Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorSelvaraj, John Josephraj
dc.contributor.advisorGallego Pérez, Bryan Ernesto
dc.contributor.authorLozano Arias, Laura
dc.coverage.temporalhttp://vocab.getty.edu/page/tgn/1024046
dc.date.accessioned2024-05-22T18:29:24Z
dc.date.available2024-05-22T18:29:24Z
dc.date.issued2023-12-01
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86135
dc.descriptionilustraciones, mapas, tablas
dc.description.abstractLos manglares desempeñan un papel crucial en la mitigación del cambio climático al absorber y retener hasta cinco veces más carbono que otros bosques. Es importante determinar la biomasa viva y el carbono almacenado en estos ecosistemas para proporcionar una base sólida en la planificación y gestión gubernamental. Este estudio presenta un enfoque innovador ya que utiliza herramientas de teledetección junto con datos recolectados en campo, imágenes Worldview 2 y evalúa dos algoritmos de aprendizaje automático, Random Forest y Support Vector Regression. El caso de estudio en el manglar de Tumaco, Nariño, incluyó el cálculo de la superficie del bosque por medio de una clasificación supervisada, la estimación de la biomasa viva (aboveground y belowground) y el carbono almacenado, y la evaluación de los modelos. Los resultados revelaron una precisión global del 87% en la clasificación de coberturas, con valores promedio de 192.50 ± 102.78 para la biomasa aérea, 79.95 ± 56.85 para la biomasa subterránea y 127.43 ± 73.49 para el carbono almacenado. El modelo basado en Random Forest destacó con un rendimiento sobresaliente, mostrando un RMSE de 140.68 ± 98.76 y un R2 de 0.78 ± 0.28, superando a modelos globales. Adicionalmente, se evidenció que los índices espectrales fortalecen la capacidad del modelo para explicar y predecir la biomasa aérea. Se sugiere explorar el uso de imágenes Lidar y datos SAR para mejorar la precisión en estudios locales con mayor resolución espacial. (Texto tomado de la fuente)
dc.description.abstractMangroves play a crucial role in climate change mitigation by absorbing and sequestering up to five times more carbon than other forests. It is important to determine the living biomass and carbon stored in these ecosystems to provide a sound basis for government planning and management. This study presents an innovative approach using remote sensing tools together with field collected data, using Worldview 2 imagery and evaluating two machine learning algorithms, Random Forest and Support Vector Regression. The case study in the mangrove forest of Tumaco, Nariño, included the calculation of forest area by supervised classification, estimation of live biomass (aboveground and belowground) and carbon stock, and evaluation of the models. The results revealed an overall accuracy of 87% in cover classification, with average values of 192.50 ± 102.78 for aboveground biomass, 79.95 ± 56.85 for belowground biomass and 127.43 ± 73.49 for carbon stock. The Random Forest based model stood out with an outstanding performance, showing an RMSE of 140.68 ± 98.76 and an R2 of 0.78 ± 0.28, outperforming global models. Additionally, it was evidenced that the spectral indices strengthen the model's ability to explain and predict aerial biomass. It is suggested to explore the use of Lidar images and SAR data to improve accuracy in local studies with higher spatial resolution.
dc.format.extentxiv, 82 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.titleUn nuevo modelo para la estimación de la biomasa viva y el carbono almacenado en los bosques de manglar usando sensoramiento remoto y aprendizaje de máquina: caso de estudio Tumaco-Nariño
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programPalmira - Ingeniería y Administración - Maestría en Ingeniería - Ingeniería Ambiental
dc.contributor.researchgroupRecursos Hidrobiológicos
dc.coverage.regionTumaco, Nariño, Colombia
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Ambiental
dc.description.methodsEs importante determinar la biomasa viva y el carbono almacenado en estos ecosistemas para proporcionar una base sólida en la planificación y gestión gubernamental. Este estudio presenta un enfoque innovador ya que utiliza herramientas de teledetección junto con datos recolectados en campo, imágenes Worldview 2 y evalúa dos algoritmos de aprendizaje automático, Random Forest y Support Vector Regression. El caso de estudio en el manglar de Tumaco, Nariño, incluyó el cálculo de la superficie del bosque por medio de una clasificación supervisada, la estimación de la biomasa viva (aboveground y belowground) y el carbono almacenado, y la evaluación de los modelos.
dc.description.researchareaMonitoreo, modelación y gestión de recursos naturales
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería y Administración
dc.publisher.placePalmira, Valle del Cauca, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmira
dc.relation.referencesAhmad, A., Gilani, H., & Ahmad, S. R. (2021). Forest aboveground biomass estimation and mapping through high-resolution optical satellite imagery—a literature review. Forests, 12(7), 914. https://doi.org/10.3390/F12070914/S1
dc.relation.referencesAlboukadel, K. (2023). RDocumentation. Factoextra. fviz_contrib (1.0.7). https://www.rdocumentation.org/packages/factoextra/versions/1.0.7/topics/fviz_contrib
dc.relation.referencesAldrich, R. C., Bailey, W. F., & Heller, R. C. (1959). Large Scale 70 mm. Color Photography Techniques and Equipment and Their Application to a Forest Sampling Problem. Photogrammetric Engineering, 25, 747–754.
dc.relation.referencesFAO. (2007). The world’s mangroves 1980-2005. In FAO Forestry Paper (Vol. 153).
dc.relation.referencesFAO, Yigini, Y., Olmedo, G. F., Reiter, S., Baritz, R., Viatkin, K., & Vargas, R. R. (2018). Soil Organic Carbon Mapping Cookbook. 2nd Edition, Rome. https://fao-gsp.github.io/SOC-Mapping-Cookbook/mappingMethods.html#rf
dc.relation.referencesCongalton, R. G., & Green, K. (2008). Assessing the accuracy of remotely sensed data: Principles and practices, second edition. In Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Second Edition.
dc.relation.referencesAnand, A., Pandey, P. C., Petropoulos, G. P., Pavlides, A., Srivastava, P. K., Sharma, J. K., & Malhi, R. K. M. (2020). Use of hyperion for mangrove forest carbon stock assessment in bhitarkanika forest reserve: A contribution towards blue carbon initiative. Remote Sensing, 12(4). https://doi.org/10.3390/rs12040597
dc.relation.referencesEscobar, H. A. T. (2010). Documento síntesis: Caracterización, Diagnóstico y Zonificación de los Manglares en el Departamento de Nariño.
dc.relation.referencesForkuor, G., Benewinde Zoungrana, J. B., Dimobe, K., Ouattara, B., Vadrevu, K. P., & Tondoh, J. E. (2020). Above-ground biomass mapping in West African dryland forest using Sentinel-1 and 2 datasets - A case study. Remote Sensing of Environment, 236(November 2019), 111496. https://doi.org/10.1016/j.rse.2019.111496
dc.relation.referencesGao, B.-C. (1996). NDWI - A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water From Space. REMOTE SENS. ENVIRON, 7212, 257–266.
dc.relation.referencesGAFMEX. (2023). Clinómetro Electrónico Ecii D Haglöf. https://gafmex.com/clinometro-electronico-ecii-d-haglof/
dc.relation.referencesGao, Y., Yu, G., Yang, T., Jia, Y., He, N., & Zhuang, J. (2016). New insight into global blue carbon estimation under human activity in land-sea interaction area: A case study of China. Earth-Science Reviews, 159, 36–46. https://doi.org/10.1016/J.EARSCIREV.2016.05.003
dc.relation.referencesDonato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4(5), 293–297. https://doi.org/10.1038/ngeo1123
dc.relation.referencesDimar. (2020). Compilación Oceanográfica de la Cuenca Pacífica Colombiana II (Vol. 9). Editorial Dimar.
dc.relation.referencesDigital Globe. (2010). DigitalGlobe Core Imagery Products Guide. 8–11. https://www.satimagingcorp.com/satellite-sensors/worldview-3
dc.relation.referencesDarmawan, S., Takeuchi, W., Vetrita, Y., Wikantika, K., & Sari, D. K. (2015). Impact of topography and tidal height on ALOS palsar polarimetric measurements to estimate aboveground biomass of mangrove forest in Indonesia. Journal of Sensors, 2015. https://doi.org/10.1155/2015/641798
dc.relation.referencesArlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics Surveys, 4, 40–79. https://doi.org/10.1214/09-SS054
dc.relation.referencesAwad, M., & Khanna, R. (2015). Efficient Learning Machines. Theories, Concepts, and Applications for Engineers and System Designers. Apress, Berkeley, CA.
dc.relation.referencesCutler, D. R., Edwards, T. C., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). Random Forest for classification in ecology. Ecology, 88(11), 2783–2792. https://doi.org/10.1890/07-0539.1
dc.relation.referencesBasith, A., & Prastyani, R. (2020). Evaluating ACOMP , FLAASH AND QUAC on WORLDVIEW-3 for Satellite Derived Bathymetry (SDB) in shallow water. 46(3), 151–158.
dc.relation.referencesCantera, J. R., Thomassin, B. A., & Arnaud, P. M. (1999). Faunal zonation and assemblages in the Pacific Colombian mangroves. In Hydrobiologia (Vol. 413).
dc.relation.referencesCastellanos-Galindo, G. A., Kluger, L. C., Camargo, M. A., Cantera, J., Mancera Pineda, J. E., Blanco-Libreros, J. F., & Wolff, M. (2021). Mangrove research in Colombia: Temporal trends, geographical coverage and research gaps. Estuarine, Coastal and Shelf Science, 248(October 2019). https://doi.org/10.1016/j.ecss.2020.106799
dc.relation.referencesChave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J. P., Nelson, B. W., Ogawa, H., Puig, H., Riéra, B., & Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87–99. https://doi.org/10.1007/S00442-005-0100-X
dc.relation.referencesBunting, P., Rosenqvist, A., Hilarides, L., Lucas, R. M., Thomas, N., Tadono, T., Worthington, T. A., Spalding, M., Murray, N. J., & Rebelo, L. M. (2022). Global Mangrove Extent Change 1996–2020: Global Mangrove Watch Version 3.0. Remote Sensing, 14(15). https://doi.org/10.3390/rs14153657
dc.relation.referencesBunting, P. (2020). Class Accuracy (V1.0.0). https://github.com/remotesensinginfo/classaccuracy/releases/tag/qgis3_v1.0.0
dc.relation.referencesBreiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324/METRICS
dc.relation.referencesBolivar, J. M., Gutierrez-Velez, V. H., & Sierra, C. A. (2018). Carbon stocks in aboveground biomass for Colombian mangroves with associated uncertainties. Regional Studies in Marine Science, 18, 145–155. https://doi.org/10.1016/j.rsma.2017.12.011
dc.relation.referencesBolar, K. (2019). STAT V.0.1.0 (0.1.0). https://cran.r-project.org/web/packages/STAT/index.html
dc.relation.referencesBishop, C. (2008). Pattern Recognition and Machine Learning. Springer Verlag. http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop - Pattern Recognition And Machine Learning - Springer 2006.pdf
dc.relation.referencesBindu, G., Rajan, P., Jishnu, E. S., & Ajith Joseph, K. (2020). Carbon stock assessment of mangroves using remote sensing and geographic information system. Egyptian Journal of Remote Sensing and Space Science, 23(1), 1–9. https://doi.org/10.1016/j.ejrs.2018.04.006
dc.relation.referencesBeeston, M., Cuyvers, L., & Vermilye, J. (2020). Blue Carbon: Mind the Gap. October, 16. https://gallifrey.foundation/wp-content/uploads/2020/10/Blue-Carbon-Mind-the-Gap-V2.2.pdf
dc.relation.referencesZhu, Y., Liu, K., Liu, L., Wang, S., & Liu, H. (2015). Retrieval of Mangrove Aboveground Biomass at the Individual Species Level with WorldView-2 Images. Remote Sensing 2015, Vol. 7, Pages 12192-12214, 7(9), 12192–12214. https://doi.org/10.3390/RS70912192
dc.relation.referencesZhu, Y., Liu, K., Liu, L., Myint, S. W., Wang, S., Liu, H., & He, Z. (2017). Exploring the potential of world view-2 red-edge band-based vegetation indices for estimation of mangrove leaf area index with machine learning algorithms. Remote Sensing, 9(10). https://doi.org/10.3390/rs9101060
dc.relation.referencesZhu, Y., Liu, K., Liu, L., Myint, S. W., Wang, S., Cao, J., & Wu, Z. (2020). Estimating and Mapping Mangrove Biomass Dynamic Change Using WorldView-2 Images and Digital Surface Models. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 2123–2134. https://doi.org/10.1109/JSTARS.2020.2989500
dc.relation.referencesZhang, M., Lin, H., Zeng, S., Li, J., Shi, J., & Wang, G. (2013). Impacts of plot location errors on accuracy of mapping and scaling up aboveground forest carbon using sample plot and landsat tm data. IEEE Geoscience and Remote Sensing Letters, 10(6), 1483–1487. https://doi.org/10.1109/LGRS.2013.2260719
dc.relation.referencesZhu, J. J., & Yan, B. (2022). Blue carbon sink function and carbon neutrality potential of mangroves. Science of the Total Environment, 822, 153438. https://doi.org/10.1016/j.scitotenv.2022.153438
dc.relation.referencesWicaksono, P., Danoedoro, P., Hartono, H., Nehren, U., & Ribbe, L. (2011). Preliminary work of mangrove ecosystem carbon stock mapping in small island using remote sensing: above and below ground carbon stock mapping on medium resolution satellite image. Remote Sensing for Agriculture, Ecosystems, and Hydrology XIII, 8174, 81741B. https://doi.org/10.1117/12.897926
dc.relation.referencesToosi, N. B., Soffianian, A. R., Fakheran, S., Pourmanafi, S., Ginzler, C., & Waser, L. T. (2019). Comparing different classification algorithms for monitoring mangrove cover changes in southern Iran. Global Ecology and Conservation, 19, e00662. https://doi.org/10.1016/J.GECCO.2019.E00662
dc.relation.referencesWicaksono, P., Danoedoro, P., Hartono, & Nehren, U. (2016). Mangrove biomass carbon stock mapping of the Karimunjawa Islands using multispectral remote sensing. International Journal of Remote Sensing, 37(1), 26–52. https://doi.org/10.1080/01431161.2015.1117679
dc.relation.referencesYepes, A., Duque, Á., Navarrete, D., & Philips, J. (2011). Protocolo para la estimación nacional y subnacional de biomasa de biomasa-carbono en Colombia. Instituto de Hidrología, Meteorología y Estudios Ambientales-IDEAM. https://www.researchgate.net/publication/269107473_What_is_governance/link/548173090cf22525dcb61443/download%0Ahttp://www.econ.upf.edu/~reynal/Civil wars_12December2010.pdf%0Ahttps://think-asia.org/handle/11540/8282%0Ahttps://www.jstor.org/stable/41857625
dc.relation.referencesYepes, A., Zapata, M., Bolivar, J., Monsalve, A., Espinosa, S. M., Sierra-Correa, P. C., & Sierra, A. (2016). Ecuaciones alométricas de biomasa aérea para la estimación de los contenidos de carbono en manglares del Caribe Colombiano. In Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN (Vol. 64, Issue 2).
dc.relation.referencesZanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., Miller, R. B., Swenson, N. G., Wiemann, M. C., & Chave, J. (2009). Global wood density database. Dryad. http://hdl.handle.net/10255/dryad.235
dc.relation.referencesWang, L., Jia, M., Yin, D., & Tian, J. (2019). A review of remote sensing for mangrove forests: 1956–2018. Remote Sensing of Environment, 231(May). https://doi.org/10.1016/j.rse.2019.111223
dc.relation.referencesNellemann, C., Corcoran, E., Duarte, C. M., Valdés, L., De Young, C., Fonseca, L., & Grimsditch, G. (2009). Blue carbon: A Rapid Response Assessment. In Environment. http://www.grida.no/files/publications/blue-carbon/BlueCarbon_screen.pdf
dc.relation.referencesNaciones Unidas, & Asamblea General. (2015). Transformar nuestro mundo: la Agenda 2030 para el Desarrollo Sostenible.
dc.relation.referencesNguyen, H. H., Nghia, N. H., Nguyen, H. T. T., Le, A. T., Tran, L. T. N., Duong, L. V. K., Bohm, S., & Furniss, M. J. (2020). Classification Methods for Mapping Mangrove Extents and Drivers of Change in Thanh Hoa Province, Vietnam during 2005-2018. Forest and Society, 4(1), 225–242. https://doi.org/10.24259/FS.V4I1.9295
dc.relation.referencesPham, T. D., Yokoya, N., Bui, D. T., Yoshino, K., & Friess, D. A. (2019). Remote sensing approaches for monitoring mangrove species, structure, and biomass: Opportunities and challenges. Remote Sensing, 11(3), 1–24. https://doi.org/10.3390/rs11030230
dc.relation.referencesNesha, M. K., Hussin, Y. A., van Leeuwen, L. M., & Sulistioadi, Y. B. (2020). Modeling and mapping aboveground biomass of the restored mangroves using ALOS-2 PALSAR-2 in East Kalimantan, Indonesia. International Journal of Applied Earth Observation and Geoinformation, 91, 102158. https://doi.org/10.1016/J.JAG.2020.102158
dc.relation.referencesMutanga, O., Adam, E., & Cho, M. A. (2012). High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm. International Journal of Applied Earth Observation and Geoinformation, 18, 399–406. https://doi.org/10.1016/j.jag.2012.03.012
dc.relation.referencesNavarrete-Ramírez, S. M., & Rodríguez-Rincón, A. M. (2014). Protocolo IndicadorCondición Tendencia Bosques de Manglar. Indicadores de monitoreo biológico del Subsistema de Áreas Marinas Protegidas (SAMP): Vol. No. 67 (Invemar, GEF, & PNUD (eds.)). Serie de Publicaciones Generales del Invemar.
dc.relation.referencesINVEMAR, UNIVALLE, & INCIVA. (2006). Valoración de la biodiversidad marina y costera de Bahía Málaga (Valle del Cauca), como uno de los instrumentos necesarios para que sea considerada un área protegida. http://www.invemar.org.co/redcostera1/invemar/docs/9860IF_BIOMALAGA2007.pdf
dc.relation.referencesGross, J., Flores, E. E., & Schwendenmann, L. (2014). Stand structure and aboveground biomass of a Pelliciera rhizophorae mangrove forest, gulf of Monitjo Ramsar Site, Pacific Coast, Panama. Wetlands, 34(1), 55–65. https://doi.org/10.1007/s13157-013-0482-1
dc.relation.referencesGupta, K., Mukhopadhyay, A., Giri, S., Chanda, A., Datta Majumdar, S., Samanta, S., Mitra, D., Samal, R. N., Pattnaik, A. K., & Hazra, S. (2018). An index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI imagery. MethodsX, 5, 1129–1139. https://doi.org/10.1016/j.mex.2018.09.011
dc.relation.referencesGoogle, & Maxar Technologies. (2021). Maps Data. https://earth.google.com/web/
dc.relation.referencesGiri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., Masek, J., & Duke, N. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20(1), 154–159. https://doi.org/10.1111/j.1466-8238.2010.00584.x
dc.relation.referencesHastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning. https://doi.org/10.1007/978-0-387-84858-7
dc.relation.referencesGonzalez, R. C., & Woods, R. E. (2008). Digital Image Processing Third Edition Library of Congress Cataloging-in-Publication Data on File.
dc.relation.referencesHickey, S. M., Callow, N. J., Phinn, S., Lovelock, C. E., & Duarte, C. M. (2018). Spatial complexities in aboveground carbon stocks of a semi-arid mangrove community: A remote sensing height-biomass-carbon approach. Estuarine, Coastal and Shelf Science, 200, 194–201. https://doi.org/10.1016/j.ecss.2017.11.004
dc.relation.referencesHoward, J., Hoyt, S., Isensee, K., Pidgeon, E., & Telszewski, M. (2014). Coastal Blue Carbon: Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves, Tidal Salt Marshes, and Seagrass Meadows. Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature. Arlington, Virginia, USA., 1–180. www.ioc.unesco.org
dc.relation.referencesHu, T., Zhang, Y. Y., Su, Y., Zheng, Y., Lin, G., & Guo, Q. (2020). Mapping the Global Mangrove Forest Aboveground Biomass Using Multisource Remote Sensing Data. Remote Sensing 2020, Vol. 12, Page 1690, 12(10), 1690. https://doi.org/10.3390/RS12101690
dc.relation.referencesHuete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309. https://doi.org/10.1016/0034-4257(88)90106-X
dc.relation.referencesHutchison, J., Manica, A., Swetnam, R., Balmford, A., & Spalding, M. (2014). Predicting global patterns in mangrove forest biomass. Conservation Letters, 7(3), 233–240. https://doi.org/10.1111/conl.12060
dc.relation.referencesIdeam. (2010). Leyenda nacional de coberturas de la tierra. Metodología CORINE Land Cover adaptada para Colombia, escala 1:100.000. In Area: Vol. TH-62-04-1 (Issue 257).
dc.relation.referencesThuy, H. L. T., Tan, M. T., Van, T. T. T., Bien, L. B., Ha, N. M., & Nhung, N. T. (2020). Using sentinel image data and plot survey for the assessment of biomass and carbon stock in coastal forests of Thai Binh Province, Vietnam. Applied Ecology and Environmental Research, 18(6), 7499–7514. https://doi.org/10.15666/aeer/1806_74997514
dc.relation.referencesTwilley, R. R., Chen, R. H., & Hargis, T. (1992). Carbon sinks in mangroves and their aplications to carbon budget of tropical coastal ecosystems. Water, Air, and Soil Pollution 64:, 64, 265–288. https://doi.org/10.1021/es983796z
dc.relation.referencesVu, T. D., Takeuchi, W., & Van, N. A. (2014). Carbon Stock Calculating and Forest Change Assessment Toward REDD+ Activities for The Mangrove Forest in Vietnam. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 12(ists29), Pn_23-Pn_31. https://doi.org/10.2322/tastj.12.pn_23
dc.relation.referencesWang, G., Zhang, M., Gertner, G. Z., Oyana, T., McRoberts, R. E., & Ge, H. (2011). Uncertainties of mapping aboveground forest carbon due to plot locations using national forest inventory plot and remotely sensed data. Scandinavian Journal of Forest Research, 26(4), 360–373. https://doi.org/10.1080/02827581.2011.564204
dc.relation.referencesTakeuchi, W., Darmawan, S., Nakazono, E., Vetrita, Y., Winarso, G., Dien, V. T., Oo, K. S., Wikantika, K., Sari, D. K., Darmawan, S., Nakazono, E., Vetrita, Y., Winarso, G., Dien, V. T., Oo, K. S., Wikantika, K., & Sari, D. K. (2016). Carbon stock calculation and forest change assessment toward REDD+ activities for the mangrove forests in Southeast Asia. Institue of Industrial Science The University of Tokyo, Japan, 2. http://www.asienreisender.de/mangroveforest.html
dc.relation.referencesKogut, P. (2021). Teledetección: Tipos Y Aplicaciones De Los Sensores Remotos. https://eos.com/es/blog/teledeteccion/
dc.relation.referencesKuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, Z., Kenkel, B., Benesty, M., Lescarbeau, R., Ziem, A., Scrucca, L., Tang, Y., Candan, C., & Hunt, T. (2023). Caret V.6.0-94 (6.0-94). https://cran.r-project.org/web/packages/caret/index.html
dc.relation.referencesLu, D. (2006). The potential and challenge of remote sensing-based biomass estimation. International Journal of Remote Sensing, 27(7), 1297–1328. https://doi.org/10.1080/01431160500486732
dc.relation.referencesKhorram, S., Nelson, S. A. C., Koch, F. H., & van der Wiele, C. F. (2012). Remote Sensing. https://doi.org/10.1007/978-1-4614-3103-9
dc.relation.referencesKershaw, J. A., Ducey, M. J., Beers, T. W., & Husch, B. (2016). Sampling Designs in Forest Inventories. In Forest Mensuration (pp. 305–360). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118902028.ch10
dc.relation.referencesKauffman, J. B., & Donato, D. C. (2012). Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. Working Paper 86. CIFOR, Bogor, Indonesia. Working Paper 86, CIFOR, January, 50.
dc.relation.referencesKauffman, J. B., & Cole, T. G. (2010). Micronesian mangrove forest structure and tree responses to a severe typhoon. Wetlands, 30(6), 1077–1084. https://doi.org/10.1007/S13157-010-0114-Y/METRICS
dc.relation.referencesJiang, Z., Huete, A. R., Didan, K., & Miura, T. (2008). Development of a two-band enhanced vegetation index without a blue band. Remote Sensing of Environment, 112(10), 3833–3845. https://doi.org/10.1016/J.RSE.2008.06.006
dc.relation.referencesJiang, Y., Zhang, L., Yan, M., Qi, J., Fu, T., Fan, S., & Chen, B. (2021). High-Resolution Mangrove Forests Classification with Machine Learning Using Worldview and UAV Hyperspectral Data. Remote Sensing 2021, Vol. 13, Page 1529, 13(8), 1529. https://doi.org/10.3390/RS13081529
dc.relation.referencesJachowski, N. R. A., Quak, M. S. Y., Friess, D. A., Duangnamon, D., Webb, E. L., & Ziegler, A. D. (2013). Mangrove biomass estimation in Southwest Thailand using machine learning. Applied Geography, 45, 311–321. https://doi.org/10.1016/J.APGEOG.2013.09.024
dc.relation.referencesLu, D., Chen, Q., Wang, G., Liu, L., Li, G., & Moran, E. (2016). A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. In International Journal of Digital Earth (Vol. 9, Issue 1, pp. 63–105). https://doi.org/10.1080/17538947.2014.990526
dc.relation.referencesLuo, Y. M., Huang, D. T., Liu, P. Z., & Feng, H. M. (2016). An novel random forests and its application to the classification of mangroves remote sensing image. Multimedia Tools and Applications, 75(16), 9707–9722. https://doi.org/10.1007/s11042-015-2906-9
dc.relation.referencesMAXAR Technologies. (2020, July). Multispectral reference guide. https://resources.maxar.com/white-papers/multispectral-reference-guide
dc.relation.referencesMcCarthy, M. J., & Halls, J. N. (2014). Habitat mapping and change assessment of coastal environments: An examination of worldview-2, quickbird, and ikonos satellite imagery and airborne lidar for mapping barrier island habitats. ISPRS International Journal of Geo-Information, 3(1), 297–325. https://doi.org/10.3390/ijgi3010297
dc.relation.referencesMcLeod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., & Silliman, B. R. (2011). A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9(10), 552–560. https://doi.org/10.1890/110004
dc.relation.referencesMejía-Rentería, J. C., Castellanos-Galindo, G. A., Cantera-Kintz, J. R., & Hamilton, S. E. (2018). A comparison of Colombian Pacific mangrove extent estimations: Implications for the conservation of a unique Neotropical tidal forest. Estuarine, Coastal and Shelf Science, 212(July), 233–240. https://doi.org/10.1016/j.ecss.2018.07.020
dc.relation.referencesMicrosoft Bing, & Maxar Technologies. (2022). Bing Maps. https://www.bing.com/maps?cc=es Millennium Ecosystem Assessment. (2005). Ecosystems and Human Well-being : Current State and Trends, Volume 1 (R. Hassan, R. Scholes, & N. Ash (eds.)). Island Press. http://www.millenniumassessment.org//en/products.global.condition.aspx
dc.relation.referencesMonsalve, A., & Ramírez, G. (2015). Caracterización de la estructura y contenido de carbono de los bosques de manglar en el área de jurisdicción del Consejo comunitario La Plata, Bahía Málaga, Valle del Cauca (Vol. 57, Issue 4).
dc.relation.referencesMukhtar, E., Raynaldo, A., & Novarino, W. (2021). Carbon stock mapping using mangrove discrimination indices in mandeh bay, west sumatra. AACL Bioflux, 14(1), 430–440.
dc.relation.referencesOlofsson, P., Foody, G. M., Herold, M., Stehman, S. V., Woodcock, C. E., & Wulder, M. A. (2014). Good practices for estimating area and assessing accuracy of land change. In Remote Sensing of Environment (Vol. 148, pp. 42–57). Elsevier Inc. https://doi.org/10.1016/j.rse.2014.02.015
dc.relation.referencesPalacios- penaranda, M. L. (2017). Evaluación del almacenamiento de carbono como servicio ecosistémico en bosques de manglar de la costa pacífica colombiana. [UNIVERSIDAD DEL VALLE]. https://bibliotecadigital.univalle.edu.co/handle/10893/14485
dc.relation.referencesRahman, M. M., Lagomasino, D., Lee, S. K., Fatoyinbo, T., Ahmed, I., & Kanzaki, M. (2019). Improved assessment of mangrove forests in Sundarbans East Wildlife Sanctuary using WorldView 2 and TanDEM-X high resolution imagery. Remote Sensing in Ecology and Conservation, 5(2), 136–149. https://doi.org/10.1002/rse2.105
dc.relation.referencesRondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55(2), 95–107. https://doi.org/10.1016/0034-4257(95)00186-7
dc.relation.referencesRovai, A. S., Twilley, R. R., Castañeda-Moya, E., Midway, S. R., Friess, D. A., Trettin, C. C., Bukoski, J. J., Stovall, A. E. L., Pagliosa, P. R., Fonseca, A. L., Mackenzie, R. A., Aslan, A., Sasmito, S. D., Sillanpää, M., Cole, T. G., Purbopuspito, J., Warren, M. W., Murdiyarso, D., Mofu, W., … Riul, P. (2021). Macroecological patterns of forest structure and allometric scaling in mangrove forests. Global Ecology and Biogeography, 30(5), 1000–1013. https://doi.org/10.1111/GEB.13268
dc.relation.referencesRwanga, S. S., Ndambuki, J. M., Rwanga, S. S., & Ndambuki, J. M. (2017). Accuracy Assessment of Land Use/Land Cover Classification Using Remote Sensing and GIS. International Journal of Geosciences, 8(4), 611–622. https://doi.org/10.4236/IJG.2017.84033
dc.relation.referencesSaeys, Y., Inza, I., & Larrañaga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics (Oxford, England), 23(19), 2507–2517. https://doi.org/10.1093/BIOINFORMATICS/BTM344
dc.relation.referencesQuang, N. H., Quinn, C. H., Carrie, R., Stringer, L. C., Hue, L. T. Van, Hackney, C. R., & Tan, D. Van. (2022). Comparisons of regression and machine learning methods for estimating mangrove above-ground biomass using multiple remote sensing data in the red River Estuaries of Vietnam. Remote Sensing Applications: Society and Environment, 26(November 2021), 100725. https://doi.org/10.1016/j.rsase.2022.100725
dc.relation.referencesQiu, P., Wang, D., Zou, X., Yang, X., Xie, G., Xu, S., & Zhong, Z. (2019). Finer Resolution Estimation and Mapping of Mangrove Biomass Using UAV LiDAR and WorldView-2 Data. Forest, 10(817). https://doi.org/10.3390/f10100871
dc.relation.referencesQGIS. (2023, February 25). QGIS 3.28. https://www.qgis.org/en/site/
dc.relation.referencesPham, T. D., Xia, J., Thang Ha, N., Tien Bui, D., Nhu Le, N., & Tekeuchi, W. (2019). A review of remote sensing approaches for monitoring blue carbon ecosystems: Mangroves, sea grasses and salt marshes during 2010–2018. Sensors (Switzerland), 19(8). https://doi.org/10.3390/s19081933
dc.relation.referencesPham, T. D., Le, N. N., Ha, N. T., Nguyen, L. V., Xia, J., Yokoya, N., To, T. T., Trinh, H. X., Kieu, L. Q., & Takeuchi, W. (2020). Estimating mangrove above-ground biomass using extreme gradient boosting decision trees algorithm with fused sentinel-2 and ALOS-2 PALSAR-2 data in can Gio biosphere reserve, Vietnam. In Remote Sensing (Vol. 12, Issue 5). https://doi.org/10.3390/rs12050777
dc.relation.referencesPerumal, K., & Bhaskaran, R. (2010). Supervised Classification Performance of Multispectral Images. Journal of Computing, 2(2), 124–129. http://arxiv.org/abs/1002.4046
dc.relation.referencesPerea Ardila, M. A., & Murillo Sandoval, P. J. (2022). La ganancia de manglar y sus implicaciones en el reservorio de Carbono del Parque Nacional Natural Sanquianga en Colombia. Ecosistemas, 31(3), 2386. https://doi.org/10.7818/ecos.2386
dc.relation.referencesPerea Ardila, M. A., Leal Villamil, J., & Oviedo Barrero, F. (2021). Caracterización espectral y monitoreo de bosque de manglar con teledetección en el litoral Pacífico Colombiano: Bajo Baudó, Chocó. LA GRANJA: REVISTA DE CIENCIAS DE LA VIDA, 34(C), 27–44. https://doi.org/http://doi.org/10.17163/lgr.n34.2021.02 Edición
dc.relation.referencesPerea-Ardila, M. A., Oviedo-Barrero, F., & Leal-Villamil, J. (2019). Cartografía de bosques de manglar mediante imágenes de sensores remotos: estudio de caso Buenaventura, Colombia. Revista de Teledetección, 53, 73.
dc.relation.referencesPedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., & Thirion, B. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825–2830. http://scikit-learn.sourceforge.net.
dc.relation.referencesPalacios-Peñaranda, M. L., Cantera-Kintz, J. R., & Peña-Salamanca, E. J. (2019). Carbon stocks in mangrove forests of the Colombian Pacific. Estuarine, Coastal and Shelf Science, 227(April 2018), 106299. https://doi.org/10.1016/j.ecss.2019.106299
dc.relation.referencesSaldarriaga, J. G., Duque, A. J., & Álvarez, E. (2011). Modelos para la estimación de la biomasa y el carbono en diferentes tipos de bosque del choco biogeográfico, Colombia: manglar, guandal y bosques de colina localizados en los Consejos Comunitarios de Bajo Mira y Concosta a partir de los datos colectados e. Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), Ministerio de Medio Ambiente, Vivienda y Desarrollo Territorial (MAVDT), Fundación Natura, Fundación Gordon y Betty Moore – USAID.
dc.relation.referencesSantos, T., & Freire, S. (2015). Testing the Contribution of WorldView-2 Improved Spectral Resolution for Extracting Vegetation Cover in Urban Environments. Canadian Journal of Remote Sensing, 41(6), 505–514. https://doi.org/10.1080/07038992.2015.1110011
dc.relation.referencesSciPy Community. (2024). SciPy documentation. SciPy v1.12.0 Manual. https://docs.scipy.org/doc/scipy/index.html
dc.relation.referencesSelvaraj, J. J., & Gallego-Pérez, B. E. (2023). Estimating mangrove aboveground biomass in the Colombian Pacific coast: A multisensor and machine learning approach. Heliyon, 9, 2405–8440. https://doi.org/10.1016/j.heliyon.2023.e20745
dc.relation.referencesSimard, M., Fatoyinbo, L., Smetanka, C., Rivera-Monroy, V. H., Castañeda-Moya, E., Thomas, N., & Van der Stocken, T. (2019). Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nature Geoscience, 12(1), 40–45. https://doi.org/10.1038/s41561-018-0279-1
dc.relation.referencesSinha, S., Jeganathan, C., Sharma, L. K., & Nathawat, M. S. (2015). A review of radar remote sensing for biomass estimation. International Journal of Environmental Science and Technology 2015 12:5, 12(5), 1779–1792. https://doi.org/10.1007/S13762-015-0750-0
dc.relation.referencesSimard, M., Rivera-Monroy, V. H., Mancera-Pineda, J. E., Castañeda-Moya, E., & Twilley, R. R. (2008). A systematic method for 3D mapping of mangrove forests based on Shuttle Radar Topography Mission elevation data, ICEsat/GLAS waveforms and field data: Application to Ciénaga Grande de Santa Marta, Colombia. Remote Sensing of Environment, 112(5), 2131–2144. https://doi.org/10.1016/j.rse.2007.10.012
dc.relation.referencesSpalding, M. D., & Leal, M. (2021). The State of the World’s Mangroves 2021. Global Mangrove Alliance.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocSecuestro de carbono
dc.subject.agrovocCarbon sequestration
dc.subject.agrovocEstimación de las existencias de carbono
dc.subject.agrovocCarbon stock assessments
dc.subject.agrovocMangles
dc.subject.agrovocControl remoto
dc.subject.agrovocRemote control
dc.subject.proposalBiomasa
dc.subject.proposalBiomass
dc.subject.proposalCarbon stocks
dc.subject.proposalMachine learning
dc.subject.proposalMangrove
dc.subject.proposalRemote sensing
dc.subject.proposalManglar
dc.subject.proposalTeledetección
dc.subject.proposalWorldview-2
dc.subject.proposalReservas de carbono
dc.subject.proposalAprendizaje automático
dc.subject.unescoTumaco
dc.subject.unescoNariño
dc.title.translatedA new approach for estimating living biomass and stored carbon in mangrove forests using remote sensing and machine learning: Tumaco-Nariño case study.
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleInvestigación de servicios ecosistémicos derivados de bosques de manglar en el Pacífico Colombiano: Valle del Cauca, Cauca, Nariño, Chocó
oaire.fundernameSistema General de Regalías
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentGrupos comunitarios
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentMedios de comunicación
dcterms.audience.professionaldevelopmentPadres y familias
dcterms.audience.professionaldevelopmentPersonal de apoyo escolar
dcterms.audience.professionaldevelopmentPúblico general
dcterms.audience.professionaldevelopmentResponsables políticos
dc.description.curricularareaIngeniería.Sede Palmira
dc.contributor.orcidLozano Arias, Laura [0009-0008-7538-0067]
dc.contributor.cvlacLozano Arias, Laura [1144200812]
dc.contributor.researchgateLozano Arias, Laura [https://www.researchgate.net/profile/Laura-Lozano-23]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito