Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorValle Arango, Jorge Ignacio del
dc.contributor.authorDavid Flórez, Diego Andrés
dc.date.accessioned2024-05-14T13:44:07Z
dc.date.available2024-05-14T13:44:07Z
dc.date.issued2024
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86070
dc.descriptionilustraciones, mapas
dc.description.abstractGoupia glabra is a very important Neotropical tree. G. glabra is distributed throughout the Amazon, Guianas forests, and Central America from Panama to Guatemala. In Colombia, besides the Amazon, it is also found in the middle Magdalena River valley and its tributaries, and in the Pacific littoral of South America, North Ecuador to the Colombian-Panamian Darien Gap called the Biogeographic Chocó Region (BCHR). G. glabra is a large, dense-wood pioneer tree species. It grows under mean annual rainfalls of 900 to 7400 mm in both seasonally dry and ever-wet climates. In the Amazon forests, G. glabra is a hyper-dominant tree species and a monodominant tree in some Guianas forests. It is the most abundant large species (diameter at breast height > 70 cm) in the Brazilian Amazon. Despite this, no study has been up now published linking annual rings and the climate in G. glabra. Perhaps the difficulties in crossdating this species explain this gap. The existence of small scars from damages to the cambium, apparently caused by insects, makes it difficult crossdating because false, or double rings, are produced. Subtle changes in the direction of the medullary rays allow the detection of true annual rings in this species. Our chronology of tree-rings width consists of 23 disks, 61 series, inter-series correlation 0.434, p < 0.05. It occurs in the BCHR, the rainiest in America, under a mean annual temperature of 25.9 °C and a mean annual rainfall of 7219 mm. February, the least rainy month, receives a mean of 350 mm and exceeds 2.8 times the potential evapotranspiration (127 mm). Our chronology correlated with annual precipitation (r = 0.51, p < 0.01), and during several months of the current year (p < 0.05). This study contradicts both Liebig's law, which would assume chronology would not respond to precipitation, and Shelford's law, which would predict negative responses. It also contradicts tropical dendrochronologists who claim that in non-flooded forests, annual droughts are responsible for annual-rings formation. Our study, under the most extreme precipitations ever attempted, expands the frontier of dendrochronology to ever-wet tropical forests that comprise about 30% of tropical rainforests. (Tomado de la fuente)
dc.description.abstractGoupia glabra es un árbol neotropical de gran importancia. Se distribuye por toda la Amazonía, los bosques de las Guayanas y América Central, desde Panamá hasta Guatemala. En Colombia, además de la Amazonía, también se encuentra en el valle medio del río Magdalena y sus afluentes, así como en el litoral Pacífico de América del Sur, desde el norte de Ecuador hasta el Tapón del Darién colombo-panameño, conocido como la Región Biogeográfica del Chocó (RBCH). G. glabra es una especie de árbol pionera de madera densa y de gran tamaño. Crece en áreas con precipitaciones medias anuales de 900 a 7400 mm, tanto en climas estacionalmente secos como siempre húmedos. En los bosques amazónicos, G. glabra es una especie arbórea hiperdominante y un árbol monodominante en algunos bosques de las Guayanas. Es la especie de gran tamaño más abundante (diámetro a la altura del pecho > 70 cm) en la Amazonía brasileña. A pesar de esto, hasta ahora no se ha publicado ningún estudio que relacione los anillos anuales con el clima en G. glabra. Quizás las dificultades para cofechar esta especie expliquen esta carencia. La existencia de pequeñas cicatrices el cambium dificulta la datación por anillos cruzados, ya que producen anillos falsos o dobles, también esta especie presenta discontinuidad tangencial y es común encontrar anillos en cuña. Cambios sutiles en la dirección de los radios medulares permiten detectar los verdaderos anillos anuales en esta especie. Nuestra cronología del ancho de los anillos de los árboles consta de 23 discos, 61 series, correlación entre series 0.434, p < 0.05. Se encuentra en la RBCH, la región más lluviosa de América, con una temperatura media anual de 25.9 °C y una precipitación media anual de 7219 mm. Febrero, el mes menos lluvioso, recibe una media de 350 mm y supera 2.8 veces la evapotranspiración potencial (127 mm). Nuestra cronología se correlacionó con la precipitación anual (r = 0.51, p < 0.01), y durante varios meses del año actual (p < 0.05). Este estudio contradice tanto la ley de Liebig, que supondría que la cronología no respondería a la precipitación, como la ley de Shelford, que prevería respuestas negativas. También contradice a los dendrocronólogos tropicales que afirman que, en los bosques no inundados, las sequías anuales son responsables de la formación de anillos anuales. Nuestro estudio, bajo las precipitaciones más extremas jamás intentadas, amplía la frontera de la dendrocronología a los bosques tropicales siempre húmedos que comprenden aproximadamente el 30% de los bosques tropicales lluviosos.
dc.format.extent61 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc550 - Ciencias de la tierra
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
dc.subject.ddc580 - Plantas::582 - Plantas destacadas por características vegetativas y flores
dc.titleAnnual tree rings in Goupia glabra from a hyper-humid tropical forest; Colombia
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambiental
dc.contributor.researchgroupBosques y Cambio Climático
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Bosques y Conservación Ambiental
dc.description.researchareaDendrocronología
dc.description.researchareaDendroecología
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedLaReferencia
dc.relation.referencesAbràmoff, M.D., Magalhães, P.J., Ram, S.J., 2004. Image processing with ImageJ. Biophotonics Int. 11, 36–43.
dc.relation.referencesAndreu-Hayles, L., Santos, G., Herrera, D., Martín-Fernández, J., Ruiz-Carrascal, D., Boza-Espinoza, T., Fuentes, A., Jorgensen, P., 2015. Matching dendrochronological dates with the Southern Hemisphere 14C bomb curve to confirm annual tree rings in Pseudomedia rigida from Bolivia. Radiocarbon 57, 1–13. doi:10.2458/azu
dc.relation.referencesBalima, L.H., Gebrekirstos, A., Kouamé, F.N.G., Nacoulma, B.M.I., Thiombiano, A., Bräuning, A., 2020. Life-span growth dynamics and xylem anatomical patterns of diffuse-porous Afzelia africana Sm. (Fabaceae) in different ecological zones in Burkina Faso. Dendrochronologia 64. doi:10.1016/j.dendro.2020.125752
dc.relation.referencesBorchert, R., Rivera, G., 2001. Photoperiodic control of seasonal development and dormancy in tropical stem-succulent trees. Tree Physiol. 21, 213–221. doi:10.1093/treephys/21.4.213
dc.relation.referencesBreitsprecher, A., Bethel, J., 1990. Stem-growth periodicity of trees in a tropical wet forest of Costa Rica. Ecology 71, 1156–1164.
dc.relation.referencesBrienen, R., Schöngart, J., Zuidema, P., 2016. Tree rings in the tropics: Insights into the ecology and climate sensitivity of tropical trees, in: Goldstein, G., Santiago, S.L. (Eds.), Tropical Tree Physiology. Springer, Switzerland, pp. 441–461. doi:10.1007/978-3-319-27422-5
dc.relation.referencesBunn, A.G., 2010. Statistical and visual crossdating in R using the dplR library. Dendrochronologia 28, 251–258. doi:10.1016/j.dendro.2009.12.001
dc.relation.referencesBunn, A.G., 2008. A dendrochronology program library in R (dplR). Dendrochronologia 26, 115–124. doi:10.1016/j.dendro.2008.01.002
dc.relation.referencesCallado, C., da Silva Neto, S., Scarano, F., Costa, C., 2001. Periodicity of growth rings in some flood-prone trees of the Atlantic Rain Forest in Rio de Janeiro, Brazil. Trees 15, 492–497. doi:10.1007/s00468-001-0128-4
dc.relation.referencesCallado, C.H., Roig, F.A., Tomazello-Filho, M., Barros, C.F., 2013. Cambial growth periodicity studies of South American woody species -a review. IAWA J. 34, 213–230. doi:10.1163/22941932-00000019
dc.relation.referencesCannon, P.,1985. Comparative analysis of the soils in the Bajo Calima concession in the primary forest and after clearcutting. In: Ladrach, W.E., (Ed.), Forestry Research in the Bajo Calima Concession. Ninth Annual Report, Carton de Colombia, S.A., Cali, Colombia, pp. 95-98.
dc.relation.referencesCintra, B.B.L., Schietti, J., Emillio, T., Martins, D., Moulatlet, G., Souza, P., Levis, C., Quesada, C.A., Schöngart, J., 2013. Soil physical restrictions and hydrology regulate stand age and wood biomass turnover rates of Purus-Madeira interfluvial wetlands in Amazonia. Biogeosciences 10, 7759–7774. doi:10.5194/bg-10-7759-2013
dc.relation.referencesClark, D.A., Clark, D.B., 1994. Climate-induced annual variation in canopy tree growth in a Costa Rican Tropical Rain Forest. J. Ecol. 82, 865–872.
dc.relation.referencesdel Valle, J.I., Guarín, J.R., Sierra, C.A., 2014. Unambiguous and low-cost determination of growth rates and ages of tropical trees and palms. Radiocarbon 56, 39–52. doi:10.2458/56.16486
dc.relation.referencesDétienne, P., 1989. Appearance and periodicity of growth rings in some tropical woods. IAWA J. 10, 123–132. doi:10.1163/22941932-90000480
dc.relation.referencesDetienne, P., Barbier, C., 1988. Rythmes de croissance de quelques essences de Guyane Francaise. Bois forêts des Trop. 217, 63–76.
dc.relation.referencesdos Santos, M., de Assis Ribeiro dos Santos, F., Callado, C.H., Barros, C.F., da Silva, L.B., 2017. Growth rings in woody species of Ombrophilous Dense Forest: occurrence, anatomical features and ecological considerations. Brazilian J. Bot. 40, 281–290. doi:10.1007/s40415-016-0313-8
dc.relation.referencesDuarte, P.J., Borges, C.C., Ferreira, C.A., Cruz, T.M., de Souza, W.R.Q., Mori, F.A., 2021. Anatomical identification of tropical woods traded in Lavras, Brazil. J. Trop. For. Sci. 33, 95–103. doi:10.26525/jtfs2020.32.4.95
dc.relation.referencesFaber-Langendoen, D., 1992. Ecological constraints on rain forest management at Bajo Calima, western Colombia. For. Ecol. Manage. 53, 213–244. doi:10.1016/0378-1127(92)90044-A
dc.relation.referencesFaber-Langendoen, D., Gentry, A.H., 1991. The structure and diversity of rain forests at Bajo Calima, Choco Region, Western Colombia. Biotropica 23, 2. doi:10.2307/2388682
dc.relation.referencesFahn, A., 1995. Seasonal cambial activity and phytogeographic origin of woody plants: a hypothesis. Isr. J. Plant Sci. 43, 69–75. doi:10.1080/07929978.1995.10676592
dc.relation.referencesFick, S.E., Hijmans, R.J., 2017. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315. doi:10.1002/joc.5086
dc.relation.referencesFonti, P., Von Arx, G., García-González, I., Eilmann, B., Sass-Klaassen, U., Gärtner, H., Eckstein, D., 2010. Studying global change through investigation of the plastic responses of xylem anatomy in tree rings. New Phytol. 185, 42–53. doi:10.1111/j.1469-8137.2009.03030.x
dc.relation.referencesForero, Luz Amalia, 2014. Dinámica del bosque húmedo tropical en un periodo de 30 años de intervenciones y sus efectos en algunas variables edafológicas. Bajo Calima, Buenaventura, Colombia. Disertación, Universidad Nacional de Colombia, Bogotá
dc.relation.referencesFrisk, T., 1978. Utilización de las maderas tropicales mixtas para papel. Organ. las Nac. Unidas para la Agric. y la Aliment. Vol. 30, N, pp. 63–64.
dc.relation.referencesGalviz, Y.C.F., Ribeiro, R. V., Souza, G.M., 2020. Yes, plants do have memory. Theor. Exp. Plant Physiol. 32, 195–202. doi:10.1007/s40626-020-00181-y
dc.relation.referencesGBIF, 2022. Infraestructura Mundial de Información en Biodiversidad. https://www.gbif.org/es/occurrence/search [WWW Document].
dc.relation.referencesGentry, A.H., 1982. Patterns of neotropical plant species diversity. Evol. Biol., 15, 1-84.
dc.relation.referencesGiraldo, Jorge Andrés, 2022. Annual tree rings in the rainiest forests of the americas. Dissertation, Universidad Nacional de Colombia, Medellín.
dc.relation.referencesGiraldo, J.A., del Valle, J.I., González-Caro, S., Sierra, C.A., 2022. Intra-annual isotope variations in tree rings reveal growth rhythms within the least rainy season of an ever-wet tropical forest. Trees - Struct. Funct. doi:10.1007/s00468-022-02271-7
dc.relation.referencesGiraldo, J.A.,Valle, J.I., Sierra, C.A., Melo, O., 2020. Dendrochronological potential of trees from America’s rainiest region. In: Pompa-García M., Camarero J.J. (Eds.), Latin American Dendroecology. Combining Tree-Ring Sciences and Ecology in a Megadiverse Territory. Springer, Cham, pp. 79–119. doi:10.1007/978-3-030-36930-9_6
dc.relation.referencesGómez, Alejando., 2019. Delimitación de anillos de crecimiento en la especie Goupia glabra mediante técnicas de visión por computador. Disertación, Universidad Nacional de Colombia, Medellín..
dc.relation.referencesGreen, J.K., Berry, J., Ciais, P., Zhang, Y., Gentine, P., 2020. Amazon rainforest photosynthesis increases in response to atmospheric dryness. Sci. Adv. 6, 1–10. doi:DOI: 10.1126/sciadv.abb7232
dc.relation.referencesHammond, D.S., 2005. Tropical Forests of the Guiana Shield: Ancient Forests in a Modern World. CABI publishing, Oxfordshire UK, p. 528.
dc.relation.referencesHerrera, D.A., del Valle, J.I., 2011. Reconstrucción de los niveles del río Atrato con los anillos de Priora copaifera. Dyna 78, 121–130.
dc.relation.referencesHua, Q., Turnbull, J.C., Santos, G.M., Rakowski, A.Z., Ancapichún, S., De Pol-Holz, R., Hammer, S., Lehman, S.J., Levin, I., Miller, J.B., Palmer, J.G., Turney, C.S.M., 2021. Atmospheric radiocarbon for the period 1950-2019. Radiocarbon 64, 723–745. doi:10.1017/RDC.2021.95
dc.relation.referencesIslam, M., Rahman, M., Bräuning, A., 2019. Impact of extreme drought on tree-ring width and vessel anatomical features of Chukrasia tabularis. Dendrochronologia 53, 63–72. doi:10.1016/j.dendro.2018.11.007
dc.relation.referencesIslam, M., Rahman, M., Bräuning, A., 2018. Long-term hydraulic adjustment of three tropical moist forest tree species to changing climate. Front. Plant Sci. 871, 1–16. doi:10.3389/fpls.2018.01761
dc.relation.referencesITTO, 2017. Cupiúba, Kabukalli (Goupia glabra),International Tropical Timbers Organization, p. 7.
dc.relation.referencesKassambara, A., 2022. Package : ggpubr. “ggplot2’’ Based Publication Ready Plots.”
dc.relation.referencesKato, S., Loeb, N.G., Rose, F.G., Doelling, D.R., Rutan, D.A., Caldwell, T.E., Yu, L., Weller, R.A., 2013. Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J. Clim. 26, 2719–2740. doi:10.1175/JCLI-D-12-00436.1
dc.relation.referencesKöhl, M., Neupane, P.R., Lotfiomran, N., 2017. The impact of tree age on biomass growth and carbon accumulation capacity: A retrospective analysis using tree ring data of three tropical tree species grown in natural forests of Suriname. PLoS One 12, 1–17. doi:10.1371/journal.pone.0181187
dc.relation.referencesLacoste, J.F., Alexandre, D.Y., 1991. Le goupi (Goupia glabra Aubl), essence forestiere d’avenir en Guyane: analyse bibliographique. Ann. des Sci. For. 48, 429–441.
dc.relation.referencesLadrach. W.E., 1985. History and management of the Bajo Calima Concession. In: Ladrach, W.E. (Ed.), Forest Research in the Bajo Calima Concession. Ninth Annual Report, Carton de Colombia, S.A., Cali, Colombia, pp. 3-4.
dc.relation.referencesLadrach, W., Wright, J., 1995. Natural regeneration in a secondary Colombian rain forest. J. Sustain. For. 3, 15–38. doi:10.1300/j091v03n01_02
dc.relation.referencesLaurance, W.F., Nascimento, H.E.M., Laurance, S.G., Condit, R., D’Angelo, S., Andrade, A., 2004. Inferred longevity of Amazonian rainforest trees based on a long-term demographic study. For. Ecol. Manage. 190, 131–143. doi:10.1016/j.foreco.2003.09.011
dc.relation.referencesLópez, J., Del Valle, J.I., Giraldo, J.A., 2014. Flood-promoted vessel formation in Prioria copaifera trees in the Darien Gap, Colombia. Tree Physiol. 34, 1079–1089. doi:10.1093/treephys/tpu077
dc.relation.referencesLotfiomran, N., Köhl, M., 2017. Retrospective analysis of growth: A contribution to sustainable forest management in the tropics. IAWA J. 38, 297–312. doi:10.1163/22941932-20170173
dc.relation.referencesLozano, L.A., González, J., 2011. Bajo Calima: riqueza biológica y cultural afectada por la extracción de maderas tropicales. Lebret 3, 205–220. doi:10.15332/rl.v0i3.52
dc.relation.referencesMesa, O.J., Rojo, J.D., 2020. On the general circulation of the atmosphere around Colombia. Rev. Acad. Colomb. Cienc. Exact. Fís. Nat. 44, 857–875. doi:10.18257/raccefyn.899
dc.relation.referencesMiller, R.B., Détienne, P., 2001. Major Timber Trees of Guyana. Wood Anatomy. Tropenbos, The Netherlands,Wageningen, p. 218.
dc.relation.referencesMoreno, M.M., del Valle, J.I., 2015. Influence of local climate and ENSO on the growth of Abarco (Cariniana pyriformis) in Chocó, Colombia. Trees 29, 97–107. doi:10.1007/s00468-014-1094-y
dc.relation.referencesMyers, N., Mittermeler, R.A., Mittermeler, C.G., Da Fonseca, G.A.B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403, 853–858. doi:10.1038/35002501
dc.relation.referencesNahuz et al., A., 2013. Catálogo de Madeiras Brasileiras para a Construção Civil. Instituto de Pesquisas Tecnológicas do Estado de São Paulo, São Paulo, Brasil, p. 103.
dc.relation.referencesNogueira, E.M., Fearnside, P.M., Nelson, B.W., França, M.B., 2007. Wood density in forests of Brazil’s “arc of deforestation”: Implications for biomass and flux of carbon from land-use change in Amazonia. For. Ecol. Manage. 248, 119–135. doi:10.1016/j.foreco.2007.04.047
dc.relation.referencesO´Brien, J.J., Oberbauer, S.F., Clark, D.B., Clark, D.A., 2008. Phenology and stem diameter increment seasonality in a Costa Rican wet tropical forest. Biotropica 40, 151–159. doi:10.1111/j.1744-7429.2007.00354.x
dc.relation.referencesLopez de Oliveira, Christiane, 2010. Estimativas da dinâmica de carbono na biomassa lenhosa de terra firme na reserva de desenvolvimento sustentável Amanã por métodos dendrocronológicos. Dissertação, Instituto Nacional de Pesquisas da Amazônia - INPA, Manaus, Brasil. http://www.bibliotecaflorestal.ufv.br/handle/123456789/8465
dc.relation.referencesOliveira, Mariana Ferrz de, 2014. Critérios para o manejo sustentável de duas espécies madeireiras das florestas tropicais do Mato Grosso. Dissertação, Universidade Federal do Paraná,Curitiba, Brasil.
dc.relation.referencesPacheco, A., 2020. Assessing forest degradation in Bajo Calima – Colombia from multi-frequency and multittemporal synthetic aperture radar ( SAR ). Dissertation, University of Leicester, UK.
dc.relation.referencesPérez, O.A., Lucas, E., Jaramillo, C., Monro, A., Morris, S.K., Bogarín, D., Greer, D., Dodsworth, S., Aguilar-Cano, J., Sanchez Meseguer, A., Antonelli, A., 2019. The origin and diversification of the hyperdiverse flora in the Chocó Biogeographic Region. Front. Plant Sci. 10, 1–9. doi:10.3389/fpls.2019.01328
dc.relation.referencesPons, T.L., Helle, G., 2011. Identification of anatomically non-distinct annual rings in tropical trees using stable isotopes. Trees 25, 83–93. doi:10.1007/s00468-010-0527-5
dc.relation.referencesPoveda, G., Mesa, O., 2000. On the existence of Lloró (the rainiest locality on earth): enhanced ocean-land-atmosphere interaction by a low-level jet. Geophys. Res. Lett. 27, 1675–1678. doi:10.1029/1999GL006091
dc.relation.referencesR Development Core Team, 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
dc.relation.referencesRamírez, del Valle, 2011. Paleoclima de La Guajira, Colombia; según los anillos de crecimiento de Capparis odoratissima (Capparidaceae). Rev. Biol. Trop. 59, 1389–1405. doi:10.15517/rbt.v0i0.3406
dc.relation.referencesRamírez, J.A., del Valle, J.I., 2012. Local and global climate signals from tree rings of Parkinsonia praecox in La Guajira, Colombia. Int. J. Climatol. 32, 1077–1088. doi:10.1002/joc.2335
dc.relation.referencesReimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Bronk Ramsey, C., Butzin, M., Cheng, H., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kromer, B., Manning, S.W., Muscheler, R., Palmer, J.G., Pearson, C., Van Der Plicht, J., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Turney, C.S.M., Wacker, L., Adolphi, F., Büntgen, U., Capano, M., Fahrni, S.M., Fogtmann-Schulz, A., Friedrich, R., Köhler, P., Kudsk, S., Miyake, F., Olsen, J., Reinig, F., Sakamoto, M., Sookdeo, A., Talamo, S., 2020. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kBP). Radiocarbon 62, 725–757. doi:10.1017/RDC.2020.41
dc.relation.referencesRestrepo-Coupe, N., da Rocha, H.R., Hutyra, L.R., da Araujo, A.C., Borma, L.S., Christoffersen, B., Cabral, O.M.R., de Camargo, P.B., Cardoso, F.L., da Costa, A.C.L., Fitzjarrald, D.R., Goulden, M.L., Kruijt, B., Maia, J.M.F., Malhi, Y.S., Manzi, A.O., Miller, S.D., Nobre, A.D., von Randow, C., Sá, L.D.A., Sakai, R.K., Tota, J., Wofsy, S.C., Zanchi, F.B., Saleska, S.R., 2013. What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. Agric. For. Meteorol. 182–183, 128–144. doi:10.1016/j.agrformet.2013.04.031
dc.relation.referencesSantini Junior Luiz, 2013. Descrição macroscópica e microscópica da madeira aplicada na identificação das principais espécies comercializadas no Estado de São Paulo - Programas “São Paulo Amigo da Amazônia” e “Cadmadeira.” Dissertação, Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queieroz, Piracicaba, Brasil.
dc.relation.referencesSchöngart, J., Bräuning, A., Barbosa, A.C.M.C., Lisi, C.S., de Oliveira, J.M., 2017. Dendroecological studies in the Neotropics: History, status and future challenges. In: Amoroso, M., Daniels, L., Baker, P., Camarero, J. (Eds.), Dendroecology. Dendroecological Studies in the Neotropics: History, Status and Future Challenges. Springer, Cham, pp. 35–73. doi:10.1007/978-3-319-61669-8_3Shelford, E., 1931. Some concepts of bioecology. Ecology. 12, 455–467.
dc.relation.referencesAguilar, S., Barajas, J., 2017. Anatomía de la madera de especies arbóteas de un bosque mesófilo de montaña: un enfoque ecológico-evolutivo. Bol. Soc. Sci. Méx. 77, 51–58. doi:10.17129/botsci.1712
dc.relation.referencesSpeer, J.H., 2010. Fundamentals of Tree-Ring Research. The University of Arizona Press, Tucson. .doi:10.1080/00330124.2010.536466
dc.relation.referencesSteinhof, A., Altenburg, M., Machts, H., 2017. Sample preparation at the Jena 14C Laboratory. Radiocarbon 59, 815–830. doi:10.1017/RDC.2017.50
dc.relation.referencesTally, 2006. SilverFast: The Official Guide. John Wiley.
dc.relation.referencesTanaka Akira, 2005. Avaliação de anéis de crescimento de espécies florestais de terra-firme no município de Novo Aripuanã. Dissertação, Universidade Federal do Amazonas-UFAM-, ;Manaus, Brasil.
dc.relation.referencester Steege, H., Pitman, N.C.A., Sabatier, D., Baraloto, C., Salomão, R.P., Guevara, J.E., Phillips, O.L., Castilho, C. V., Magnusson, W.E., Molino, J.-F., Monteagudo, A., Núñez Vargas, P., Montero, J.C., Feldpausch, T.R., Coronado, E.N.H., Killeen, T.J., Mostacedo, B., Vasquez, R., Assis, R.L., Terborgh, J., Wittmann, F., Andrade, A., Laurance, W.F., Laurance, S.G.W., Marimon, B.S., Marimon, B.-H., Guimarães Vieira, I.C., Amaral, I.L., Brienen, R., Castellanos, H., Cárdenas López, D., Duivenvoorden, J.F., Mogollón, H.F., Matos, F.D. de A., Dávila, N., García-Villacorta, R., Stevenson Diaz, P.R., Costa, F., Emilio, T., Levis, C., Schietti, J., Souza, P., Alonso, A., Dallmeier, F., Montoya, A.J.D., Fernandez Piedade, M.T., Araujo-Murakami, A., Arroyo, L., Gribel, R., Fine, P.V.A., Peres, C.A., Toledo, M., Aymard C., G.A., Baker, T.R., Cerón, C., Engel, J., Henkel, T.W., Maas, P., Petronelli, P., Stropp, J., Zartman, C.E., Daly, D., Neill, D., Silveira, M., Paredes, M.R., Chave, J., Lima Filho, D. de A., Jørgensen, P.M., Fuentes, A., Schöngart, J., Cornejo Valverde, F., Di Fiore, A., Jimenez, E.M., Peñuela Mora, M.C., Phillips, J.F., Rivas, G., van Andel, T.R., von Hildebrand, P., Hoffman, B., Zent, E.L., Malhi, Y., Prieto, A., Rudas, A., Ruschell, A.R., Silva, N., Vos, V., Zent, S., Oliveira, A.A., Schutz, A.C., Gonzales, T., Trindade Nascimento, M., Ramirez-Angulo, H., Sierra, R., Tirado, M., Umaña Medina, M.N., van der Heijden, G., Vela, C.I.A., Vilanova Torre, E., Vriesendorp, C., Wang, O., Young, K.R., Baider, C., Balslev, H., Ferreira, C., Mesones, I., Torres-Lezama, A., Urrego Giraldo, L.E., Zagt, R., Alexiades, M.N., Hernandez, L., Huamantupa-Chuquimaco, I., Milliken, W., Palacios Cuenca, W., Pauletto, D., Valderrama Sandoval, E., Valenzuela Gamarra, L., Dexter, K.G., Feeley, K., Lopez-Gonzalez, G., Silman, M.R., 2013. Hyperdominance in the Amazonian tree flora. Science 342, 1243092. doi:10.1126/science.1243092
dc.relation.referencesThornthwaite, C.W., 1948. An approach toward a rational classification of climate. Geogr. Rev. 38, 55. doi:10.2307/210739
dc.relation.referencesTrevizor, T.T., 2011. Anatomia comparada do lenho de 64 espécies arbóreas de ocorrência natural na floresta tropical Amazônica no estado do Pará. dissertação, Escola Superior de Agricultura “Luiz de Queiroz.”
dc.relation.referencesUnderwood, E.C., Olson, D., Hollander, A.D., Quinn, J.F., 2014. Ever-wet tropical forests as biodiversity refuges. Nat. Clim. Chang. 4, 740–741. doi:10.1038/nclimate2351
dc.relation.referencesVásquez, A., Ramírez, A., 2005. Maderas comerciales en el valle de Aburrá. Área Metropolitana del Valle de Aburrá, Medellín.
dc.relation.referencesVetter, R., Botosso, P., 1989. Remarks on age and growth rate determination of Amazonian trees. IAWA Bull. n.s.,10 (2), 133–145..
dc.relation.referencesYan, Y., 2005. Inter tropical convergence zone (ITCZ), in: Oliver, J.E. (Ed.), Encyclopedia of World Climatology. Springer, Dordrecht, pp. 429–432.
dc.relation.referencesZang, C., Biondi, F., 2015. Treeclim: An R package for the numerical calibration of proxy-climate relationships. Ecography (Cop.). 38, 431–436. doi:10.1111/ecog.01335
dc.relation.referencesFilho, E., Alfaro-Sánchez, R., Aragão, J.R.V., Assis-Pereira, G., Bai, X., Barbosa, A.C., Battipaglia, G., Beeckman, H., Botosso, P.C., Bradley, T., Bräuning, A., Brienen, R., Buckley, B.M., Camarero, J.J., Carvalho, A., Ceccantini, G., Centeno-Erguera, L.R., Cerano-Paredes, J., Chávez-Durán, Á.A., Cintra, B.B.L., Cleaveland, M.K., Couralet, C., D’Arrigo, R., del Valle, J.I., Dünisch, O., Enquist, B.J., Esemann-Quadros, K., Eshetu, Z., Fan, Z.X., Ferrero, M.E., Fichtler, E., Fontana, C., Francisco, K.S., Gebrekirstos, A., Gloor, E., Granato-Souza, D., Haneca, K., Harley, G.L., Heinrich, I., Helle, G., Inga, J.G., Islam, M., Jiang, Y. mei, Kaib, M., Khamisi, Z.H., Koprowski, M., Kruijt, B., Layme, E., Leemans, R., Leffler, A.J., Lisi, C.S., Loader, N.J., Locosselli, G.M., Lopez, L., López-Hernández, M.I., Lousada, J.L.P.C., Mendivelso, H.A., Mokria, M., Montóia, V.R., Moors, E., Nabais, C., Ngoma, J., Nogueira Júnior, F. de C., Oliveira, J.M., Olmedo, G.M., Pagotto, M.A., Panthi, S., Pérez-De-Lis, G., Pucha-Cofrep, D., Pumijumnong, N., Rahman, M., Ramirez, J.A., Requena-Rojas, E.J., Ribeiro, A. de S., Robertson, I., Roig, F.A., Rubio-Camacho, E.A., Sass-Klaassen, U., Schöngart, J., Sheppard, P.R., Slotta, F., Speer, J.H., Therrell, M.D., Toirambe, B., Tomazello-Filho, M., Torbenson, M.C.A., Touchan, R., Venegas-González, A., Villalba, R., Villanueva-Diaz, J., Vinya, R., Vlam, M., Wils, T., Zhou, Z.K., 2022. Tropical tree growth driven by dry-season climate variability. Nat. Geosci. 15, 269–276. doi:10.1038/s41561-022-00911-8
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocBosques tropicales húmedos - Colombia
dc.subject.agrovocDendroecología
dc.subject.agrovocBiogeografía - Chocó, Colombia
dc.subject.lembBosques tropicales - Colombia
dc.subject.lembSelva lluviosa - Colombia
dc.subject.lembArboles - Anillos de crecimiento
dc.subject.proposalDendroecology
dc.subject.proposalEver-wet tropical forest
dc.subject.proposalBiogeographic Chocó Region
dc.subject.proposalENSO
dc.subject.proposalDendroecología
dc.subject.proposalBosques siempre húmedos tropicales
dc.subject.proposalChocó Biogeográfico
dc.title.translatedAnillos de crecimiento anuales de Goupia glabra en el bosque tropical hiperhúmedo de Colombia
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleProyecto 1118-714-51372 y por el proyecto 4083 de la Universidad Nacional de Colombia.
oaire.fundernameColciencias y Universidad Nacional de Colombia
dcterms.audience.professionaldevelopmentInvestigadores
dc.description.curricularareaBosques Y Conservación Ambiental.Sede Medellín
dc.contributor.orcidDavid Flórez, Diego Andrés [0009-0002-7636-3695]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito