Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorRodriguez Cortina, jader
dc.contributor.advisorRincón Prat, Sonia Lucía
dc.contributor.authorVelásquez Ayala, Fabián Andrés
dc.date.accessioned2024-05-08T20:01:15Z
dc.date.available2024-05-08T20:01:15Z
dc.date.issued2024-01-30
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86054
dc.descriptionilustraciones, diagramas
dc.description.abstractEl azúcar no centrifugado de caña (ANC) es un edulcorante sólido no refinado con un gran potencial de comercialización debido a sus atributos nutracéuticos. Sin embargo, los módulos de producción de ANC presentan problemas de baja eficiencia térmica debido al diseño empírico de sus componentes como la cámara de combustión causando que la energía suministrada por el combustible (bagazo de caña) no sea suficiente para cubrir la demanda energética del proceso. Como resultado, se obtienen bajas temperaturas de combustión y altas tasas de emisión de gases contaminantes. Consecuentemente, para establecer modificaciones y criterios de diseño en estos equipos, es necesario comprender los fenómenos de conversión termoquímica que experimenta el combustible. Por lo tanto, se planteó el desarrollo de un modelo de combustión de bagazo de caña a partir de técnicas de dinámica computacional de fluidos (CFD) en una cámara de combustión plana de lecho fijo. El modelo fue planteado a partir de los balances de energía y masa en estado transitorio para un sistema heterogéneo compuesto por dos fases: gas y sólido. Se tiene en cuenta los procesos de transferencia de calor, masa y las reacciones químicas derivadas de los procesos de degradación térmica del combustible. El modelo fue validado a partir de datos experimentales tomados en una cámara de combustión de lecho fijo para bagazo de caña, dónde se midieron los perfiles de distribución de temperatura y la composición de especies (CO2, CO y O2). El modelo permite determinar la distribución de los perfiles de temperatura y la concentración de especies generadas o destruidas durante el proceso. La validación del modelo muestra la capacidad de predecir un comportamiento promedio de la temperatura y composición de especies que se generan en la combustión de bagazo de caña. (Texto tomado de la fuente).
dc.description.abstractNon-centrifuged cane sugar (NCS) is an unrefined solid sweetener with great commercialization potential due to its nutraceutical attributes. However, NCS production modules present problems of low thermal efficiency due to the empirical design of its components such as the combustion chamber causing the energy supplied by the fuel (cane bagasse) is not sufficient to cover the energy demand of the process. As a result, low combustion temperatures and high pollutant gas emission rates are obtained. Consequently, to establish modifications and design criteria for these equipment, it is necessary to understand the thermochemical conversion phenomena experienced by the fuel. Therefore, the development of a cane bagasse combustion model was proposed using computational fluid dynamics (CFD) techniques in a flat fixed-bed combustion chamber. The model was based on the energy and mass balances in transient state for a heterogeneous system composed of two phases: gas and solid. It takes into account the heat and mass transfer processes and the chemical reactions derived from the thermal degradation processes of the fuel. The model was validated from experimental data taken in a fixed bed combustion chamber for sugarcane bagasse, where temperature distribution profiles and species composition (CO2, CO y O2) were measured. The model allows determining the distribution of temperature profiles and the concentration of species generated or destroyed during the process. The validation of the model shows the ability to predict an average behavior of the temperature and species composition generated in the combustion of sugarcane bagasse.
dc.description.sponsorshipCorporación Colombiana de investigación Agropecuaria (AGROSAVIA)
dc.format.extentxvi, 110 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentos
dc.titleModelación de la combustión de bagazo de caña en un módulo de producción de azúcar no centrifugado
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.contributor.researchgroupGrupo de Investigación en Biomasa y Optimización Térmica de Procesos, (BIOT)
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Química
dc.description.researchareaConversión termoquímica de biomasa
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAgronegocios (2021). Colombia es el segundo mayor productor de panela a nivel mundial. Excerpted from 5th edition of the APA Publication Manual.
dc.relation.referencesAllison, T. C. (2013). Nist-janaf thermochemical tables - srd 13 (version 1.0.2) [data set]. National Institute of Standards and Technology.
dc.relation.referencesAnca-Couce, A., Sommersacher, P., Shiehnejadhesar, A., Mehrabian, R., Hochenauer, C., and Scharler, R. (2017). CO/CO2 ratio in biomass char oxidation. Energy Procedia, 120:238--245. INFUB - 11th European Conference on Industrial Furnaces and Boilers, INFUB-11.
dc.relation.referencesAnwar, S. (2010). Fuel and energy saving in open pan furnace used in jaggery making through modified juice boiling/concentrating pans. Energy Conversion and Management, 51(2):360--364.
dc.relation.referencesBauer, R., Gölles, M., Brunner, T., Dourdoumas, N., and Obernberger, I. (2010). Modelling of grate combustion in a medium scale biomass furnace for control purposes. Biomass and Bioenergy, 34:417--427.
dc.relation.referencesBorray, G. A. R., Carranza, B. H., Murcia, S. M. P., Chavarro, C. F. G., Muñoz, J. L. T., Cortina, J. R., Ayala, F. A. V., Durán, J. R., González, J. J. E., and Zaraza, R. A. L. (2020). Modelo productivo de la caña de azúcar (saccharum officinarum) para la producción de panela en cundinamarca.
dc.relation.referencesCadavid, G. O. (2007). Buenas prácticas agrícolas [BPA] y buenas prácticas de manufactura [BPM] en la producción de caña y panela. Organización de las Naciones Unidas para la Agricultura y la Alimentación - FAO.
dc.relation.referencesCanedo, M. S., Figueiredo, M. F. S., Thomik, M., Vorhauer-Huget, N., Tsotsas, E., and Thoméo, J. C. (2021). Porosity and pore size distribution of beds composed by sugarcane bagasse and wheat bran for solid-state cultivation. Powder Technology, 386:166--175.
dc.relation.referencesCengel, Y. (2014). Heat and mass transfer: fundamentals and applications. McGraw-Hill Higher Education.
dc.relation.referencesDaood, S. S., Munir, S., Nimmo, W., and Gibbs, B. M. (2010). Char oxidation study of sugar cane bagasse, cotton stalk and pakistani coal under 1 % and 3 % oxygen concentrations. Biomass and Bioenergy, 34:263--271.
dc.relation.referencesde Souza-Santos, M. L. (2010). Solid fuels combustion and gasification: modeling, simulation. CRC Press.
dc.relation.referencesDernbecher, A., Dieguez-Alonso, A., Ortwein, A., and Tabet, F. (2019). Review on modelling approaches based on computational fluid dynamics for biomass combustion systems. Biomass Conversion and Biorefinery, 9:129--182.
dc.relation.referencesDi Blasi, C. (1997). Simultaneous Heat, Mass and Momentum Transfer during Biomass Drying, pages 117--131. Springer Netherlands, Dordrecht.
dc.relation.referencesDi Blasi, C. (2004). Modeling wood gasification in a countercurrent fixed-bed reactor. AIChE Journal, 50(9):2306--2319.
dc.relation.referencesEdwards, C. M. L. (2018). Technical evaluation of available residual biomass in colombia for its thermochemical conversion in fluidized bed reactors.
dc.relation.referencesEisermann, W., Johnson, P., and Conger, W. L. (1980). Estimating thermodynamic properties of coal, char, tar and ash. Fuel Processing Technology, 3:39--53.
dc.relation.referencesEspitia, J., Velásquez, F., López, R., Escobar, S., and Rodríguez, J. (2020). An engineering approach to design a non-centrifugal cane sugar production module: A heat transfer study to improve the energy use. Journal of Food Engineering, 274:109843.
dc.relation.referencesFerziger, J. H., Perić, M., and Street, R. L. (2019). Computational methods for fluid dynamics. springer.
dc.relation.referencesFigura, L. O. and Teixeira, A. A. (2007). Geometric Properties: Size and Shape, pages 73--115. Springer Berlin Heidelberg, Berlin, Heidelberg.
dc.relation.referencesForero, L. E. P., Castro, Z. S., Bernal, H. R. G., and Ávila, H. S. R. (2012). Hornillas paneleras ward-cimpa: Validación de los modelos matemáticos de diseño corpoica-uis. Fuentes: El reventón energético, 10:6.
dc.relation.referencesFrigerio, S., Thunman, H., Leckner, B., and Hermansson, S. (2008). Estimation of gas phase mixing in packed beds. Combustion and Flame, 153:137--148.
dc.relation.referencesGordillo, G. and García, H. (1992). Manual para el diseño y operación de hornillas paneleras. Technical report, Convenio de Investigación y Divulgación para el Mejoramiento de la Industria Panelera, Bogotá (Colombia).
dc.relation.referencesGreenshields, C. J. and Weller, H. G. (2022). Notes on computational fluid dynamics: General principles.
dc.relation.referencesGuevara Enciso, J. I. (2014). Modelo computacional de la combustión del bagazo de caña en una cámara de combustión tipo ward-cimpa de una hornilla panelera.
dc.relation.referencesGunn, D. J. (1987). Axial and radial dispersion in fixed beds. Chemical engineering science, 42:363--373.
dc.relation.referencesGómez, A., Klose, W., and Rincón, S. (2008). Pirólisis de biomasa: cuesco de palma de aceite. kassel university press GmbH.
dc.relation.referencesGómez, M., Porteiro, J., Patiño, D., and Míguez, J. (2014). Cfd modelling of thermal conversion and packed bed compaction in biomass combustion. Fuel, 117:716--732.
dc.relation.referencesHugot, E. and Jenkins, G. (1986). Manual de ingeniería de la caña de azúcar. Estados Unidos: Elsevier Scienci.
dc.relation.referencesInvima (2015). Registro nacional de trapiches paneleros. Instituto nacional de vigilancia de medicamentos y alimentos Invima.
dc.relation.referencesJader, R., Fabián, V., John, E., Sebastián, E., and Oscar, M. (2018). Thermal performance evaluation of production technologies for non-centrifuged sugar for improvement in energy utilization. Energy, 152:858--865.
dc.relation.referencesJaffé, W. (2012). Non-centrifugal sugar: world production and trade. Panela monitor, pages 4--48.
dc.relation.referencesJaffé, W. R. (2015). Nutritional and functional components of non centrifugal cane sugar: A compilation of the data from the analytical literature. Journal of Food Composition and Analysis, 43:194--202.
dc.relation.referencesJensen, S. (2001). Zur modellierung eines indirekt beheizten festbettbiomassevergasers.
dc.relation.referencesJohansson, R., Thunman, H., and Leckner, B. (2007). Sensitivity analysis of a fixed bed combustion model. Energy & Fuels, 21:1493--1503. doi: 10.1021/ef060500z.
dc.relation.referencesJurena, T. (2012). Numerical modelling of grate combustion. Brno University of Technology, Brno.
dc.relation.referencesKarim, M. R. and Naser, J. (2017). Numerical modelling of solid biomass combustion: Difficulties in initiating the fixed bed combustion. Energy Procedia, 110:390--395.
dc.relation.referencesKhodaei, H., Al-Abdeli, Y. M., Guzzomi, F., and Yeoh, G. H. (2015). An overview of processes and considerations in the modelling of fixed-bed biomass combustion. Energy, 88:946--972.
dc.relation.referencesKhodaei, H., Yeoh, G. H., Guzzomi, F., and Porteiro, J. (2018). A cfd-based comparative analysis of drying in various single biomass particles. Applied Thermal Engineering, 128:1062--1073.
dc.relation.referencesKlason, T. (2006). Modelling of biomass combustion in furnaces. Lund University.
dc.relation.referencesKumar, A. and Tiwari, G. N. (2006). Effect of shape and size on convective mass transfer coefficient during greenhouse drying (ghd) of jaggery. Journal of Food Engineering, 73:121--134.
dc.relation.referencesLa Madrid, R., Marcelo, D., Orbegoso, E. M., and Saavedra, R. (2016). Heat transfer study on open heat exchangers used in jaggery production modules – computational fluid dynamics simulation and field data assessment. Energy Conversion and Management, 125:107--120. Sustainable development of energy, water and environment systems for future energy technologies and concepts.
dc.relation.referencesLa Madrid, R., Orbegoso, E. M., Saavedra, R., and Marcelo, D. (2017). Improving the thermal efficiency of a jaggery production module using a fire-tube heat exchanger. Journal of Environmental Management, 204:622--636.
dc.relation.referencesLam, P. S., Sokhansanj, S., Bi, X., Mani, S., Lim, J., and (or initial) (or initial) (2007). Physical characterization of wet and dry wheat straw and switchgrass - bulk and specific density. American Society of Agricultural and Biological Engineers.
dc.relation.referencesLu, H., Robert, W., Peirce, G., Ripa, B., and Baxter, L. L. (2008). Comprehensive study of biomass particle combustion. Energy & Fuels, 22:2826--2839.
dc.relation.referencesMADR (2018). Cadena agroindustrial de la panela. (No Title), page 15.
dc.relation.referencesManya, J. J., Velo, E., and Puigjaner, L. (2003). Kinetics of biomass pyrolysis: a reformulated three-parallel-reactions model. Industrial and engineering chemistry research, 42(3):434-- 441.
dc.relation.referencesMcBride, B. J., Gordon, S., and Reno, M. A. (1993). Coefficients for calculating thermodynamic and transport properties of individual species.
dc.relation.referencesMendes, R. F., Vilela, A. P., Farrapo, C. L., Mendes, J. F., Denzin Tonoli, G. H., and Mendes, L. M. (2017). 1 - lignocellulosic residues in cement-bonded panels. In Savastano Junior, H., Fiorelli, J., and dos Santos, S. F., editors, Sustainable and Nonconventional Construction Materials using Inorganic Bonded Fiber Composites, pages 3--16. Woodhead Publishing.
dc.relation.referencesMiltner, M., Makaruk, A., Harasek, M., and Friedl, A. (2008). Computational fluid dynamic simulation of a solid biomass combustor: modelling approaches. Clean Technologies and Environmental Policy, 10:165--174.
dc.relation.referencesMitsakis, P. (2011). Online analysis of the tar content of biomass gasification producer gas.
dc.relation.referencesMoukalled, F., Mangani, L., and Darwish, M. (2016). Solving the System of Algebraic Equations, pages 303--364. Springer International Publishing, Cham.
dc.relation.referencesPatankar, S. V. (1980). Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation.
dc.relation.referencesPatiño, H. J. G. (2011). Modelación de la gasificación de biomasa en un reactor de lecho fijo.
dc.relation.referencesPeters, B. (2002). Measurements and application of a discrete particle model (dpm) to simulate combustion of a packed bed of individual fuel particles. Combustion and Flame, 131:132--146.
dc.relation.referencesPlaza, M. (2022). Evaluación del efecto de variables asociadas a la calidad del bagazo de caña en el proceso de combustión para uso en unidades productivas de cámara plana en la hoya del rio suarez.
dc.relation.referencesPérez, N. P., Pedroso, D. T., Machin, E. B., Antunes, J. S., Tuna, C. E., and Silveira, J. L. (2019). Geometrical characteristics of sugarcane bagasse for being used as fuel in fluidized bed technologies. Renewable Energy, 143:1210--1224.
dc.relation.referencesRasul, M. G., Rudolph, V., and Carsky, M. (1999). Physical properties of bagasse. Fuel, 78:905--910.
dc.relation.referencesReid, R. C., Prausnitz, J. M., and Poling, B. E. (1987). The properties of gases and liquids.
dc.relation.referencesRincón, S. and Gómez, A. (2008). Pyrolysis of agroindustrial biomass residues. pages 1200--1204.
dc.relation.referencesRyu, C., Yang, Y. B., Khor, A., Yates, N. E., Sharifi, V. N., and Swithenbank, J. (2006). Effect of fuel properties on biomass combustion: Part i. experiments—fuel type, equivalence ratio and particle size. Fuel, 85(7):1039--1046.
dc.relation.referencesSánchez Castro, Z. and Mendieta Menjura, O. A. (2014). Ajuste de un modelo matemático para la combustión de bagazo de caña en una cámara ward-cimpa. Ciencia y Tecnología Agropecuaria, 15(2):133--151.
dc.relation.referencesSchlünder, E.-U. and Tsotsas, E. (1988). Wärmeübertragung in Festbetten, durchmischten Schüttgütern und Wirbelschichten. Georg Thieme-Verlag.
dc.relation.referencesSkinner, F. D. and Smoot, L. D. (1979). Heterogeneous Reactions of Char and Carbon, pages 149--167. Springer US.
dc.relation.referencesSrikiatden, J. and Roberts, J. S. (2008). Predicting moisture profiles in potato and carrot during convective hot air drying using isothermally measured effective diffusivity. Journal of Food Engineering, 84:516--525.
dc.relation.referencesTelles, R. S. and Trevisan, O. V. (1993). Dispersion in heat and mass transfer natural convection along vertical boundaries in porous media. International Journal of Heat and Mass Transfer, 36(5):1357--1365.
dc.relation.referencesThunman, H. and Leckner, B. (2003). Co-current and counter-current fixed bed combustion of biofuel—a comparison. Fuel, 82:275--283.
dc.relation.referencesTiwari, G. N., Prakash, O., and Kumar, S. (2004). Evaluation of convective heat and mass transfer for pool boiling of sugarcane juice. Energy Conversion and Management, 45:171--179.
dc.relation.referencesTurns, S. (2000). An introduction to combustion: concepts and applications. McGrw-Hill Companies, Inc.
dc.relation.referencesvan Antwerpen, W., du Toit, C., and Rousseau, P. (2010). A review of correlations to model the packing structure and effective thermal conductivity in packed beds of mono-sized spherical particles. Nuclear Engineering and Design, 240(7):1803--1818.
dc.relation.referencesVelásquez, F., Espitia, J., Mendieta, O., Escobar, S., and Rodríguez, J. (2019). Non-centrifugal cane sugar processing: A review on recent advances and the influence of process variables on qualities attributes of final products. Journal of Food Engineering, 255:32--40.
dc.relation.referencesVelásquez Arredondo, H. I., Chejne Janna, F., and Agudelo Santamaría, A. F. (2004). Diagnóstico energético de los procesos productivos de la panela en colombia. Revista Facultad Nacional de Agronomía Medellín, 57(2):2453–2465.
dc.relation.referencesVerissimo, G. L. (2018). SimulaÇÃo computacional e anÁlise exergÉtica da gaseificaÇÃo de bagaÇo de cana-de-aÇÚcar em leitos fluidizados borbulhantes.
dc.relation.referencesVerissimo, G. L., Leiroz, A. J. K., and Cruz, M. E. (2020). Influence of the pyrolysis and heterogeneous char reactions modeling in the simulation of sugarcane bagasse gasification in a bubbling fluidized bed reactor. Fuel, 281:118750.
dc.relation.referencesVersteeg, H. K. and Malalasekera, W. (2007). An introduction to computational fluid dynamics: the finite volume method. Pearson Education, 2 edition.
dc.relation.referencesYang, Y., Nasserzadeh, V., Goodfellow, J., and Swithenbank, J. (2003). Simulation of channel growth in a burning bed of solids. Chemical Engineering Research and Design, 81(2):221--232.
dc.relation.referencesYang, Y. B., Goh, Y. R., Zakaria, R., Nasserzadeh, V., and Swithenbank, J. (2002). Mathematical modelling of msw incineration on a travelling bed. Waste Management, 22:369--380.
dc.relation.referencesYin, C., Rosendahl, L., Kær, S. K., Clausen, S., Hvid, S. L., and Hille, T. (2008). Mathematical modeling and experimental study of biomass combustion in a thermal 108 mw grate-fired boiler. Energy & Fuels, 22:1380--1390.
dc.relation.referencesZhou, H., Jensen, A. D., Glarborg, P., Jensen, P. A., and Kavaliauskas, A. (2005). Numerical modeling of straw combustion in a fixed bed. Fuel, 84:389--403.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocTecnología del azúcar
dc.subject.agrovocsugar technology
dc.subject.agrovocBagazo
dc.subject.agrovocbagasse
dc.subject.agrovocEdulcorantes
dc.subject.agrovocsweeteners
dc.subject.proposalDinámica computacional de fluidos
dc.subject.proposalModelación matemática
dc.subject.proposalCombustión en lecho fijo
dc.subject.proposalBiomasa
dc.subject.proposalBagazo de caña
dc.subject.proposalComputational fluid dynamics
dc.subject.proposalMathematical modelling
dc.subject.proposalFixed bed combustion
dc.subject.proposalBiomass
dc.subject.proposalSugar cane bagasse
dc.title.translatedModeling of sugarcane bagasse combustion in a non-centrifugal sugar production module
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.fundernameCorporación Colombiana de investigación Agropecuaria (AGROSAVIA)
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.orcidFabian Velasquez [000-0003-1535-3549]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito