Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorQuevedo Pastor, Ariel Rodolfo
dc.contributor.authorCháves Sánchez, Sebastián Camilo
dc.date.accessioned2024-05-14T20:16:07Z
dc.date.available2024-05-14T20:16:07Z
dc.date.issued2024-04-18
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86083
dc.descriptionilustraciones, diagramas
dc.description.abstractEn este trabajo se estudió la síntesis de azaciclofanos derivados de L-tirosina empleando la estrategia de síntesis denominada “Síntesis asistida por enlace de hidrógeno”. Los resultados permiten establecer que la estrategia de síntesis permite obtener azaciclofanos pentacíclicos simétricos por reacciones de 2 componentes y asimétricos por reacciones de 3 componentes. Esta estrategia de síntesis permite obtener ciclofanos bencílicos simétricos con sustituyentes sobre el nitrógeno por reacciones de dos componentes y asimétricos por reacción de tres componentes. Cabe mencionar que efectos estéricos e interacciones ácido-base pueden influir en el curso de la reacción para la obtención del producto macrocíclico u oligómeros lineales. Se determino que los azaciclofanos derivados de L-tirosina interactúan con Zn 2+ por la periferia del macrociclo por la parte alifática y que su relación estequiométrica es 1:1 entre el azaciclofano y el metal, con la mayoría de ciclofanos estudiados. (Texto tomado de la fuente).
dc.description.abstractIn this work, the synthesis of azacyclophanes derived from L-tyrosine was studied using the synthesis strategy called “Hydrogen bond-assisted synthesis”. The results allow us to establish that the synthesis strategy allows obtaining symmetrical pentacyclic azacyclophanes by 2-component reactions and asymmetric by 3-component reactions. This synthesis strategy allows obtaining symmetrical benzylic cyclophanes with substituents on the nitrogen by two-component reactions and asymmetrical ones by three-component reaction. It is worth mentioning that steric effects and acid-base interactions can influence the course of the reaction to obtain the macrocyclic product or linear oligomers. It was determined that azacyclophanes derived from L-tyrosine interact with Zn2+ at the periphery of the macrocycle on the aliphatic part and that their stoichiometric relationship is 1:1 between azacyclophane and the metal, with the majority of cyclophanes studied.
dc.format.extentxxix, 157 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánica
dc.titleEstudio de la formación de azaciclofanos derivados de L-Tirosina y su interacción con zinc
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Química
dc.contributor.researchgroupQuímica Macrocíclica
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias - Química
dc.description.researchareaSíntesis orgánica
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesE. Marsault and M. L. Peterson, “Macrocycles are great cycles: Applications, opportunities, and challenges of synthetic macrocycles in drug discovery,” J Med Chem, vol. 54, no. 7, pp. 1961–2004, Apr. 2011, doi: 10.1021/jm1012374.
dc.relation.referencesG. Almaraz, C. Cabedo, R. Calvelo, and F. Gómez, “NUEVOS MACROLIDOS ¿SUPERAN A ERITROMICINA?,” Farm. Hosp, vol. 19, no. 5, pp. 259–265, 1995.
dc.relation.referencesA. K. Yudin, “Macrocycles: lesson from the distant past, recent developments, and future directions,” Chem. Sci., vol. 6, pp. 30–49, 2015.
dc.relation.referencesM. J. van Eis et al., “Tricarbonylchromium complexes of [5]- and [6]metacyclophane: an experimental and theoretical study,” Tetrahedron, vol. 64, no. 51, pp. 11641–11646, Dec. 2008, doi: 10.1016/j.tet.2008.10.016.
dc.relation.referencesA. V Bordunov et al., “A New Approach to the Synthesis of Phenol-Containing Macroheterocycles,” J. Org. Chem, vol. 60, pp. 4912–4918, 1995, doi: 0022-3267/95/1960-4912$09.00/0.
dc.relation.referencesP. Rajakumar and A. M. A. Rasheed, “Synthesis, characterization and ion transportation studies of some novel cyclophane amides,” Tetrahedron, vol. 61, no. 22, pp. 5351–5362, May 2005, doi: 10.1016/j.tet.2005.03.064.
dc.relation.referencesL. R. Perez and K. J. Franz, “Minding metals: Tailoring multifunctional chelating agents for neurodegenerative disease,” Dalton Transactions, vol. 39, no. 9. pp. 2177–2187, 2010. doi: 10.1039/b919237a.
dc.relation.referencesS. Kotha, “The building block approach to unusual α-amino acid derivatives and peptides,” Acc Chem Res, vol. 36, no. 5, pp. 342–351, May 2003, doi: 10.1021/ar020147q.
dc.relation.referencesM. Sato, F. Uehara, K. Sato, M. Yamaguchi, and C. Kabuto, “Convenient synthesis of chiral cyclophanes that can coordinate to metals,” J Am Chem Soc, vol. 121, no. 36, pp. 8270–8276, Sep. 1999, doi: 10.1021/ja983907u.
dc.relation.referencesP. Rajakumar and M. Srisailas, “Synthesis of bicyclic cyclophanes with chiral cages by sixfold coupling,” Tetrahedron Lett, vol. 43, no. 10, pp. 1909–1913, 2002, doi: 10.1016/S0040-4039(02)00137-5.
dc.relation.referencesN. Nuñez, “Estudio de la reacción entre derivados del ácido (2S)-2-amino-3-(4-hidroxifenil)propanoico y formaldehído, Tesis de Maestría en Química,” Universidad Nacional de Colombia, Bogotá, 2012.
dc.relation.referencesL. Rossa and F. Vögtle, Synthesis of Medio-and Macrocyclic Compounds by High Dilution Principle Techniques. Berlin. doi: https://doi.org/10.1007/3-540-12397-0_1.
dc.relation.referencesW. Zhang and J. Moore, “Shape-Persistent Macrocycles: Structure and Synthetic Approaches from Arylene and Ethynylene Building Blocks,” Angew.Chem Int Ed, vol. 45, pp. 4416–4439, 2006.
dc.relation.referencesV. Rozenberg, E. Sergeeva, and H. Hopf, “Cyclophanes as Templates in Stereoselective Synthesis,” in Modern Cyclophane Chemistry, R. Gleiter and H. Hopf, Eds., Weinheim: Wiley-VCH, 2004.
dc.relation.referencesH. S. Chong, H. A. Song, X. Ma, S. Lim, X. Sun, and S. B. Mhaske, “Bile acid-based polyaminocarboxylate conjugates as targeted antitumor agents,” Chemical Communications, no. 21, pp. 3011–3013, 2009, doi: 10.1039/b823000e.
dc.relation.referencesM. Formica, V. Fusi, L. Giorgi, M. Micheloni, P. Palma, and R. Pontellini, “A Template Synthesis of Polyamine Macrocycles Containing the 1,1-Bis(2-phenol) Function,” Eur. J. Org. Chem., pp. 402–404, 2002.
dc.relation.referencesR. Quevedo, “Influence of Steric, Electronic, and Molecular Preorganization Effects in the Reactivity of β-Phenylethylamines with Nonenolizable Aldehides,” in Non-covalent Interactions in the Synthesis and Design of New Compounds, Abel M. Maharramov, Kamran T. Mahmudov, Maximilian N. Kopylovich, and Armando J. L. Pombeiro, Eds., Hoboken, New Jersey: John Wiley & Sons, 2016, pp. 49–62.
dc.relation.referencesN. Nuñez-Dallos, A. Reyes, and R. Quevedo, “Hydrogen bond assisted synthesis of azacyclophanes from l-tyrosine derivatives,” Tetrahedron Lett, vol. 53, no. 5, pp. 530–534, Feb. 2012, doi: 10.1016/j.tetlet.2011.11.086.
dc.relation.referencesC. Díaz-Oviedo and R. Quevedo, “Role of hydrogen bonding in the selectivity of aromatic Mannich reaction of tyramines: Macrocyclization vs. linear condensation,” J Mol Struct, vol. 1202, Feb. 2020, doi: 10.1016/j.molstruc.2019.127283.
dc.relation.referencesR. Quevedo and B. Moreno-Murillo, “One-step synthesis of a new heterocyclophane family,” Tetrahedron Lett, vol. 50, no. 8, pp. 936–938, Feb. 2009, doi: 10.1016/j.tetlet.2008.12.023.
dc.relation.referencesM. Maldonado, A. Martinez-Manjarres, and R. Quevedo, “1H-NMR spectroscopic and thermogravimetric research regarding alcohol interaction with tyrosine-derived azacyclophanes,” Res Chem Intermed, vol. 44, 2018, doi: 10.1007/s11164.
dc.relation.referencesR. Quevedo, “1H- and 13C-NMR spectroscopic study of intermolecular interactions between tyrosine-derived azacyclophanes and aromatic rings,” J Mol Struct, vol. 1207, May 2020, doi: 10.1016/j.molstruc.2020.127777.
dc.relation.referencesR. Quevedo, L. Pabón, and Y. Quevedo-Acosta, “1H NMR study on the intermolecular interactions of macrocyclic and single α-Amino acids,” J Mol Struct, vol. 1041, pp. 68–72, 2013, doi: 10.1016/j.molstruc.2013.03.012.
dc.relation.referencesN. Nuñez-Dallos, C. Díaz-Oviedo, and R. Quevedo, “Hydroxy- and aminomethylation reactions in the formation of oligomers from l-tyrosine and formaldehyde in basic medium,” Tetrahedron Lett, vol. 55, no. 30, pp. 4216–4221, Jul. 2014, doi: 10.1016/j.tetlet.2014.05.048.
dc.relation.referencesJ. H. Burckhalter, J. N. Wells, and W. J. Mayer, “MECHANISM OF THE MANNICH REATION INVOLVING 2,4-DIMETHYLPHENOL AND MORPHOLINE,” Tetrahedron Lett, no. 21, pp. 1353–1359, 1964.
dc.relation.referencesB. Blackburn Thompson, “The Mannich Reaction Mechanistic and Technological Considerations,” 1968.
dc.relation.referencesL. Cruickshank, A. R. Kennedy, and N. Shankland, “Tautomeric and ionisation forms of dopamine and tyramine in the solid state,” J Mol Struct, vol. 1051, pp. 132–136, 2013, doi: 10.1016/j.molstruc.2013.08.002.
dc.relation.referencesM. S. Refat, H. A. Saad, A. M. A. Adam, and H. H. Eldaroti, “A Structural study of the intermolecular interactions of tyramine with some π-acceptors: Quantification of biogenic amines based on charge-transfer complexation,” Russ J Gen Chem, vol. 85, no. 1, pp. 185–191, 2015, doi: 10.1134/S1070363215010326.
dc.relation.referencesC. Díaz-Oviedo and R. Quevedo, “Transamidación y transamidación-reducciónde N-benciltiramina con DMF,” Rev. Colomb. Quim., vol. 47, no. 1, pp. 5–9, 2018, doi: http://dx.doi.org/10.15446/rev.colomb.quim.v47n1.63976.
dc.relation.referencesR. Quevedo, I. Ortiz, and A. Reyes, “Synthesis and conformational analysis of azacyclophanes from l-tyrosine,” Tetrahedron Lett, vol. 51, no. 8, pp. 1216–1219, 2010, doi: 10.1016/j.tetlet.2009.12.116.
dc.relation.referencesR. Quevedo, M. González, and C. Díaz-Oviedo, “Synthesis of macrocyclic α-amino esters through the chemoselective hydrolysis of benzoxazinephanes,” Tetrahedron Lett, vol. 53, no. 13, pp. 1595–1597, Mar. 2012, doi: 10.1016/j.tetlet.2012.01.064.
dc.relation.referencesM. Guillermo Gonzalez Alvarado, “SÍNTESIS DE NUEVOS AZACICLOFANOS DERIVADOS DE L-TIROSINA,” 2012.
dc.relation.referencesC. D. Díaz-Oviedo, “Estudio de la reacción entre β-(4-hidroxifenil)etilaminas y aldehídos no enolizables Competencia entre las reacciones de Betti y de Pictet-Spengler,” Universidad Nacional de Colombia, Bogota, 2014.
dc.relation.referencesGaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
dc.relation.referencesA. R. Allouche, “Gabedit - A graphical user interface for computational chemistry softwares,” J Comput Chem, vol. 32, no. 1, pp. 174–182, Jan. 2011, doi: 10.1002/jcc.21600.
dc.relation.referencesRahman Md. Moshikur, Chowdhury Md Raihan, Rie Wakabayashi, Yoshiro Tahara, Muhammad Moniruzzaman, and Masahiro Goto, “Characterization and cytotoxicity evaluation of biocompatible amino acid esters used to convert salicylic acid into ionic liquids,” Int J Pharm, vol. 546, no. 1–2, pp. 31–38, 2018, doi: https://doi.org/10.1016/j.ijpharm.2018.05.021.
dc.relation.referencesK. Hirayama, “NOMENCLATURE OF CYCLOPHANES,” Tetrahedron Lett, vol. 8, no. 21, p. 18, 1972.
dc.relation.referencesI. Alkorta, I. Rozas, and J. Elguero, “Non-conventional hydrogen bonds,” Chem Soc Rev, vol. 27, no. 2, pp. 163–170, 1998, doi: 10.1039/a827163z.
dc.relation.referencesM. J. Minch, “An Introduction to Hydrogen Bonding,” J Chem Educ, vol. 76, no. 6, p. 759, 1999.
dc.relation.referencesC. R. Martinez and B. L. Iverson, “Rethinking the term ‘pi-stacking,’” Chem Sci, vol. 3, no. 7, pp. 2191–2201, 2012, doi: 10.1039/c2sc20045g.
dc.relation.referencesT. F. Headen, C. A. Howard, N. T. Skipper, M. A. Wilkinson, D. T. Bowron, and A. K. Soper, “Structure of π-π Interactions in aromatic liquids,” J Am Chem Soc, vol. 132, no. 16, pp. 5735–5742, Apr. 2010, doi: 10.1021/ja909084e.
dc.relation.referencesS. Riegelman, L. A. Strait, and E. Z. Fischer, “Acid Dissociation Constants of Phenylalkanolamines,” J Pharm Sci, vol. 51, no. 2, pp. 129–133, 1962, doi: https://doi.org/10.1002/jps.2600510210.
dc.relation.referencesF. Yamazakl, K. Fujiki, and Y. Murata, “The Ionization Constants of Organic Compounds. I. The Microscopic Ionization Constants of Tyrosine and Related Compounds*,” Bull Chem Soc Jpn, vol. 38, no. 1, pp. 8–12, 1965, doi: https://doi.org/10.1246/bcsj.38.8.
dc.relation.referencesS. Alhassan, D. Schiraldi, S. Qutubuddin, T. Agag, and H. Ishida, “Various approaches for main-chain type benzoxazine polymers,” in Handbook of Benzoxazine Resins, Elsevier, 2011, pp. 309–318. doi: 10.1016/B978-0-444-53790-4.00060-6.
dc.relation.referencesJ. Sun, W. Wei, Y. Xu, J. Qu, X. Liu, and T. Endo, “A curing system of benzoxazine with amine: Reactivity, reaction mechanism and material properties,” RSC Adv, vol. 5, no. 25, pp. 19048–19057, 2015, doi: 10.1039/c4ra16582a.
dc.relation.referencesD. Trybuła, A. Marszałek-Harych, M. Gazińska, S. Berski, D. Jȩdrzkiewicz, and J. Ejfler, “N-Activated 1,3-Benzoxazine Monomer as a Key Agent in Polybenzoxazine Synthesis,” Macromolecules, vol. 53, no. 19, pp. 8202–8215, Oct. 2020, doi: 10.1021/acs.macromol.0c02036.
dc.relation.referencesF. F. Blicke, “1938-32387600-The-Mannich-Reaction-Org-Rxn-Vol-01-Chap-10-Ff-Blicke-Pg-303-3415934,” in Organic Reactions, vol. 1, R. Adams, Ed., 1991, pp. 303–341. Accessed: Nov. 06, 2022. [Online]. Available: https://www.thevespiary.org/rhodium/Rhodium/Vespiary/talk/files/1938-32387600-The-Mannich-Reaction-Org-Rxn-Vol-01-Chap-10-Ff-Blicke-Pg-303-3415934.pdf
dc.relation.referencesA. Sharifi, M. Mirzaei, and M. R. Naimi-Jamal, “Solvent-free aminoalkylation of phenols and indoles assisted by microwave irradiation,” Monatsh Chem, vol. 132, no. 7, pp. 875–880, 2001, doi: 10.1007/s007060170077.
dc.relation.referencesW. Lewis Nobles and N. D. Potti, “Studies on the Mechanism of the Mannich Reaction,” J Pharm Sci, vol. 57, no. 7, pp. 1097–1103, 1968.
dc.relation.referencesY. Omura, Y. Taruno, Y. Irisa, M. Morimoto, H. Saimoto, and Y. Shigemasa, “Regioselective Mannich reaction of phenolic compounds and its application to the synthesis of new chitosan derivatives,” Tetrahedron Lett, vol. 42, no. 41, pp. 7273–7275, 2001.
dc.relation.referencesT. Furuncuoğlu Özaltın, S. Catak, B. Kiskan, Y. Yagci, and V. Aviyente, “Rationalizing the regioselectivity of cationic ring-opening polymerization of benzoxazines,” Eur Polym J, vol. 105, pp. 61–67, Aug. 2018, doi: 10.1016/j.eurpolymj.2018.05.024.
dc.relation.referencesP. Chutayothin and H. Ishida, “Cationic ring-opening polymerization of 1,3-benzoxazines: Mechanistic study using model compounds,” Macromolecules, vol. 43, no. 10, pp. 4562–4572, May 2010, doi: 10.1021/ma901743h.
dc.relation.referencesW. J. Burke, “3,4-Dihydro-1,3,2H-Benzoxazines. Reaction of p-Subtituted Phenols with N,N-Dimethylolamines,” J. Am. Química. Soc., vol. 71, no. 2, pp. 609–612, 1949.
dc.relation.referencesR. Quevedo, C. Díaz-Oviedo, and Y. Quevedo-Acosta, “Role of hydroxyl groups on the aromatic ring in the reactivity and selectivity of the reaction of β -phenylethylamines with non-enolizable aldehydes,” Research on Chemical Intermediates, vol. 41, no. 12, pp. 9835–9843, Dec. 2015, doi: 10.1007/s11164-015-1987-4.
dc.relation.referencesL. Palatinus and G. Chapuis, “SUPERFLIP - A computer program for the solution of crystal structures by charge flipping in arbitrary dimensions,” J Appl Crystallogr, vol. 40, no. 4, pp. 786–790, Jul. 2007, doi: 10.1107/S0021889807029238.
dc.relation.referencesG. M. Sheldrick, “Crystal structure refinement with SHELXL,” Acta Crystallogr C Struct Chem, vol. 71, pp. 3–8, Jan. 2015, doi: 10.1107/S2053229614024218.
dc.relation.referencesC. F. MacRae et al., “Mercury 4.0: From visualization to analysis, design and prediction,” J Appl Crystallogr, vol. 53, pp. 226–235, Feb. 2020, doi: 10.1107/S1600576719014092.
dc.relation.referencesA. Mostand and C. Romming, “acta_vol_27_p0401-0410,” Acta Chem Scand, vol. 27, no. 2, pp. 401–410, 1973, Accessed: Oct. 30, 2022. [Online]. Available: http://actachemscand.org/pdf/acta_vol_27_p0401-0410.pdf
dc.relation.referencesB. Nicolaiö, N. Mahé, R. Céolin, I. B. Rietveld, M. Barrio, and J. L. Tamarit, “Tyrosine alkyl esters as prodrug: The structure and intermolecular interactions of L-tyrosine methyl ester compared to L-tyrosine and its ethyl and n-butyl esters,” Struct Chem, vol. 22, no. 3, pp. 649–659, Jun. 2011, doi: 10.1007/s11224-010-9723-6.
dc.relation.referencesP. A. F. Pieret, F. Durant, M. Griffi~, G. Germain, and T. Debaerdemaeker, “Structure Cristalline de FEster Ethylique de la Tyrosine,” 1970.
dc.relation.referencesS. S. Qian, H. L. Zhu, and E. R. T. Tiekink, “L-Tyrosine n-butyl ester,” Acta Crystallogr Sect E Struct Rep Online, vol. 62, no. 3, Mar. 2006, doi: 10.1107/S1600536806003606.
dc.relation.referencesN. Nuñez-Dallos, K. Wurst, and R. Quevedo, “L-Tyrosine isopropyl ester,” Acta Crystallogr Sect E Struct Rep Online, vol. 68, no. 11, Nov. 2012, doi: 10.1107/S1600536812042377.
dc.relation.referencesS. Melandri and A. Maris, “Intramolecular hydrogen bonds and conformational properties of biogenic amines: A free-jet microwave study of tyramine,” Physical Chemistry Chemical Physics, vol. 6, no. 10, pp. 2863–2866, May 2004, doi: 10.1039/b404153d.
dc.relation.referencesR. Quevedo, N. Nuñez-Dallos, K. Wurst, and Á. Duarte-Ruiz, “A structural study of the intermolecular interactions of tyramine in the solid state and in solution,” J Mol Struct, vol. 1029, pp. 175–179, Dec. 2012, doi: 10.1016/j.molstruc.2012.07.013.
dc.relation.referencesA. Rivera, D. Moyano, M. Maldonado, J. Ríos-Motta, and A. Reyes, “FT-IR and DFT studies of the proton affinity of small aminal cages,” Spectrochim Acta A Mol Biomol Spectrosc, vol. 74, no. 2, pp. 588–590, Oct. 2009, doi: 10.1016/j.saa.2009.07.009.
dc.relation.referencesC. E. Housecroft and A. G. Sharpe, “d-Block metal chemistry: the first row metals,” in Inorganic Chemistry, Second edition., Edunburgh Gate: Pearson Education Limited, 2005, pp. 639–641. [Online]. Available: www.pearsoned.co.uk/housecroft
dc.relation.referencesC. E. Housercroft and A. G. Sharpe, “Structures and energetics of metallic and ionic solids,” in Inorganic Chemistry, Second., Edinburgh Gate: Pearson Education Limited, 2005, pp. 146–152. [Online]. Available: www.pearsoned.co.uk/housecroft
dc.relation.referencesE. N. Maslen, K. J. Watson, and S. C. Ridout, “Electron Density in Diammonium Hexaaquazinc(ll) Sulfate – an X-ray and Neutron Study,” Acta Cryst. , vol. C44, pp. 1510–1514, 1988.
dc.relation.referencesS. G. Roh, J. U. Yoon, and J. H. Jeong, “Synthesis and characterization of a chiral Zn(II) complex based on a trans-1,2-diaminocyclohexane derivative and catalytic reduction of acetophenone,” Polyhedron, vol. 23, no. 12, pp. 2063–2067, Jul. 2004, doi: 10.1016/j.poly.2004.04.033.
dc.relation.referencesS. Staderini et al., “Zinc Coordination Polymers Containing the m-(2-thiazolyl)benzoic Acid Spacer: Synthesis, Characterization and Luminescent Properties in Aqueous Solutions,” ChemistrySelect, vol. 1, no. 6, pp. 1123–1131, May 2016, doi: 10.1002/slct.201600331.
dc.relation.referencesD. C. Fox, A. T. Fiedler, H. L. Halfen, T. C. Brunold, and J. A. Halfen, “Electronic structure control of the nucleophilicity of transition metal-thiolate complexes: An experimental and theoretical study,” J Am Chem Soc, vol. 126, no. 24, pp. 7627–7638, Jun. 2004, doi: 10.1021/ja039419q.
dc.relation.referencesL. Rulisek and Z. Havlas, “Theoretical studies of metal ion selectivity. 1. DFT calculations of interaction energies of amino acid side chains with selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+),” J Am Chem Soc, vol. 122, no. 42, pp. 10428–10439, Oct. 2000, doi: 10.1021/ja001265g.
dc.relation.referencesS. Saeednia, P. Iranmanesh, M. H. Ardakani, M. Mohammadi, and G. Norouzi, “Phenoxo bridged dinuclear Zn(II) Schiff base complex as new precursor for preparation zinc oxide nanoparticles: Synthesis, characterization, crystal structures and photoluminescence studies,” Mater Res Bull, vol. 78, pp. 1–10, Jun. 2016, doi: 10.1016/j.materresbull.2016.02.010.
dc.relation.referencesC. Kimblin, B. M. Bridgewater, D. G. Churchill, T. Hascall, and G. Parkin, “Bis(mercaptoimidazolyl)(pyrazolyl)hydroborato complexes of zinc, cadmium, and cobalt: Structural evidence for the enhanced tendency of zinc in biological systems to adopt tetrahedral M[S4] coordination,” Inorg Chem, vol. 39, no. 19, pp. 4240–4243, Sep. 2000, doi: 10.1021/ic000093l.
dc.relation.referencesJ. G. Melnick, A. Docrat, and G. Parkin, “Methyl, hydrochalcogenido, and phenylchalcogenolate complexes of zinc in a sulfur rich coordination environment: Syntheses and structural characterization of the tris(2-mercapto-1-tert-butylimidazolyl)-hydroboratozinc complexes [TmBut]ZnMe, [TmBut]ZnEH (E = S, Se) and [TmBut]ZnEPh (E = O, S, Se, Te),” Chemical Communications, no. 24, pp. 2870–2871, Dec. 2004, doi: 10.1039/b412218f.
dc.relation.referencesF. A. Carey and R. J. Sundberg, “Structural Effects on Stability and Reactivity,” in Advanced Organic Chemistry Part A: Structure and Mechanisms, Fifth., Charlottesville: Springer, 2007, pp. 362–367.
dc.relation.referencesJ. J. Ellison and P. P. Power, “Synthesis and Characterization of New Thiolato Derivatives of Lithium, Magnesium, and Zinc: Examples of Two-Coordinate Lithium and Zinc Species Ligated by Sulfur,” Inorg. Chem, vol. 33, pp. 423–424, 1994.
dc.relation.referencesT. Mizutani, K. Wada, and S. Kitagawa, “Molecular recognition of amines and amino esters by zinc porphyrin receptors: Binding mechanisms and solvent effects,” Journal of Organic Chemistry, vol. 65, no. 19, pp. 6097–6106, Sep. 2000, doi: 10.1021/jo000557x.
dc.relation.referencesA. Gergely and T. Kiss, “Complexes of 3,4-Dihydroxyphenyl Derivatives. I. Copper(I1) Complexes of DL-3,4-dihydroxyphenylalanine,” Inorganica Chim. Acta, vol. 16, pp. 51–59, 1976.
dc.relation.referencesA. Gergely, T. Kiss, and G. Deak, “Complexes of 3,4-Dihydroxyphenyl Derivatives. II.* Complex Formation Processes in the Nickel(II)-GDOPA and Zinc(II)-L-DOPA Systems,” Inorganica Chim. Acta, vol. 36, pp. 113–120, 1979.
dc.relation.referencesT. Kiss and A. Gergely, “Complexes of 3,4-Dihydroxyphenyl Derivatives, III.* Equilibrium Study of Parent and some Mixed Ligand Complexes of Dopamine, Alanine and Pyrocatechol with Nickel( II), Copper( II) and Zinc( II) Ions,” Inorganica Chim. Acta, vol. 36, pp. 31–36, 1979.
dc.relation.referencesT. Kiss, G. Deak, and A. Gergely, “Complexes of 3,4_Dihydroxyphenyl Derivatives. VII*. Mixed Ligand Complexes of Gdopa and Related Compounds,” Inorganica Chim. Acta, vol. 91, pp. 269–277, 1984.
dc.relation.referencesT. Kiss and A. Gergely, “Complexes of 3,4-Dihydroxyphenyl Derivatives. VI*. Microprocesses of Formation of Proton and Metal Complexes of L-Dopa,” Inorganica Chim. Acta, vol. 78, pp. 247–254, 1983.
dc.relation.referencesT. Kiss and A. Gergely, “Copper(I1) and Nickel(I1) Ternary Complexes of L-Dopa and Related Compounds,” J. Inorg. Biochem., vol. 25, pp. 247–259, 1985.
dc.relation.referencesA. Wojciechowska, M. Daszkiewicz, and A. Bieńko, “Polymeric Zn(II) and Cu(II) complexes with exobidentate bridging l-tyrosine: Synthesis, structural and spectroscopic properties,” Polyhedron, vol. 28, no. 8, pp. 1481–1489, Jun. 2009, doi: 10.1016/j.poly.2009.02.031.
dc.relation.referencesF. Rogalewicz, G. Louazel, Y. Hoppilliard, and G. Ohanessian, “Structures and fragmentations of electrosprayed Zn(II) complexes of carboxylic acids in the gas phase: Isomerisation versus desolvation during the last desolvation step,” Int J Mass Spectrom, vol. 228, no. 2–3, pp. 779–795, Aug. 2003, doi: 10.1016/S1387-3806(03)00244-6.
dc.relation.referencesC. A. Grapperhaus, T. Tuntulani, J. H. Reibenspies, and M. Y. Darensbourg, “Methylation of Tethered Thiolates in [(bme-daco)Zn] 2 and [(bme-daco)Cd] 2 as a Model of Zinc Sulfur-Methylation Proteins,” Inorg. Chem, vol. 37, pp. 4052–4058, 1998.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.decsTirosina/química
dc.subject.decsTyrosine/chemistry
dc.subject.proposalAzaciclofanos
dc.subject.proposalL - tirosina
dc.subject.proposalAzacyclophanes
dc.subject.proposalL - tyrosine
dc.subject.proposalMannich type reaction
dc.subject.proposalhydrogen bond
dc.subject.proposalAmina
dc.subject.proposalReacción tipo Mannich
dc.subject.proposalFormaldehído
dc.subject.proposalEnlace de hidrógeno
dc.subject.proposalAmine
dc.subject.proposalFormaldehyde
dc.subject.unescoInvestigación química
dc.subject.unescoChemical research
dc.title.translatedStudy of the formation of azacyclophanes derived from L-Tyrosine and its interaction with zinc
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dc.contributor.orcidChaves, Sebastián [0000-0001-7479-7858]
dc.contributor.cvlacChaves, Sebastian [0001703007]
dc.contributor.researchgateChaves, Sebastián [Sebastian-Chaves-Sanchez]
dc.contributor.googlescholarChaves, Sebastián [e2tLfbwAAAAJ]
dc.subject.wikidataMacrociclo
dc.subject.wikidatamacrocycle


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito