984). Principles of multiobjective optimization. Naval Postgraduate School.
dc.relation.referencesSantana, L. V. S., & Coello, C. A. C. (2006). Una introducción a la Computación Evolutiva y alguna de sus aplicaciones en Economía y Finanzas. Revista de Métodos Cuantitativos para la Economía y la Empresa, 2, páginas 3 a 26-páginas 3 a 26. https://doi.org/10.46661/revmetodoscuanteconempresa.2057
dc.relation.referencesShen, X., Guo, Y., Chen, Q., & Hu, W. (2010). A multi-objective optimization evolutionary algorithm incorporating preference information based on fuzzy logic. Computational Optimization and Applications, 46(1), 159-188. https://doi.org/10.1007/s10589-008-9189-2
dc.relation.referencesShen, X., Li, T., & Zhang, M. (2009). A Fuzzy Multi-objective Optimization Evolutionary Algorithm Incorporating Preference Information. 2009 Second International Symposium on Knowledge Acquisition and Modeling, 143-146. https://doi.org/10.1109/KAM.2009.12
dc.relation.referencesSmith, R., Mesa, O., Dyner, I., Jaramillo, P., Poveda, G., & Valencia, D. (2000). Decisiones con Múltiples Objetivos e Incertidumbre (2.a ed.). Universidad Nacional de Colombia.
dc.relation.referencesTaylor, K. P. (2022). Preference Learning for Multi-objective Optimisation Problems [Tesis de doctorado].
dc.relation.referencesThiele, L., Miettinen, K., Korhonen, P. J., & Molina, J. (2009). A Preference-Based Evolutionary Algorithm for Multi-Objective Optimization. Evolutionary Computation, 17(3), 411-436. https://doi.org/10.1162/evco.2009.17.3.411
dc.relation.referencesTomczyk, M. K., & Kadziński, M. (2020). On the elicitation of indirect preferences in interactive evolutionary multiple objective optimization. Proceedings of the 2020 Genetic and Evolutionary Computation Conference, 569-577. https://doi.org/10.1145/3377930.3389826
dc.relation.referencesTversky, A., & Kahneman, D. (1974). Judgment under Uncertainty: Heuristics and Biases: Biases in judgments reveal some heuristics of thinking under uncertainty. Science, 185(4157), 1124-1131. https://doi.org/10.1126/science.185.4157.1124
dc.relation.referencesXin, B., Chen, L., Chen, J., Ishibuchi, H., Hirota, K., & Liu, B. (2018). Interactive Multiobjective Optimization: A Review of the State-of-the-Art
dc.relation.referencesXiong, J., Tan, X., Yang, K., & Chen, Y. (2013). Fuzzy Group Decision Making for Multiobjective Problems: Tradeoff between Consensus and Robustness. Journal of Applied Mathematics, 2013, 1-9. https://doi.org/10.1155/2013/657978
dc.relation.referencesYoon, K. P., & Kim, W. K. (2017). The behavioral TOPSIS. Expert Systems with Applications, 89, 266-272. https://doi.org/10.1016/j.eswa.2017.07.045
dc.relation.referencesZitzler, E., Deb, K., & Thiele, L. (2000). Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation, 8(2), 173-195. https://doi.org/10.1162/106365600568202
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembAlgoritmos difusos
dc.subject.lembAlgoritmos genéticos
dc.subject.lembInferencia (lógica)
dc.subject.lembLógica difusa
dc.subject.lembSistemas difusos
dc.subject.proposalAlgoritmos Genéticos
dc.subject.proposalLógica Difusa
dc.subject.proposalPreferencias
dc.subject.proposalSistema de Inferencia Difusa
dc.subject.proposalGenetic Algorithms
dc.subject.proposalFuzzy Logic
dc.subject.proposalMultiobjective Optimization
dc.subject.proposalOptimización Multiobjetivo
dc.subject.proposalPreferences
dc.subject.proposalFuzzy Inference System
dc.title.translatedDynamic inclusion of decision-maker preferences in a multi-objective genetic algorithm using a FIS
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentMaestros
dc.description.curricularareaIngeniería De Sistemas E Informática.Sede Medellín


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito