Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorVargas Jiménez, Carlos Alberto
dc.contributor.authorCastelblanco Ossa, Carlos Arturo
dc.date.accessioned2024-05-14T19:52:42Z
dc.date.available2024-05-14T19:52:42Z
dc.date.issued2024-04-08
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86082
dc.descriptionilustraciones, diagramas, mapas
dc.description.abstractEl Valle Medio del Magdalena (VMM) es una cuenca sedimentaria, con un complejo contexto tectónico e historia geológica, que ha producido una intensa deformación y fracturamiento. Se presentan diversas fallas en la región que podrían presentar actividad actual promovida por fluidos que pueden migrar a través del subsuelo, desde fuentes naturales y antrópicas. La atenuación sísmica en la región podría mostrar anomalías por heterogeneidades y fluidos en el subsuelo en interacción con las fallas. Se realizaron cálculos de atenuación sísmica intrínseca, dispersiva y total, con 1653 eventos sísmicos entre 2016 y 2022 para un área seleccionada. Se evidencia un dominio de la atenuación sísmica intrínseca sobre la dispersiva. La distribución de los valores es presentada en mapas para diferentes años. Adicionalmente, se realizó un modelamiento en el perfil geológico de la línea sísmica Trasandina ANH-TR-2006-4A, para integrarse con los resultados de atenuación sísmica. Los patrones de atenuación sísmica encontrados fueron interpretados y relacionados con datos de fuentes de fluidos como inyecciones de agua para recobro mejorado, precipitaciones y caudales de ríos, para identificar una posible migración de fluidos y lubricación de fallas. La Serranía de San Lucas evidencia una atenuación sísmica intrínseca que sugiere una fuerte infiltración de fluidos con el control de la Falla de Cimitarra. Se propone que la atenuación sísmica observada tiene su mayor relación con la precipitación, que se evidencia con un retraso de tiempo con respecto a ella. (Texto tomado de la fuente).
dc.description.abstractThe Middle Magdalena Valley (MMV) is a sedimentary basin with a complex tectonic context and geological history, that has produced intense deformation and fracturing. Various faults are present in the region, which could be currently active due to fluids that can migrate in the subsurface, from natural and anthropogenic sources. The seismic attenuation of earthquakes in the region could show anomalies due to subsurface heterogeneities and fluids interacting with faults. Calculations of intrinsic, scattering, and total seismic attenuation were made using 1653 seismic events between 2016 and 2022 for a selected area. The results show a domain of intrinsic over scattering seismic attenuation. The distribution of these values is presented in maps for the different years. Additionally, a geological profile modeling was carried out for the Trasandean seismic line ANH-TR-2006-4A, to be integrated with the seismic attenuation results. The seismic attenuation patterns were interpreted and correlated with data from fluid sources such as water injection for enhanced oil recovery, precipitation, and river flows, to identify possible fluid migration and fault lubrication. The Serranía de San Lucas exhibits intrinsic seismic attenuation suggesting a strong infiltration of fluids associated with the Cimitarra Fault control. It is proposed that the observed seismic attenuation has its strongest relationship with precipitation, evidenced with a time delay relative to it.
dc.format.extentxviii, 135 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
dc.subject.ddc550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
dc.titleIdentificación mediante atenuación sísmica de zonas de lubricación de fallas geológicas asociadas a la migración de fluidos: caso ejemplo Valle Medio del Magdalena
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Geofísica
dc.coverage.countryColombia
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/1000050
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Geofísica
dc.description.researchareaSismología
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAgencia Nacional de Hidrocarburos (ANH). (2018). Datos de campos petroleros.
dc.relation.referencesAki, K. (1969). Analysis of the Seismic Coda of Local Earthquakes as Scattered Waves. Journal of Geophysical Research, 74(2), 615–631.
dc.relation.referencesAki, K., & Chouet, B. (1975). Origin of coda waves: Source, attenuation, and scattering effects. Journal of Geophysical Research, 80(23), 3322–3342. https://doi.org/10.1029/JB080i023p03322
dc.relation.referencesAngel-Martínez, C. E., Prieto-Grómez, G. A., Cristancho-Mejía, F., Sarmiento-Orjuela, A. M., Vargas-Quintero, J. A., Delgado-mateus, C. J., Toores-Rojas, E., Castelblanco-Ossa, C. A., Camargo-Rache, G. L., Amazo-Gómez, D. F., Cipagauta-Mora, J. B., Lucuara-Reyes, E. D., Ávila-López, K. L., Fracica-González, L. R., Martín-Ravelo, A. S., Atuesta-Ortiz, D. A., García-Romero, D. F., Triviño Cediel, R. J., Jaimes Villareal, V. N., & Alarcón Rodríguez, W. F. (2020). Proyecto MEGIA: Modelo Geológico-Geofísico del Valle Medio del Magdalena. Producto No.5.
dc.relation.referencesANH, & SGC. (2016). Informe final del Convenio interadministrativo 194 ANH-014 SGC, entre la Agencia Nacional de Hidrocarburos y el Servicio Geológico Colombiano.
dc.relation.referencesArias, A., & Vargas, R. (1978). Geología de las Planchas 86 Abrego y 97 Cáchira Escala 1:100000. Boletin Geológico, Vol. 23(2), 3–38.
dc.relation.referencesBarrero, D., Pardo, A., Vargas, C., & Martínez, J. (2007). Colombian Sedimentary Basins (Issue June).
dc.relation.referencesBarton, N. (2007). ROCK QUALITY, SEISMIC VELOCITY, ATTENUATION AND ANISOTROPY. Taylor & Francis Group.
dc.relation.referencesBouchaala, F., Ali, M. Y., Matsushima, J., Bouzidi, Y., Jouini, M. S., Takougang, E. M., & Mohamed, A. A. (2022). Estimation of Seismic Wave Attenuation from 3D Seismic Data: A Case Study of OBC Data Acquired in an Offshore Oilfield. Energies, 15(2), 1–17. https://doi.org/10.3390/en15020534
dc.relation.referencesButler, R. W. H. (2013). Area balancing as a test of models for the deep structure of mountain belts, with specific reference to the Alps. Journal of Structural Geology, 52(1), 2–16. https://doi.org/10.1016/j.jsg.2013.03.009
dc.relation.referencesCañas, H., Pérez, O., Ruíz, D., Herrera, W., Morales, C., & Alvarado, S. (2019). Modelo hidrogeológico conceptual Valle Medio del Magdalena Planchas 108 y 119 Puerto Wilches, Barrancabermeja, Sabana de Torres y San Vicente de Chucurí. 366. https://srvags.sgc.gov.co/PortalWeb/ModeloHidrogeologicoVMM/Documento/PDF/InfoMHCVMMPl108-119.pdf
dc.relation.referencesCarboni, F., Back, S., & Barchi, M. R. (2019). Application of the ADS method to predict a “ idden” basal detac ent: W orneo old-and-thrust belt. Journal of Structural Geology, 118(August 2018), 210–223. https://doi.org/10.1016/j.jsg.2018.10.011
dc.relation.referencesCarcolé, E., & Sato, H. (2010). Spatial distribution of scattering loss and intrinsic absorption of short-period S waves in the lithosphere of Japan on the basis of the Multiple Lapse Time Window Analysis of Hi-net data. Geophysical Journal International, 180(1), 268–290. https://doi.org/10.1111/j.1365-246X.2009.04394.x
dc.relation.referencesChandrasekhar, S. (1960). Radiative transfer. Dover Publications. https://doi.org/LK - https://worldcat.org/title/335528
dc.relation.referencesChiarabba, C., Piccinini, D., & de Gori, P. (2009). Velocity and attenuation tomography of the Umbria Marche 1997 fault system: Evidence of a fluid-governed seismic sequence. Tectonophysics, 476(1–2), 73–84. https://doi.org/10.1016/j.tecto.2009.04.004
dc.relation.referencesCooper, M. A., Addison, R., Álvarez, M., Coral, R., Graham, A. ., Hayward, S., Martínez, J., Naar, J., Peñas, R., Pulham, A. ., & Taborda, A. (1995). Basin development and tectonic history of the Llanos Basin, Eastern Cordillera, and Middle Magdalena Valley, Colombia. American Association of Petroleum Geologists Bulletin, 79(10), 1421–1443.
dc.relation.referencesDainty, A. M. (1981). A scattering model to explain seismic Q observations in the lithosphere between 1 and 30 Hz. Geophysical Research Letters, 8(11), 1126–1128. https://doi.org/10.1029/GL008i011p01126
dc.relation.referencesDel Pezzo, E., Ibañez, J., Prudencio, J., Bianco, F., & Siena, L. De. (2016). Absorption and scattering 2-D volcano images from numerically calculated space-weighting functions. Geophysical Journal International, 206(2), 742–756. https://doi.org/10.1093/gji/ggw171
dc.relation.referencesDiao, Y., & Espinosa-Marzal, R. M. (2018). The role of water in fault lubrication. Nature Communications, 9(1), 2309. https://doi.org/10.1038/s41467-018-04782-9
dc.relation.referencesEgan, S. S., Buddin, T. S., Kane, S., & Williams, G. D. (1997). Three-dimensional modelling and visualisation in structural geology: New techniques for the restoration and balancing of volumes. The 1996 Geoscience Information Group Conference On Geological Visualisation, Electron Geology, January 2016, 67–82.
dc.relation.referencesEllsworth, W. L. (2013). Injection-Induced Earthquakes. Science, 341(6142), 250–260. https://doi.org/10.1126/science.1225942
dc.relation.referencesEpard, J. L., & Groshong, R. H. (1993). Excess area and depth to detachment. In American Association of Petroleum Geologists Bulletin (Vol. 77, Issue 8, pp. 1291–1302). https://doi.org/10.1306/bdff8e66-1718-11d7-8645000102c1865d
dc.relation.referencesErslev, E. A. (1991). Trishear fault-propagation folding. Geology, 19(6), 617–620. https://doi.org/10.1130/0091-7613(1991)019<0617:TFPF>2.3.CO;2
dc.relation.referencesEtayo-Serna, F. (1983). Mapa de terrenos geológicos de Colombia (No. 14) (P. G. Especial (ed.); 14th ed.). Ingeominas.
dc.relation.referencesEulenfeld, T., & Wegler, U. (2016). Measurement of intrinsic and scattering attenuation of shear waves in two sedimentary basins and comparison to crystalline sites in Germany. Geophysical Journal International, 205(2), 744–757. https://doi.org/10.1093/gji/ggw035
dc.relation.referencesEulenfeld, T., & Wegler, U. (2017). Crustal intrinsic and scattering attenuation of high-frequency shear waves in the contiguous United States. Journal of Geophysical Research: Solid Earth, 122(6), 4676–4690. https://doi.org/10.1002/2017JB014038
dc.relation.referencesFehler, M., Hoshiba, M., Sato, H., & Obara, K. (1992). Separation of scattering and intrinsic attenuation for the Kanto‐Tokai region, Japan, using measurements of S‐wave energy versus hypocentral distance. Geophysical Journal International, 108(3), 787–800. https://doi.org/10.1111/j.1365-246X.1992.tb03470.x
dc.relation.referencesFonseca, H. A., Fuquen, J. A., Mesa, L. D. (UPTC), Talero, C. A. (UPTC), Pérez, O. G. (UPTC), Porras, J. J. (UPTC), & Gavidia, O. (UPTC). (2012). Cartografía geológica de la plancha 108 – “puerto wilc es” escala 1:100.000. Ingeominas, 165.
dc.relation.referencesFoulger, G. R., Wilson, M. P., Gluyas, J. G., Julian, B. R., & Davies, R. J. (2018). Global review of human-induced earthquakes. Earth-Science Reviews, 178(January 2017), 438–514. https://doi.org/10.1016/j.earscirev.2017.07.008
dc.relation.referencesGabrielli, S., Akinci, A., Ventura, G., & Napolitano, F. (2022). Fast Changes in Seismic Attenuation of the Upper Crust due to Fracturing and Fluid Migration : The 2016 – 2017 Central Italy Seismic Sequence. 10(June), 1–18. https://doi.org/10.3389/feart.2022.909698
dc.relation.referencesGarcía-Delgado, H., & Velandia, F. (2020). Tectonic geomorphology of the Serranía de San Lucas (Central Cordillera): Regional implications for active tectonics and drainage rearrangement in the Northern Andes. Geomorphology, 349, 106914. https://doi.org/10.1016/j.geomorph.2019.106914
dc.relation.referencesGarcía, D. (2001). Atenuación sísmica. Aplicación a terremotos intraplaca en México Central. Universidad Complutense de Madrid.
dc.relation.referencesGoebel, T. H. W., & Brodsky, E. E. (2018). The spatial footprint of injection wells in a global compilation of induced earthquake sequences. Science, 361(6405), 899–904. https://doi.org/10.1126/science.aat5449
dc.relation.referencesGómez, E., Jordan, T. E., Allmendinger, R. W., Hegarty, K., & Kelley, S. (2005). Syntectonic Cenozoic sedimentation in the northern middle Magdalena Valley Basin of Colombia and implications for exhumation of the Northern Andes. Bulletin of the Geological Society of America, 117(5–6), 547–569. https://doi.org/10.1130/B25454.1
dc.relation.referencesGómez, L. A., Patiño, A., Renzoni, G., Beltrán, A., Quintero, C., & Manrique, M. (2008). Cartografía Geológica y Muestreo Geoquímico escala 1:100.000 de las Planchas 119 Barrancabermeja, 134 Puerto Parra, 149 Puerto Serviez y 150 Cimitarra del Valle Medio del Río Magdalena 11. 95. http://aplicaciones1.sgc.gov.co/sicat/html/ConsultaBasica.aspx
dc.relation.referencesGreaves, R. J., & Fulp, T. J. (1987). Three-dimensional seismic monitoring of an enhanced oil recovery process. Environment International, 12(1–4), V–VI. https://doi.org/10.1016/0160-4120(86)90083-8
dc.relation.referencesGroshong, R. H. (2006). Structural Validation, Restoration, and Prediction. In 3-D Structural Geology (2nd ed.). Springer.
dc.relation.referencesGuerrero, J., Mejía-Molina, A., & Osorno, J. (2020). Biomicrite, Marlstone, and Shale Properties: Exploration of Nonconventional Hydrocarbons in the Cretaceous Colombian Back–Arc Basin. In J. G. Tapias & A. O. Pinilla-Pachón (Eds.), The Geology of Colombia (Vol. 2, pp. 299–333). Publicaciones Geológicas Especiales 36. https://doi.org/10.32685/pub.esp.36.2019.09
dc.relation.referencesGuo, H., & Thurber, C. (2021). Double-difference seismic attenuation tomography method and its application to the Geysers geothermal field, California. Geophysical Journal International, 225(2), 926–949. https://doi.org/10.1093/gji/ggab017
dc.relation.referencesGuzmán, R. (2011). Potential Resources of Unconventional Hydrocarbons in Colombia. In ANH Unconventional Hydrocarbons Workshop (pp. 1–13). Arthur D. Little, Inc.
dc.relation.referencesHarris, J. M., Yin, F., & Quan, Y. (1996). Enhanced oil recovery monitoring using P-wave attenuation. 1996 SEG Annual Meeting, 1882–1885. https://doi.org/10.1190/1.1826508
dc.relation.referencesHartiine, C. S., Walters, M. A., & Wright, M. C. (2015). Three-Dimensional structural model building, induced seismicity analysis, drilling analysis, and reservoir management at the geysers geothermal field, Northern California. Transactions - Geothermal Resources Council, 39(1), 603–614.
dc.relation.referencesHorton, B. K., Parra, M., & Mora, A. (2020). Construction of the Eastern Cordillera of Colombia: Insights from the sedimentary record. In Jorge Gómez & D. Mateus-Zabala (Eds.), Paleogene-Neogene. Servicio Geológico Colombiano, Publica-ciones Geológicas Especiales (Vol. 3, pp. 67–88). https://doi.org/10.32685/pub.esp.37.2019.03
dc.relation.referencesHoshiba, M., Sato, H., & Fehler, M. (1991). Numerical Basis of the Separation of Scattering and lntrinsic Absorption from Full Seismogram Envelope a Monte-Carlo Simulation of Multiple lsotropic Scattering. Apers in Meteorology and Geophysics, 42, 65–91.
dc.relation.referencesHudson, J. A. (1981). Wave speeds and attenuation of elastic waves in material containing cracks. Geophysical Journal of the Royal Astronomical Society, 64(1), 133–150. https://doi.org/10.1111/j.1365-246X.1981.tb02662.x
dc.relation.referencesIngrain. (2012). Cuenca del Valle Medio del Magdalena - Integración Geológica de la Digitalización y Análisis de Núcleos. In ANH.
dc.relation.referencesJimenez, G., López, O., Jaimes, L., & Mier Umaña, R. (2016). Variaciones en el estilo estructural relacionado con anisotropias de basamento en el Valle Medio del Magdalena. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 40(155), 312. https://doi.org/10.18257/raccefyn.293
dc.relation.referencesJohnston, D. H., Toksöz, M. N., & Timur, A. (1979). Attenuation of seismic waves in dry and saturated rocks: II. Mechanisms. GEOPHYSICS, 44(4), 691–711. https://doi.org/10.1190/1.1440970
dc.relation.referencesJulivert, M. (1968). Léxico estratigráfico. Colombia. Union Internationale Des Sciencies Géologiques, V(4 a).
dc.relation.referencesKammer, A., Piraquive, A., Gómez, C., Mora, A., & Velásquez, A. (2020). Structural Styles of the Eastern Cordillera of Colombia. In J. Gómez & D. Mateus-Zabala (Eds.), Geology of Colombia (Vol. 3, pp. 143–183). Servicio Geológico Colombiano. https://doi.org/10.32685/pub.esp.37.2019.06
dc.relation.referencesKane, S. J., Williams, G. D., Buddin, T. S., Egan, S. S., & Hodgetts, D. (1997). Flexural-slip based restoration in 3D, a new approach. 1997 AAPG Annual Convention Official Program A, 58.
dc.relation.referencesKennedy, B. M., Kharaka, Y. K., Evans, W. C., Ellwood, A., DePaolo, D. J., Thordsen, J., Ambats, G., & Mariner, R. H. (1997). Mantle fluids in the San Andreas fault system, California. Science, 278(5341), 1278–1281. https://doi.org/10.1126/science.278.5341.1278
dc.relation.referencesKeranen, K. M., Weingarten, M., Abers, G. A., Bekins, B. A., & Ge, S. (2014). Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection. Science, 345(6195), 448–451. https://doi.org/10.1126/science.1255802
dc.relation.referencesKnopoff, L. (1964). Q. Reviews of Geophysics, 2(4).
dc.relation.referencesKomatsu, M., Takenaka, H., & Oda, H. (2017). Three-dimensional P- and S-wave attenuation structures around the source region of the 2016 Kumamoto earthquakes 4. Seismology. Earth, Planets and Space, 69(1), 1–9. https://doi.org/10.1186/s40623-017-0683-6
dc.relation.referencesLeptokaropoulos, K., Rychert, C. A., Harmon, N., Schlaphorst, D., Grevemeyer, I., Kendall, J. M., & Singh, S. C. (2023). Broad fault zones enable deep fluid transport and limit earthquake magnitudes. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-41403-6
dc.relation.referencesLiu, X., Zhao, D., & Li, S. (2014). Seismic attenuation tomography of the Northeast Japan arc: Insight into the 2011 Tohoku earthquake ( M w 9.0) and subduction dynamics. Journal of Geophysical Research: Solid Earth, 119(2), 1094–1118. https://doi.org/10.1002/2013JB010591
dc.relation.referencesLondoño, J. M., Quintero, S., Vallejo, K., Muñoz, F., & Romero, J. (2019). Seismicity of Valle Medio del Magdalena basin, Colombia. Journal of South American Earth Sciences, 92(July 2018), 565–585. https://doi.org/10.1016/j.jsames.2019.04.003
dc.relation.referencesLondoño, J. M., Velásquez, L. V., & Bermudez, J. C. (2022). Seismic Wave Attenuation at Valle Medio Del Magdalena, Colombia. SSRN Electronic Journal, February. https://doi.org/10.2139/ssrn.4066289
dc.relation.referencesLopez-Mir, B. (2019). Cross-Section Construction and Balancing: Examples From the Spanish Pyrenees. In Problems and Solutions in Structural Geology and Tectonics (1st ed., Vol. 5, Issue 1). Elsevier Inc. https://doi.org/10.1016/b978-0-12-814048-2.00001-6
dc.relation.referencesMantilla, L., Bernal, L., Clavijo, J., Pinto, J., Páez, L., Pérez, A., Quintero, I., Garcia, M., Correa, K., Serrano, J., Gaviria, J., Niz, L., Navas, G., Silva, A., Osorio, J., & Etayo, F. (2006a). Memoria Explicativa de la Cartografía Geológica de la Plancha 85 Simití, Sur de los Departamentos de Bolívar y Cesar.
dc.relation.referencesMantilla, L., Bernal, L., Clavijo, J., Pinto, J., Páez, L., Pérez, A., Quintero, I., Garcia, M., Correa, K., Serrano, J., Gaviria, J., Niz, L., Navas, G., Silva, A., Osorio, J., & Etayo, F. (2006b). MEMORIA EXPLICATIVA Plancha 96 BOCAS DEL ROSARIO, Sur de los Departamentos de Bolívar y Cesar y Noroeste del Departamento de Santander Bogotá,.
dc.relation.referencesMarshak, S., & Mitra, G. (1988). Basic Methods of Structural Geology (1st ed., Issue 1). Prentice Hall.
dc.relation.referencesMavko, G. M., & Nur, A. (1979). Wave attenuation in partially saturated rocks. GEOPHYSICS, 44(2), 161–178. https://doi.org/10.1190/1.1440958
dc.relation.referencesMcCaig, A. M. (1988). Deep fluid circulation in fault zones. Geology, 16(10), 867–870. https://doi.org/10.1130/0091-7613(1988)016<0867:DFCIFZ>2.3.CO;2
dc.relation.referencesMojica, J., & Franco, R. (1990). Estructura y Evolucion Tectonlca del Valle Medio y Superior del Magdalena, Colombia. Geología Colombiana, 17(17), 41–64.
dc.relation.referencesMontaño, P. C., Nova, G., Bayona, G., Mahecha, H., Ayala, C., Jaramillo, C., & De La Parra, F. (2016). Análisis de secuencias y procedencia EN sucesiones sedimentarias de grano fino: Un ejemplo de la Formación Umir y base de la Formación Lisama, en el sector de Simacota (Santander, Colombia). Boletin de Geologia, 38(1), 51–72. https://doi.org/10.18273/revbol.v38n1-2016003
dc.relation.referencesMorales, L. (1958). General geology and oil occurrences of middle Magdalena valley, Colombia: South America. In AAPG Special Volumes (pp. 641–695).
dc.relation.referencesMount, V. S., Suppe, J., & Hook, S. C. (1990). A forward modeling strategy for balancing cross sections. American Association of Petroleum Geologists Bulletin, 74(5), 521–531. https://doi.org/10.1306/0c9b235d-1710-11d7-8645000102c1865d
dc.relation.referencesNagata, K., Nakatani, M., & Yoshida, S. (2008). Monitoring frictional strength with acoustic wave transmission. Geophysical Research Letters, 35(6), 1–5. https://doi.org/10.1029/2007GL033146
dc.relation.referencesOrdóñez Carmona, O., Frantz, J. C., & Londoño, C. (2009). Serranía de San Lucas: Mineralizaciones auríferas, intrusiones de 1500 Ma, metamorfismo Grenville y magmatismo Jurásico. XII Congreso Colombiano de Geología, October 2014, 4. https://doi.org/10.13140/2.1.2705.1525
dc.relation.referencesPaasschens, J. C. J. (1997). Solution of the time-dependent Boltzmann equation. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 56(1), 1135–1141. https://doi.org/10.1103/PhysRevE.56.1135
dc.relation.referencesPatarroyo, P. (1997). Barremiano Inferior en la Base de la Formación Paja, Barichara, Santander - Colombia. Geología Colombiana, 22(0), 135–138.
dc.relation.referencesPrieto, G. A., Beroza, G. C., Barrett, S. A., López, G. A., & Florez, M. (2012). Earthquake nests as natural laboratories for the study of intermediate-depth earthquake mechanics. Tectonophysics, 570–571, 42–56. https://doi.org/10.1016/j.tecto.2012.07.019
dc.relation.referencesPrudencio, J., Del Pezzo, E., García-Yeguas, A., & Ibáñez, J. M. (2013). Spatial distribution of intrinsic and scattering seismic attenuation in active volcanic islands-I: Model and the case of tenerife Island. Geophysical Journal International, 195(3), 1942–1956. https://doi.org/10.1093/gji/ggt361
dc.relation.referencesPujades, L. G., Ugalde, A., Canas, J. A., Navarro, M., Badal, F. J., & Corchete, V. (1997). Intrinsic and scattering attenuation from observed seismic codas in the Almeria Basin (southeastern Iberian Peninsula). Geophysical Journal International, 129, 281–291. https://doi.org/10.1016/j.pepi.2004.02.004
dc.relation.referencesPulli, J. (1984). Attenuation of Coda Waves in New England By. Bulletin of the Seismological Society of America, 74(4), 1149–1166. http://www.bssaonline.org/content/74/4/1149.short
dc.relation.referencesRolon, L., & Toro, J. (2003). Role of Extensional Structures in the development of the Middle Magdalena Valley Basin–Colombia. VIII Simposio Bolivariano - Exploracion Petrolera En Las Cuencas Subandinas, 161–167. http://www.earthdoc.org/publication/publicationdetails/?publication=7904
dc.relation.referencesRoyero, M. J., & Clavijo, J. (2001). Memoria explicativa del mapa geológico generalizado del departamento de Santander, escala 1:400.000. Ingeominas, 256.
dc.relation.referencesSanabria Umbacía, J. E., Poveda Niño, P. F., Castro García, R. H., & Arango Acevedo, M. A. (2012). Modelamiento estadístico para la predicción analógica de reservas en los bloques sometidos al proceso de inyección de agua en las Cuencas Valle Medio del Magdalena, Catatumbo y Llanos Orientales.
dc.relation.referencesSarmiento, G., Puentes, J., & Sierra, C. (2015). Evolución Geológica y Estratigrafía del Sector Norte del Valle Medio del Magdalena. Geología Norandina, 12(1), 51–82.
dc.relation.referencesSarmiento, L. F. (2011). Petroleum Geology of Colombia (Vol. 11). Agencia Nacional de Hidrocarburos.
dc.relation.referencesSato, H. (1977). Energy propagation including scattering effects single isotropic scattering approximation. Journal of Physics of the Earth, 25(1), 27–41. https://doi.org/10.4294/jpe1952.25.27
dc.relation.referencesSato, H., Fehler, M. C., & Maeda, T. (2012). Seismic Wave Propagation and Scattering in the Heterogeneous Earth : Second Edition (2nd ed.). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-23029-5
dc.relation.referencesSens-Schönfelder, C., & Wegler, U. (2006). Radiative transfer theory for estimation of the seismic moment. Geophysical Journal International, 167(3), 1363–1372. https://doi.org/10.1111/j.1365-246X.2006.03139.x
dc.relation.referencesShearer, P. M. (2009). Introduction to Seismology (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9780511841552
dc.relation.referencesSuppe, J. (1983). Geometry and kinematics of fault-bend folding. American Journal of Science, 283(7), 684–721. https://doi.org/10.2475/ajs.283.7.684
dc.relation.referencesTaboada, A., Rivera, L., Fuenzalida, A., Cisternas, A., Philip, H., Bijwaard, H., Olaya, J., & Rivera, C. (2000). Geodynamics of the northern Andes. Tectonics, 19(5), 787–813.
dc.relation.referencesTenthorey, E., Cox, S. F., & Todd, H. F. (2003). Evolution of strength recovery and permeability during fluid-rock reaction in experimental fault zones. Earth and Planetary Science Letters, 206(1–2), 161–172. https://doi.org/10.1016/S0012-821X(02)01082-8
dc.relation.referencesTesón, E., Mora, A., Silva, A., Namson, J., Teixell, A., Castellanos, J., Casallas, W., Julivert, M., Taylor, M., Ibáñez-Mejía, M., & Valencia, V. A. (2013). Relationship of Mesozoic graben development, stress, shortening magnitude, and structural style in the Eastern Cordillera of the Colombian Andes. Geological Society Special Publication, 377(1), 257–283. https://doi.org/10.1144/SP377.10
dc.relation.referencesToro, G. Di, Aretusini, S., Cornelio, C., Nielsen, S., Spagnuolo, E., Núnez-Cascajero, A., Tapetado, A., & Vázquez, C. (2021). Friction during earthquakes: 25 years of experimental studies. IOP Conference Series: Earth and Environmental Science, 861(5). https://doi.org/10.1088/1755-1315/861/5/052032
dc.relation.referencesUgalde, A., Carcolé, E., & Vargas, C. A. (2010). S-wave attenuation characteristics in the Galeras volcanic complex (south western Colombia). Physics of the Earth and Planetary Interiors, 181(3–4), 73–81. https://doi.org/10.1016/j.pepi.2010.04.009
dc.relation.referencesVargas, C. A. (2004). PROPAGACIÓN DE ONDAS SÍSMICAS Y ATENUACIÓN DE ONDAS DE CODA EN EL TERRITORIO COLOMBIANO (L. Pujades & A. Ugalde (eds.)). Academica Colombiana de Ciencias Exactas, Físicas y Naturales.
dc.relation.referencesVargas, C. A., Castelblanco, C. A., Ramírez, J. M., & Jiménez, J. M. (2022). Distribución de la sismicidad cortical en el Valle Medio del Magdalena enfocada a los proyectos piloto de investigación integral (PPII).
dc.relation.referencesVargas, C. A., & Mann, P. (2013). Tearing and breaking off of subducted slabs as the result of collision of the panama arc-indenter with Northwestern South America. Bulletin of the Seismological Society of America, 103(3), 2025–2046. https://doi.org/10.1785/0120120328
dc.relation.referencesVargas, C. A., Ugalde, A., Pujades, L. G., & Canas, J. A. (2004). Spatial variation of coda wave attenuation in northwestern Colombia. Geophysical Journal International, 158(2), 609–624. https://doi.org/10.1111/j.1365-246X.2004.02307.x
dc.relation.referencesVargas Jiménez, C. A. (2014). Potencial de recursos No Convencionales en Colombia. In Sociedad Colombiana de Geologia (p. 23). http://www.anh.gov.co/Seguridad-comunidades-y-medio-ambiente/Estrategia Ambiental/Proyectos/Yacimientos-no-convencionales/Paginas/default.aspx
dc.relation.referencesVera Rodriguez, I., & Stanchits, S. (2017). Spatial and Temporal Variation of Seismic Attenuation During Hydraulic Fracturing of a Sandstone Block Subjected to Triaxial Stress. Journal of Geophysical Research: Solid Earth, 122(11), 9012–9030. https://doi.org/10.1002/2017JB014602
dc.relation.referencesWang, Z., Zhao, D., Liu, X., & Li, X. (2017). Seismic attenuation tomography of the source zone of the 2016 Kumamoto earthquake (M 7.3). Journal of Geophysical Research: Solid Earth, 122(4), 2988–3007. https://doi.org/10.1002/2016JB013704
dc.relation.referencesWard, D. E., Goldsmith, R., Jimeno, A., Cruz, J., Restrepo, H., & Gómez, E. (1973). MAPA GEOLÓGICO DE COLOMBIA, CUADRÁNGULO H-12 BUCARAMANGA PLANCHAS 109 RIONEGRO - 120 BUCARAMANGA, CUADRÁNGULO H-13 PAMPLONA PLANCHAS 110 PAMPLONA - 121CERRITO.
dc.relation.referencesWcisło, M., tabile, T. ., Telesca, ., & Eisner, . (2018). ariations o attenuation and VP/VS ratio in the vicinity of wastewater injection: A case study of Costa Molina 2 well (High Agri Valley, Italy). Geophysics, 83(2), B25–B31. https://doi.org/10.1190/geo2017-0123.1
dc.relation.referencesWhitehead, B. A., Harris, C., & Sloan, R. A. (2020). Deep infiltration of surface water during deformation? Evidence from a low- δ18O shear zone at Koegel Fontein, Namaqualand, South Africa. Lithos, 366–367, 105562. https://doi.org/10.1016/j.lithos.2020.105562
dc.relation.referencesYu, H., Harrington, R. M., Kao, H., Liu, Y., Abercrombie, R. E., & Wang, B. (2020). Well Proximity Governing Stress Drop Variation and Seismic Attenuation Associated With Hydraulic Fracturing Induced Earthquakes. In Journal of Geophysical Research: Solid Earth (Vol. 125, Issue 9). https://doi.org/10.1029/2020JB020103
dc.relation.referencesZarifi, Z., Havskov, J., & Hanyga, A. (2007). An insight into the Bucaramanga nest. Tectonophysics, 443(1–2), 93–105. https://doi.org/10.1016/j.tecto.2007.06.004
dc.relation.referencesZhao, Y., Nilot, E. A., Li, B., Fang, G., Luo, W., & Li, Y. E. (2023). Seismic Attenuation Extraction From Traffic Signals Recorded by a Single Seismic Station. Geophysical Research Letters, 50(3), 1–11. https://doi.org/10.1029/2022GL100548
dc.relation.referencesZhu, W., Allison, K. L., Dunham, E. M., & Yang, Y. (2020). Fault valving and pore pressure evolution in simulations of earthquake sequences and aseismic slip. Nature Communications, 11(1), 1–11. https://doi.org/10.1038/s41467-020-18598-z
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalValle Medio del Magdalena
dc.subject.proposalMiddle Magdalena Valley
dc.subject.proposalAtenuación sísmica
dc.subject.proposalDispersión
dc.subject.proposalAbsorción intrínseca
dc.subject.proposalLubricación de fallas
dc.subject.proposalSeismic attenuation
dc.subject.proposalIntrinsic absorption
dc.subject.proposalFault lubrication
dc.subject.unescoIngeniería sísmica
dc.subject.unescoEarthquake engineering
dc.subject.unescoMecánica de fluidos
dc.subject.unescoFluid mechanics
dc.title.translatedIdentification through seismic attenuation of lubrication zones of geological faults associated with fluid migration: case example of the Middle Magdalena Valley
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001686987
dc.subject.wikidatafalla
dc.subject.wikidatafault


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito