Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorGuerrero Dallos, Jairo Arturo
dc.contributor.authorEspaña Amórtegui, Julio César
dc.date.accessioned2024-05-23T21:13:44Z
dc.date.available2024-05-23T21:13:44Z
dc.date.issued2024-05-23
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86151
dc.descriptionilustraciones, diagramas
dc.description.abstractSe presenta el desarrollo y validación de un procedimiento simple, integral y amigable con el medio ambiente para determinar residuos de plaguicidas, contaminantes naturales y de procesamiento en el café tostado por LC-HRMS, e hidrocarburos aromáticos policíclicos (HAPs) vía GC-MS/MS. Para la primera técnica se extraen plaguicidas y micotoxinas con acetato de etilo, con una partición simultánea de acrilamida (AA) en fase acuosa en la misma porción analítica. Una microextracción en fase sólida dispersiva 'en tubo' (dSPME) retiene la AA para inyectarla de forma independiente de los compuestos de la fase orgánica. A través de novedoso método de cromatografía líquida de espectrometría de masas de alta resolución (LC-HRMS) se cuantificaron 186 compuestos a 10 µg/kg, 226 a 5 µg/kg y la AA a 200 µg/kg, para un total de 414 moléculas con recuperación (70%-120%) y precisiones aceptables (RSD<20%). Se confirmó la presencia de clorpirifos, AA y ocratoxina A (OTA) en muestras de diferente origen por debajo del límite de cuantificación. No hubo evidencia de enmascaramiento de OTA durante el almacenamiento del café; sin embargo, se evidenció condensación con glucosa durante experimentos de procesamiento térmico con sacarosa mediante el uso de marcado con isótopos estables (SIL). No se encontraron conjugados en muestras de café tostado ni torrefacto. Entre las alternativas revisadas para determinar los HAPs, una transesterificación precedió la cuantificación que fue validada para un grupo de HAPs que incluyó los 4 indicadores en la regulación vigente. Algunos hallazgos en muestras comerciales fueron cuantificados por GC-MS/MS y confirmados por LC-HRMS. (Texto tomado de la fuente).
dc.description.abstractThe development and validation of a simple, comprehensive, and environmentally friendly procedure is presented to determine pesticide residues, natural and processing contaminants in roasted coffee by LC-HRMS, and polycyclic aromatic hydrocarbons (PAHs) via GC-MS/ MS. For the first technique, pesticides and mycotoxins are extracted with ethyl acetate, along a simultaneous partition of acrylamide (AA) in the aqueous phase in the same analytical portion. An 'in-tube' dispersive solid phase microextraction (dSPME) retains the AA for injection independently of the organic phase compounds. A novel liquid chromatography high resolution mass spectrometry (LC-HRMS) method allows the quantification of 186 compounds at 10 µg/kg, 226 at 5 µg/kg and AA at 200 µg/kg for a total of 414 molecules with recovery (70%-120%) and acceptable precisions (RSD<20%). The presence of chlorpyrifos, AA and OTA was confirmed in samples of different origins below the limit of quantification. There was no evidence of OTA masking during coffee storage; however, condensation with glucose molecules was evident during thermal processing experiments with sucrose using stable isotope labeling (SIL). No conjugates were found in roasted or torrefacto coffee samples. Among the tested alternatives to determine PAHs, a transesterification process allowed a determination validated for a group that included selected indicative 4 PAHs in the current regulation. Some findings in commercial samples were quantified by GC-MS/MS and confirmed by LC-HRMS.
dc.format.extentxvi, 173 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc540 - Química y ciencias afines::543 - Química analítica
dc.titleEvaluación de residuos de plaguicidas, micotoxinas y contaminantes de procesamiento como descriptores claves de inocuidad química en la poscosecha de la cadena de producción cafetera de la región del Tolima empleando estrategias analíticas basadas en marcado de isótopos estables (SIL)
dc.typeTrabajo de grado - Doctorado
dc.type.driverinfo:eu-repo/semantics/doctoralThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Química
dc.contributor.researchgroupResidualidad y destino ambiental de plaguicidas en sistemas agrícolas
dc.coverage.countryColombia
dc.coverage.regionTolima
dc.coverage.tgnhttp://vocab.getty.edu/page/tgn/1000784
dc.description.degreelevelDoctorado
dc.description.degreenameDoctor en Ciencias - Química
dc.description.researchareaQuímica agroalimentaria y ambiental
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesDaviron, B., & Ponte, S. (2005). The coffee paradox: Global markets, commodity trade and the elusive promise of development. Zed books.
dc.relation.referencesUkers W (1935) All about coffee: the tea and coffee trade journal. New York: Burr Printing House
dc.relation.referencesFNC (2017) Comportamiento de la industria cafetera colombiana
dc.relation.referencesFNC (2018) Región Centro-Sur - Comité de Cafeteros del Tolima
dc.relation.referencesFNC (2014) Informe de los Comités Departamentales
dc.relation.referencesBessaire T, Perrin I, Tarres A, Bebius A, Reding F, Theurillat V (2019) Mycotoxins in green coffee: Occurrence and risk assessment. Food Control 96:59–67. https://doi.org/10.1016/j.foodcont.2018.08.033
dc.relation.referencesTozlovanu M, Pfohl-Leszkowicz A (2010) Ochratoxin A in Roasted Coffee from French Supermarkets and Transfer in Coffee Beverages: Comparison of Analysis Methods. Toxins 2:1928–1942. https://doi.org/10.3390/toxins2081928
dc.relation.referencesFAO, CFC, ICO, ECC (2005) Guidelines for the Prevention of Mould Formation in Coffee
dc.relation.referencesICO (2021) Coffee Development Report 2020, The Value of Coffee: Sustainability, Inclusiveness, and Resilience of the Coffee Global Value Chain
dc.relation.referencesGorbalenya AE, Baker SC, Baric RS, Groot RJ de, Drosten C, Gulyaeva AA, Haagmans BL, Lauber C, Leontovich AM, Neuman BW, Penzar D, Perlman S, Poon LL, Samborskiy DV, Sidorov IA, Sola I, Ziebuhr J (2020) The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol 5:536–544. https://doi.org/10.1038/s41564-020-0695-z
dc.relation.referencesHeussner AH, Bingle LE (2015) Comparative Ochratoxin Toxicity: A Review of the Available Data. Toxins 7:4253–4282. https://doi.org/10.3390/toxins7104253
dc.relation.referencesISO (2003) ISO 6673:2003 Green coffee -- Determination of loss in mass at 105 degrees C
dc.relation.referencesITC (2011) The Coffee Exporter’s Guide. International Trade Centre (ITC)
dc.relation.referencesOliveros CE, Pabón JP, Trujillo AF, Ramírez CA (2016) Evaluación de prácticas utilizadas en la conservación del café húmedo
dc.relation.referencesCommission E (1998) Council Regulation (EEC) No 315/93 of 8 February 1993 laying down Community procedures for contaminants in food. Off J Eur Union
dc.relation.referencesCommission E (2014) Commission Regulation (EU) No 696/2014 of 24 June 2014 amending Regulation (EC) No 1881/2006 as regards maximum levels of erucic acid in vegetable oils and fats and foods containing vegetable oils and fats . Off J Eur Union 70:12–34
dc.relation.referencesCommission E (2010) Commission Regulation (EC) No 165/2010 of 26 February 2010 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxins. Off J Eur Union 70:12–34
dc.relation.referencesCommission E (2010) Comission Regulation (EC) No 1881/2006 of 19 December 2006 . Official Journal of the European Union
dc.relation.referencesCommission E (2010) Commission Regulation (EC) No 105/2010 of 5 February 2010 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards ochratoxin A. Off J Eur Union 70:12–34
dc.relation.referencesCommission E (2012) Comission Regulation (EC)No 594/2012 of 5 July 2012amending Regulation (EC) 1881/2006 as regards the maximum levels of the contaminants ochratoxin A, non dioxin-like PCBs and melamine in foodstuffs. Off J Eur Union. https://doi.org/10.2903/j.efsa.2010.1573
dc.relation.referencesCommission E (2023) Commission Regulation (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006 (Text with EEA relevance). Off J Eur Union 119:103–157
dc.relation.referencesCEN (2009) EN 14132 - Determination of ochratoxin A in barley and roasted coffee - HPLC method with immunoaffinity column clean-up
dc.relation.referencesPittet A, Tornare D, Huggett A, Viani R (1996) Liquid Chromatographic Determination of Ochratoxin A in Pure and Adulterated Soluble Coffee Using an Immunoaffinity Column Cleanup Procedure. Journal of Agricultural and Food Chemistry 44:3564–3569. https://doi.org/10.1021/jf9602939
dc.relation.referencesEFSA (2014) Scientific Opinion on the risks for human and animal health related to the presence of modified forms of certain mycotoxins in food and feed. EFSA Journal 12:3916. https://doi.org/10.2903/j.efsa.2014.3916
dc.relation.referencesFreire L, Sant’Ana AS (2018) Modified mycotoxins: An updated review on their formation, detection, occurrence, and toxic effects. Food and Chemical Toxicology. https://doi.org/10.1016/j.fct.2017.11.021
dc.relation.referencesRosén J, Hellenäs K-E (2002) Analysis of acrylamide in cooked foods by liquid chromatography tandem mass spectrometry. Analyst 127:880–882. https://doi.org/10.1039/b204938d
dc.relation.referencesAndrzejewski D, Roach JAG, Gay ML, Musser SM (2004) Analysis of Coffee for the Presence of Acrylamide by LC-MS/MS. J Agr Food Chem 52:1996–2002. https://doi.org/10.1021/jf0349634
dc.relation.referencesCommission E (2017) Commission Regulation (EU) 2017/2158 of 20 November 2017 establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food (Text with EEA relevance. ). Off J Eur Union 304:24–44
dc.relation.references(EFSA) EFSA (2008) Polycyclic Aromatic Hydrocarbons in Food‐Scientific Opinion of the Panel on Contaminants in the Food Chain. 6:724
dc.relation.referencesPhillips DH (1983) Fifty years of benzo(a)pyrene. Nature 303:468–472. https://doi.org/10.1038/303468a0
dc.relation.referencesDNP (2006) CONPES 3418. Financiación parcial del programa “Fortalecimiento de la calidad del Café de Colombia”
dc.relation.referencesRamírez L, Silva G, Valenzuela L, Villegas A, Villegas L (2006) El café, capital social estratégico. Comisión de Ajuste de la Institucionalidad Cafetera
dc.relation.referencesBenavides L (2019) Federación Nacional de Cafeteros anunció que la producción de café se redujo 8,7% en último mes
dc.relation.referencesDupont PN (2018) A Series About the Coffee Paradox | How Do We Turn It Around? https://coffeecollective.dk/2018/09/coffee-paradox/. Accessed 23 Apr 2019
dc.relation.referencesWambui C (2018) Kenya’s ground-down coffee farmers switch to avocado amid global boom
dc.relation.referencesDíaz C (2019) Retirar el café colombiano de la bolsa
dc.relation.referencesQuintero L Diseño de buenas prácticas ambientales para los procesos de producción de café especial sostenible, de la vereda la mejora, municipio de Casabianca, Tolima
dc.relation.referencesRedList (2014) Andinobates tolimensis. The IUCN Red List of Threatened Species
dc.relation.referencesDNP (2019) CONPES 3957. Política Nacional de Laboratorios: Prioridades para mejorar el cumplimiento de estándares de calidad
dc.relation.referencesPahlen CM der, Mukherjee K (2019) Climate change and implications for food safety. The First FAO/WHO/AU International Food Safety Conference
dc.relation.referencesGareis M, Bauer J, Thiem J, Plank G, Grabley S, Gedek B (1990) Cleavage of Zearalenone-Glycoside, a “Masked” Mycotoxin, during Digestion in Swine. J Vet Medicine Ser B 37:236–240. https://doi.org/10.1111/j.1439-0450.1990.tb01052.x
dc.relation.referencesDall’Erta A, Cirlini M, Dall’Asta M, Rio D, Galaverna G, Dall’Asta C (2013) Masked Mycotoxins Are Efficiently Hydrolyzed by Human Colonic Microbiota Releasing Their Aglycones. Chemical Research in Toxicology 26:305–312. https://doi.org/10.1021/tx300438c
dc.relation.referencesCreswell JW, Creswell DJ (2017) Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications
dc.relation.referencesHyland K, Moore I (2020) Highly-sensitive pesticide analysis in baby food. Sciex Application Note RUO-MKT-02-11958-A
dc.relation.referencesCastaldo L, Graziani G, Gaspari A, Izzo L, Tolosa J, Rodríguez-Carrasco Y, Ritieni A (2019) Target Analysis and Retrospective Screening of Multiple Mycotoxins in Pet Food Using UHPLC-Q-Orbitrap HRMS. Toxins 11:434. https://doi.org/10.3390/toxins11080434
dc.relation.referencesNarváez A, Rodríguez-Carrasco Y, Castaldo L, Izzo L, Ritieni A (2020) Ultra-High-Performance Liquid Chromatography Coupled with Quadrupole Orbitrap High-Resolution Mass Spectrometry for Multi-Residue Analysis of Mycotoxins and Pesticides in Botanical Nutraceuticals. Toxins 12:114. https://doi.org/10.3390/toxins12020114
dc.relation.referencesHouessou JK, Maloug S, Leveque A-S, Delteil C, Heyd B, Camel V (2007) Effect of Roasting Conditions on the Polycyclic Aromatic Hydrocarbon Content in Ground Arabica Coffee and Coffee Brew. J Agr Food Chem 55:9719–9726. https://doi.org/10.1021/jf071745s
dc.relation.referencesHouessou JK, Goujot D, Heyd B, Camel V (2008) Modeling the Formation of Some Polycyclic Aromatic Hydrocarbons During the Roasting of Arabica Coffee Samples. J Agr Food Chem 56:3648–3656. https://doi.org/10.1021/jf073233j
dc.relation.referencesOrecchio S, Ciotti VP, Culotta L (2009) Polycyclic aromatic hydrocarbons (PAHs) in coffee brew samples: Analytical method by GC–MS, profile, levels and sources. Food Chem Toxicol 47:819–826. https://doi.org/10.1016/j.fct.2009.01.011
dc.relation.referencesTfouni SAV, Serrate CS, Leme FM, Camargo MCR, Teles CRA, Cipolli KMVAB, Furlani RPZ (2013) Polycyclic aromatic hydrocarbons in coffee brew: Influence of roasting and brewing procedures in two Coffea cultivars. Lwt - Food Sci Technology 50:526–530. https://doi.org/10.1016/j.lwt.2012.08.015
dc.relation.referencesDuedahl-Olesen L, Navaratnam MA, Jewula J, Jensen AH (2014) PAH in Some Brands of Tea and Coffee. Polycycl Aromat Comp 35:74–90. https://doi.org/10.1080/10406638.2014.918554
dc.relation.referencesBenson NU, Fred-Ahmadu OH, Olugbuyiro JAO, Anake WU, Adedapo AE, Olajire AA (2018) Concentrations, sources and risk characterisation of polycyclic aromatic hydrocarbons (PAHs) in green, herbal and black tea products in Nigeria. J Food Compos Anal 66:13–22. https://doi.org/10.1016/j.jfca.2017.11.003
dc.relation.referencesCiecierska M, Derewiaka D, Kowalska J, Majewska E, Drużyńska B, Wołosiak R (2019) Effect of mild roasting on Arabica and Robusta coffee beans contamination with polycyclic aromatic hydrocarbons. J Food Sci Technology 56:737–745. https://doi.org/10.1007/s13197-018-3532-0
dc.relation.referencesDall’Asta C, Berthiller F (2016) Masked Mycotoxins in Food: Formation, Occurrence and Toxicological Relevance. 189–193. https://doi.org/10.1039/9781782622574-00189
dc.relation.referencesBerthiller F, Crews C, Dall’Asta C, Saeger S, Haesaert G, Karlovsky P, Oswald IP, Seefelder W, Speijers G, Stroka J (2013) Masked mycotoxins: A review. Molecular Nutrition & Food Research 57:165–186. https://doi.org/10.1002/mnfr.201100764
dc.relation.referencesBittner A, Cramer B, Humpf H-U (2013) Matrix binding of ochratoxin A during roasting. Journal of agricultural and food chemistry 61:12737–43. https://doi.org/10.1021/jf403984x
dc.relation.referencesRychlik M, Humpf H-U, Marko D, Dänicke S, Mally A, Berthiller F, Klaffke H, Lorenz N (2014) Proposal of a comprehensive definition of modified and other forms of mycotoxins including “masked” mycotoxins. Mycotoxin Research 30:197–205. https://doi.org/10.1007/s12550-014-0203-5
dc.relation.referencesKovač M, Šubarić D, Bulaić M, Kovač T, Šarkanj B (2018) Yesterday masked, today modified; what do mycotoxins bring next? Archives Industrial Hyg Toxicol 69:196–214. https://doi.org/10.2478/aiht-2018-69-3108
dc.relation.referencesAbdullah S (2015) Efficient searching strategies in PubMed. Pakistan Oral & Dental Journal 35:346–350
dc.relation.referencesAnders ME, Evans DP (2010) Comparison of PubMed and Google Scholar literature searches. Respiratory care 55:578–583
dc.relation.referencesShultz M (2007) Comparing test searches in PubMed and Google Scholar. J Medical Libr Assoc Jmla 95:442–445. https://doi.org/10.3163/1536-5050.95.4.442
dc.relation.referencesDzuman Z, Zachariasova M, Veprikova Z, Godula M, Hajslova J (2015) Multi-analyte high performance liquid chromatography coupled to high resolution tandem mass spectrometry method for control of pesticide residues, mycotoxins, and pyrrolizidine alkaloids. Analytica Chimica Acta 29–40. https://doi.org/10.1016/j.aca.2015.01.021
dc.relation.referencesFreire L, Guerreiro TM, Caramês ETS, Lopes LS, Orlando EA, Pereira GE, Pallone JAL, Catharino RR, Sant’Ana AS (2018) Influence of Maturation Stages in Different Varieties of Wine Grapes ( Vitis vinifera ) on the Production of Ochratoxin A and Its Modified Forms by Aspergillus carbonarius and Aspergillus niger. J Agr Food Chem 66:8824–8831. https://doi.org/10.1021/acs.jafc.8b02251
dc.relation.referencesSueck F, Hemp V, Specht J, Torres O, Cramer B, Humpf H-U (2019) Occurrence of the Ochratoxin A Degradation Product 2′R-Ochratoxin A in Coffee and Other Food: An Update. Toxins 11:329. https://doi.org/10.3390/toxins11060329
dc.relation.referencesSueck F, Poór M, Faisal Z, Gertzen CG, Cramer B, Lemli B, Kunsági-Máté S, Gohlke H, Humpf H-U (2018) Interaction of Ochratoxin A and Its Thermal Degradation Product 2′R-Ochratoxin A with Human Serum Albumin. Toxins 10:256. https://doi.org/10.3390/toxins10070256
dc.relation.referencesDomínguez I, Arrebola F, Vidal J, Frenich A (2020) Assessment of wastewater pollution by gas chromatography and high resolution Orbitrap mass spectrometry. J Chromatogr A 1619:460964. https://doi.org/10.1016/j.chroma.2020.460964
dc.relation.referencesDíaz R, Ibáñez M, Sancho JV, Hernández F (2011) Target and non-target screening strategies for organic contaminants, residues and illicit substances in food , environmental and human biological samples by UHPLC-QTOF-MS. Anal Methods-uk 4:196–209. https://doi.org/10.1039/c1ay05385j
dc.relation.referencesHernández F, Sancho J, Ibáñez M, Abad E, Portolés T, Mattioli L (2012) Current use of high-resolution mass spectrometry in the environmental sciences. Anal Bioanal Chem 403:1251–1264. https://doi.org/10.1007/s00216-012-5844-7
dc.relation.referencesKaufmann A, Walker S (2012) Post-run target screening strategy for ultra high performance liquid chromatography coupled to Orbitrap based veterinary drug residue analysis in animal urine. J Chromatogr 1292:104–10. https://doi.org/10.1016/j.chroma.2012.09.019
dc.relation.referencesWang J, Chow W, Wong JW, Leung D, Chang J, Li M (2019) Non-target data acquisition for target analysis (nDATA) of 845 pesticide residues in fruits and vegetables using UHPLC/ESI Q-Orbitrap. Analytical and Bioanalytical Chemistry 411:1421–1431. https://doi.org/10.1007/s00216-019-01581-z
dc.relation.referencesTautenhahn R, Patti GJ, Rinehart D, Siuzdak G (2012) XCMS Online: a web-based platform to process untargeted metabolomic data. Anal Chem 84:5035–9. https://doi.org/10.1021/ac300698c
dc.relation.referencesSindelar M, Patti GJ (2020) Chemical Discovery in the Era of Metabolomics. J Am Chem Soc. https://doi.org/10.1021/jacs.9b13198
dc.relation.referencesBueschl C, Kluger B, Berthiller F, Lirk G, Winkler S, Krska R, Schuhmacher R (2012) MetExtract: a new software tool for the automated comprehensive extraction of metabolite-derived LC/MS signals in metabolomics research. Bioinformatics 28:736–738. https://doi.org/10.1093/bioinformatics/bts012
dc.relation.referencesEspaña JC (2013) Análisis de residuos de plaguicidas en frutas colombianas de exportación y cereales. 0–247
dc.relation.referencesLommen A, Kools HJ (2012) MetAlign 3.0: performance enhancement by efficient use of advances in computer hardware. Metabolomics 8:719–726. https://doi.org/10.1007/s11306-011-0369-1
dc.relation.referencesKruve A, Kaupmees K (2017) Adduct Formation in ESI/MS by Mobile Phase Additives. J Am Soc Mass Spectr 28:887–894. https://doi.org/10.1007/s13361-017-1626-y
dc.relation.referencesKruve A, Kaupmees K, Liigand J, Oss M, Leito I (2013) Sodium adduct formation efficiency in ESI source. J Mass Spectrom 48:695–702. https://doi.org/10.1002/jms.3218
dc.relation.referencesDeFelice BC, Mehta S, Samra S, Čajka T, Wancewicz B, Fahrmann JF, Fiehn O (2017) Mass Spectral Feature List Optimizer (MS-FLO): A Tool To Minimize False Positive Peak Reports in Untargeted Liquid Chromatography-Mass Spectroscopy (LC-MS) Data Processing. Analytical chemistry. https://doi.org/10.1021/acs.analchem.6b04372
dc.relation.referencesFraisier-Vannier O, Chervin J, Cabanac G, Puech-Pages V, Fournier S, Durand V, Amiel A, Andre O, Benamar O, Tsugawa H, Dumas B, Marti G (2020) MS-CleanR: A feature-filtering workflow for untargeted LC-MS based metabolomics. Anal Chem. https://doi.org/10.1021/acs.analchem.0c01594
dc.relation.referencesSchymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, Hollender J (2014) Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ Sci Technol 48:2097–2098. https://doi.org/10.1021/es5002105
dc.relation.referencesKind T, Fiehn O (2006) Metabolomic database annotations via query of elemental compositions: Mass accuracy is insufficient even at less than 1 ppm. Bmc Bioinformatics 7:234. https://doi.org/10.1186/1471-2105-7-234
dc.relation.referencesKind T, Fiehn O (2007) Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. Bmc Bioinformatics 8:105. https://doi.org/10.1186/1471-2105-8-105
dc.relation.referencesMcNaught AD, Wilkinson A (1997) Compendium of chemical terminology. Blackwell Science Oxford
dc.relation.referencesGevaert K, Impens F, Ghesquière B, Damme P, Lambrechts A, Vandekerckhove J (2008) Stable isotopic labeling in proteomics. Proteomics 8:4873–85. https://doi.org/10.1002/pmic.200800421
dc.relation.referencesGardiner W, Herrmann J, Mallard W, Owen J (1976) Mechanism of isotope exchange reaction between methane and deuterium. Int J Chem Kinet 8:111–122. https://doi.org/10.1002/kin.550080112
dc.relation.referencesBueschl C, Krska R, Kluger B, Schuhmacher R (2013) Isotopic labeling-assisted metabolomics using LC–MS. Analytical and Bioanalytical Chemistry 405:27–33. https://doi.org/10.1007/s00216-012-6375-y
dc.relation.referencesLi Z, Zhao C, Cao C (2023) Production and Inhibition of Acrylamide during Coffee Processing: A Literature Review. Molecules 28:3476. https://doi.org/10.3390/molecules28083476
dc.relation.referencesBinello A, Cravotto G, Menzio J, Tagliapietra S (2020) Polycyclic aromatic hydrocarbons in coffee samples: enquiry into processes and analytical methods. Food Chem 344:128631. https://doi.org/10.1016/j.foodchem.2020.128631
dc.relation.referencesRaters M, Matissek R (2014) Quantitation of Polycyclic Aromatic Hydrocarbons (PAH4) in Cocoa and Chocolate Samples by an HPLC-FD Method. J Agric Food Chem 62:10666–10671. https://doi.org/10.1021/jf5028729
dc.relation.referencesFSANZ (2008) Survey of chemical contaminants and residues in espresso, instant and ground coffee
dc.relation.referencesSajid M, Płotka-Wasylka J (2021) Green analytical chemistry metrics: A review. Talanta 238:123046. https://doi.org/10.1016/j.talanta.2021.123046
dc.relation.referencesMohamed HM, Lamie NT (2016) Analytical Eco-Scale for Assessing the Greenness of a Developed RP-HPLC Method Used for Simultaneous Analysis of Combined Antihypertensive Medications. J Aoac Int 99:1260–1265. https://doi.org/10.5740/jaoacint.16-0124
dc.relation.referencesMaeztu L, Sanz C, Andueza S, Peña MPD, Bello J, Cid C (2001) Characterization of Espresso Coffee Aroma by Static Headspace GC−MS and Sensory Flavor Profile. J Agr Food Chem 49:5437–5444. https://doi.org/10.1021/jf0107959
dc.relation.referencesLópez-Galilea I, Fournier N, Cid C, Guichard E (2006) Changes in Headspace Volatile Concentrations of Coffee Brews Caused by the Roasting Process and the Brewing Procedure. J Agr Food Chem 54:8560–8566. https://doi.org/10.1021/jf061178t
dc.relation.referencesAndueza S, Peña MP de, Cid C (2003) Chemical and Sensorial Characteristics of Espresso Coffee As Affected by Grinding and Torrefacto Roast. J Agr Food Chem 51:7034–7039. https://doi.org/10.1021/jf034628f
dc.relation.referencesMaeztu L, Andueza S, Ibañez C, Peña MP de, Bello J, Cid C (2001) Multivariate Methods for Characterization and Classification of Espresso Coffees from Different Botanical Varieties and Types of Roast by Foam, Taste, and Mouthfeel. J Agr Food Chem 49:4743–4747. https://doi.org/10.1021/jf010314l
dc.relation.referencesBarco I, España J, Dallos J (2022) Development and validation of qualitative screening, quantitative determination and post-targeted pesticide analysis in tropical fruits and vegetables by LC-HRMS. Food Chem 367:130714. https://doi.org/10.1016/j.foodchem.2021.130714
dc.relation.referencesSANTE (2016) Guidance document on identification of mycotoxins in food and feed. SANTE/12089/2016
dc.relation.referencesSANTE (2021) Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed. SANTE/11312/2021
dc.relation.referencesOmari I, Randhawa P, Randhawa J, Yu J, McIndoe SJ (2019) Structure, Anion, and Solvent Effects on Cation Response in ESI-MS. J Am Soc Mass Spectr 30:1750–1757. https://doi.org/10.1007/s13361-019-02252-0
dc.relation.referencesWang R, Zhang L, Zhang Z, Tian Y (2016) Comparison of ESI– and APCI–LC–MS/MS methods: A case study of levonorgestrel in human plasma. J Pharm Analysis 6:356–362. https://doi.org/10.1016/j.jpha.2016.03.006
dc.relation.referencesStadler D, Lambertini F, Bueschl C, Wiesenberger G, Hametner C, Schwartz-Zimmermann H, Hellinger R, Sulyok M, Lemmens M, Schuhmacher R, Suman M, Berthiller F, Krska R (2018) Untargeted LC-MS based 13C labelling provides a full mass balance of deoxynivalenol and its degradation products formed during baking of crackers, biscuits and bread. Food Chemistry 279:303–311. https://doi.org/10.1016/j.foodchem.2018.11.150
dc.relation.referencesTakahashi M, Izumi Y, Iwahashi F, Nakayama Y, Iwakoshi M, Nakao M, Yamato S, Fukusaki E, Bamba T (2018) Highly Accurate Detection and Identification Methodology of Xenobiotic Metabolites Using Stable Isotope Labeling, Data Mining Techniques, and Time-Dependent Profiling Based on LC/HRMS/MS. Analytical Chemistry 9068–9076. https://doi.org/10.1021/acs.analchem.8b01388
dc.relation.referencesXie B, Wang Y, Jones DR, Dey KK, Wang X, Li Y, Cho J-H, Shaw TI, Tan H, Peng J (2018) Isotope Labeling-Assisted Evaluation of Hydrophilic and Hydrophobic Liquid Chromatograph-Mass Spectrometry for Metabolomics Profiling. Analytical chemistry 8538–8545. https://doi.org/10.1021/acs.analchem.8b01591
dc.relation.referencesYuan M, Kremer DM, Huang H, Breitkopf SB, Ben-Sahra I, Manning BD, Lyssiotis CA, Asara JM (2019) Ex vivo and in vivo stable isotope labelling of central carbon metabolism and related pathways with analysis by LC-MS/MS. Nature protocols 313–330. https://doi.org/10.1038/s41596-018-0102-x
dc.relation.referencesJacyna J, Kordalewska M, Markuszewski MJ (2018) Design of Experiments in metabolomics-related studies: An overview. J Pharmaceut Biomed 164:598–606. https://doi.org/10.1016/j.jpba.2018.11.027
dc.relation.referencesDoppler M, Kluger B, Bueschl C, Schneider C, Krska R, Delcambre S, Hiller K, Lemmens M, Schuhmacher R (2016) Stable Isotope-Assisted Evaluation of Different Extraction Solvents for Untargeted Metabolomics of Plants. Int J Mol Sci 17:1017. https://doi.org/10.3390/ijms17071017
dc.relation.referencesFebrianto NA, Zhu F (2023) Coffee bean processing: Emerging methods and their effects on chemical, biological and sensory properties. Food Chem 412:135489. https://doi.org/10.1016/j.foodchem.2023.135489
dc.relation.referencesBueschl C, Kluger B, Neumann N, Doppler M, Maschietto V, Thallinger GG, Meng-Reiterer J, Krska R, Schuhmacher R (2017) MetExtract II: A software suite for stable isotope assisted untargeted metabolomics. Analytical Chemistry. https://doi.org/10.1021/acs.analchem.7b02518
dc.relation.referencesDu P, Kibbe W, Lin S (2006) Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching. Bioinformatics 22:2059–2065. https://doi.org/10.1093/bioinformatics/btl355
dc.relation.referencesMahieu N, Huang X, Chen Y-J, Patti GJ (2014) Credentialing Features: A Platform to Benchmark and Optimize Untargeted Metabolomic Methods. Anal Chem 86:9583–9589. https://doi.org/10.1021/ac503092d
dc.relation.referencesMeng-Reiterer J, Bueschl C, Rechthaler J, Berthiller F, Lemmens M, Schuhmacher R (2016) Metabolism of HT-2 Toxin and T-2 Toxin in Oats. Toxins 8:364. https://doi.org/10.3390/toxins8120364
dc.relation.referencesPapalambros PY, Wilde DJ (2000) Principles of optimal design: modeling and computation. Cambridge university press
dc.relation.referencesLawson J, Willden C (2016) Mixture Experiments in R Using mixexp. Journal of Statistical Software, Code Snippets 72:1–20. https://doi.org/10.18637/jss.v072.c02
dc.relation.referencesLehotay SJ, Maštovská K, Lightfield AR (2005) Use of Buffering and Other Means to Improve Results of Problematic Pesticides in a Fast and Easy Method for Residue Analysis of Fruits and Vegetables. J Aoac Int 88:615–629. https://doi.org/10.1093/jaoac/88.2.615
dc.relation.referencesLehotay SJ, Son KA, Kwon H, Koesukwiwat U, Fu W, Mastovska K, Hoh E, Leepipatpiboon N (2010) Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. Journal of chromatography A 1217:2548–60. https://doi.org/10.1016/j.chroma.2010.01.044
dc.relation.referencesRejczak T, Tuzimski T (2015) A review of recent developments and trends in the QuEChERS sample preparation approach. Open Chem 13:. https://doi.org/10.1515/chem-2015-0109
dc.relation.referencesMasiá A, Suarez-Varela M, Llopis-Gonzalez A, Picó Y (2016) Determination of pesticides and veterinary drug residues in food by liquid chromatography-mass spectrometry: A review. Anal Chim Acta 936:40–61. https://doi.org/10.1016/j.aca.2016.07.023
dc.relation.referencesSanten JA van, Jacob G, Singh AL, Aniebok V, Balunas MJ, Bunsko D, Neto FC, Castaño-Espriu L, Chang C, Clark TN, Little JLC, Delgadillo DA, Dorrestein PC, Duncan KR, Egan JM, Galey MM, Haeckl FPJ, Hua A, Hughes AH, Iskakova D, Khadilkar A, Lee J-H, Lee S, LeGrow N, Liu DY, Macho JM, McCaughey CS, Medema MH, Neupane RP, O’Donnell TJ, Paula JS, Sanchez LM, Shaikh AF, Soldatou S, Terlouw BR, Tran TA, Valentine M, Hooft JJJ van der, Vo DA, Wang M, Wilson D, Zink KE, Linington RG (2019) The Natural Products Atlas: An Open Access Knowledge Base for Microbial Natural Products Discovery. ACS Cent Sci 5:1824–1833. https://doi.org/10.1021/acscentsci.9b00806
dc.relation.referencesAçıkalın B, Sanlier N (2021) Coffee and its effects on the immune system. Trends Food Sci Technol 114:625–632. https://doi.org/10.1016/j.tifs.2021.06.023
dc.relation.referencesSchrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA (2016) Untargeted Metabolomics Strategies—Challenges and Emerging Directions. J Am Soc Mass Spectr 27:1897–1905. https://doi.org/10.1007/s13361-016-1469-y
dc.relation.referencesFujimoto H, Narita Y, Iwai K, Hanzawa T, Kobayashi T, Kakiuchi M, Ariki S, Wu X, Miyake K, Tahara Y, Ikezaki H, Fukunaga T, Toko K (2021) Bitterness compounds in coffee brew measured by analytical instruments and taste sensing system. Food Chem 342:128228. https://doi.org/10.1016/j.foodchem.2020.128228
dc.relation.referencesGökmen V, Morales F (2014) Encyclopedia of Food Safety. Process Contam 404–408. https://doi.org/10.1016/b978-0-12-378612-8.00209-2
dc.relation.referencesOuakhssase A, Fatini N, Addi EA (2021) A facile extraction method followed by UPLC-MS/MS for the analysis of aflatoxins and ochratoxin A in raw coffee beans. Food Addit Contam: Part A 38:1551–1560. https://doi.org/10.1080/19440049.2021.1925165
dc.relation.referencesAngioni A, Russo M, Rocca CL, Pinto O, Mantovani A (2022) Modified Mycotoxins, a Still Unresolved Issue. Chemistry 4:1498–1514. https://doi.org/10.3390/chemistry4040099
dc.relation.referencesLudwig IA, Bravo J, Peña MPD, Cid C (2013) Effect of sugar addition (torrefacto) during roasting process on antioxidant capacity and phenolics of coffee. Lwt - Food Sci Technology 51:553–559. https://doi.org/10.1016/j.lwt.2012.12.010
dc.relation.referencesGomez-Tejedor J (1902) ES28829A1. Un procedimiento mecánico para tostar café. European Patent Office https://worldwide.espacenet.com/patent/search?q=pn%3DES28829A1
dc.relation.referencesGomez-Tejedor J (1907) ES39494A1. Mejoras en el procedimiento de torrefacción del café con los medios para llevarlo a cabo. European Patent Office https://worldwide.espacenet.com/patent/search?q=pn%3DES39494A1
dc.relation.referencesBOE (2012) Royal Decree 1676/2012, of December 14, which approves the quality standard for coffee
dc.relation.referencesCEN (2015) Food analysis. Determination of acrylamide in food by liquid chromatography tandem mass spectrometry (LC-ESI-MS/MS). EN 16618:2015. https://doi.org/10.3403/30272429
dc.relation.referencesBreidbach A, Bouten K, Kroeger-Negiota K, Stroka J, Ulberth F (2013) LC-MS based method of analysis for the simultaneous determination of four mycotoxins in cereals and feed
dc.relation.referencesGałuszka A, Migaszewski Z, Namieśnik J (2013) The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC Trends Anal Chem 50:78–84. https://doi.org/10.1016/j.trac.2013.04.010
dc.relation.referencesMaestroni B, Cannavan A (2011) Determining Mycotoxins and Mycotoxigenic Fungi in Food and Feed. Part Determining Mycotoxins Food Feed 3–36. https://doi.org/10.1533/9780857090973.1.3
dc.relation.referencesTroise AD, Fiore A, Fogliano V (2014) Quantitation of Acrylamide in Foods by High-Resolution Mass Spectrometry. J Agr Food Chem 62:74–79. https://doi.org/10.1021/jf404205b
dc.relation.referencesSulyok M, Stadler D, Steiner D, Krska R (2020) Validation of an LC-MS/MS-based dilute-and-shoot approach for the quantification of > 500 mycotoxins and other secondary metabolites in food crops: challenges and solutions. Anal Bioanal Chem 412:2607–2620. https://doi.org/10.1007/s00216-020-02489-9
dc.relation.referencesWang J, Cai Z, Zhang N, Hu Z, Zhang J, Ying Y, Zhao Y, Feng L, Zhang J, Wu P (2022) A novel single step solid-phase extraction combined with bromine derivatization method for rapid determination of acrylamide in coffee and its products by stable isotope dilution ultra-performance liquid chromatography tandem triple quadrupole electrospray ionization mass spectrometry. Food Chem 388:132977. https://doi.org/10.1016/j.foodchem.2022.132977
dc.relation.referencesSoto L, Fabian N, Garzón DA, Ahumada DA (2020) Development of Reference Material of Mercury in Fish: A comparison of different alternatives to homogeneity assessment
dc.relation.referencesDebegnach F, Brera C, Mazzilli G, Sonego E, Buiarelli F, Ferri F, Rossi P, Collini G, Santis B (2020) Optimization and validation of a LC-HRMS method for aflatoxins determination in urine samples. Mycotoxin Res 36:257–266. https://doi.org/10.1007/s12550-020-00389-6
dc.relation.referencesWenzl T, Haedrich J, Schaechtele A, Piotr R, Stroka J, Eppe G, Scholl G (2016) Guidance Document on the Estimation of LOD and LOQ for Measurements in the Field of Contaminants in Food and Feed
dc.relation.referencesSun Q, Dong Y, Wen X, Zhang X, Hou S, Zhao W, Yin D (2023) A review on recent advances in mass spectrometry analysis of harmful contaminants in food. Front Nutr 10:1244459. https://doi.org/10.3389/fnut.2023.1244459
dc.relation.referencesDesmarchelier A, Hamel J, Delatour T (2019) Sources of overestimation in the analysis of acrylamide-in coffee by liquid chromatography mass spectrometry. J Chromatogr 1610:460566. https://doi.org/10.1016/j.chroma.2019.460566
dc.relation.referencesDesmarchelier A, Bebius A, Reding F, Griffin A, Fernandez MA, Beasley J, Clauzier E, Delatour T (2022) Towards a consensus LC-MS/MS method for the determination of acrylamide in food that prevents overestimation due to interferences. Food Addit Contam Part 1–13. https://doi.org/10.1080/19440049.2021.2022773
dc.relation.referencesDelatour T, Desmarchelier A, Stadler RH (2022) Challenges in the measurement of acrylamide in food by confirmatory methods. Curr Opin Food Sci 48:100951. https://doi.org/10.1016/j.cofs.2022.100951
dc.relation.referencesMerhi A, Kordahi R, Hassan HF (2022) A review on the pesticides in coffee: Usage, health effects, detection, and mitigation. Frontiers Public Heal 10:1004570. https://doi.org/10.3389/fpubh.2022.1004570
dc.relation.referencesKhaneghah AM, Fakhri Y, Abdi L, Coppa CFSC, Franco LT, Oliveira CAF de (2019) The concentration and prevalence of ochratoxin A in coffee and coffee-based products: A global systematic review, meta-analysis and meta-regression. Fungal Biol 123:611–617. https://doi.org/10.1016/j.funbio.2019.05.012
dc.relation.referencesLeviet T, Truchement B (1988) ES2003891. Process and apparatus for controlling the roasting degree of torrefacto, especially, coffee. Oficina Española de Patentes y Marcas OEPM https://consultas2.oepm.es/pdf/ES/0000/000/02/00/38/ES-2003891_A6.pdf
dc.relation.referencesGalmiche M, Rodrigues A, Motsch E, Delhomme O, François Y, Millet M (2022) The use of pseudo‐MRM for a sensitive and selective detection and quantification of polycyclic aromatic compounds by tandem mass spectrometry. Rapid Commun Mass Spectrom 36:e9307. https://doi.org/10.1002/rcm.9307
dc.relation.referencesSzolar OHJ, Rost H, Braun R, Loibner AP (2002) Analysis of Polycyclic Aromatic Hydrocarbons in Soil: Minimizing Sample Pretreatment Using Automated Soxhlet with Ethyl Acetate as Extraction Solvent. Anal Chem 74:2379–2385. https://doi.org/10.1021/ac015739l
dc.relation.referencesSurma M, Sadowska-Rociek A, Cieślik E (2014) The application of d-SPE in the QuEChERS method for the determination of PAHs in food of animal origin with GC–MS detection. Eur Food Res Technol 238:1029–1036. https://doi.org/10.1007/s00217-014-2181-4
dc.relation.referencesParveen K, Rafique U (2017) Adsorptive capacity of alumina and cobalt doped alumina hybrid for the removal of polyaromatic hydrocarbons: kinetics and isotherm study. Digest Journal of Nanomaterials and Biostructures 12:621–630
dc.relation.referencesMateos R, Oliveira CM, Díez-Pascual AM, Vera-López S, Andrés MPS, Silva RJNB da (2020) Impact of recovery correction or subjecting calibrators to sample preparation on measurement uncertainty: PAH determinations in waters. Talanta 207:120274. https://doi.org/10.1016/j.talanta.2019.120274
dc.relation.referencesShamsipur M, Hassan J (2010) A novel miniaturized homogenous liquid-liquid solvent extraction-high performance liquid chromatographic-fluorescence method for determination of ultra traces of polycyclic aromatic hydrocarbons in sediment samples. Journal of chromatography A 1217:4877–82. https://doi.org/10.1016/j.chroma.2010.05.038
dc.relation.referencesJánská M, Tomaniová M, Hajšlová J, Kocourek V (2006) Optimization of the procedure for the determination of polycyclic aromatic hydrocarbons and their derivatives in fish tissue: Estimation of measurements uncertainty. Food Addit Contam 23:309–325. https://doi.org/10.1080/02652030500401207
dc.relation.referencesWan Y-C, Kong Z-L, Chao Y-H, Teng C-F, Yang D-J (2022) Optimization of QuEChERS and high performance liquid chromatography-fluorescence detection conditions to assess the impact of preparation procedures on EU priority PAHs in coffee samples and their PAHs consumption risk. J Food Drug Anal 30:630–643. https://doi.org/10.38212/2224-6614.3436
dc.relation.referencesJimenez A, Adisa A, Woodham C, Saleh M (2014) Determination of polycyclic aromatic hydrocarbons in roasted coffee. J Environ Sci Heal Part B 49:828–835. https://doi.org/10.1080/03601234.2014.938552
dc.relation.referencesGarcia DM, Huang SK, Stansbury WF (1996) Optimization of the atmospheric pressure chemical ionization liquid chromatography mass spectrometry interface. J Am Soc Mass Spectrom 7:59–65. https://doi.org/10.1016/1044-0305(95)00620-6
dc.relation.referencesPaíga P, Silva LMS, Delerue-Matos C (2016) Optimization of the Ion Source-Mass Spectrometry Parameters in Non-Steroidal Anti-Inflammatory and Analgesic Pharmaceuticals Analysis by a Design of Experiments Approach. J Am Soc Mass Spectrom 27:1703–1714. https://doi.org/10.1007/s13361-016-1459-0
dc.relation.referencesGhislain T, Faure P, Michels R (2012) Detection and Monitoring of PAH and Oxy-PAHs by High Resolution Mass Spectrometry: Comparison of ESI, APCI and APPI Source Detection. J Am Soc Mass Spectrom 23:530–536. https://doi.org/10.1007/s13361-011-0304-8
dc.relation.referencesHouessou JK, Delteil C, Camel V (2006) Investigation of Sample Treatment Steps for the Analysis of Polycyclic Aromatic Hydrocarbons in Ground Coffee. J Agric Food Chem 54:7413–7421. https://doi.org/10.1021/jf060802z
dc.relation.referencesAkdoğan A, Buttinger G, Wenzl T (2016) Single-laboratory validation of a saponification method for the determination of four polycyclic aromatic hydrocarbons in edible oils by HPLC-fluorescence detection. Food Addit Contam: Part A 33:215–224. https://doi.org/10.1080/19440049.2015.1127430
dc.relation.referencesNguyen LKP, Nguyen NP, Le MT, Bui QM, Cam TS (2023) Concentrations of polycyclic aromatic hydrocarbons in Vietnamese takeaway coffee: effects of coffee variety, roasting temperature and time. Food Addit Contam Part ahead-of-print:1–10. https://doi.org/10.1080/19440049.2023.2168067
dc.relation.referencesThiäner JB, Achten C (2017) Liquid chromatography–atmospheric pressure laser ionization–mass spectrometry (LC-APLI-MS) analysis of polycyclic aromatic hydrocarbons with 6–8 rings in the environment. Anal Bioanal Chem 409:1737–1747. https://doi.org/10.1007/s00216-016-0121-9
dc.relation.referencesSwain M (2012) chemicalize.org. J Chem Inf Model 52:613–615. https://doi.org/10.1021/ci300046g
dc.relation.referencesFiehn O, Robertson D, Griffin J, Werf M van der, Nikolau B, Morrison N, Sumner LW, Goodacre R, Hardy NW, Taylor C, Fostel J, Kristal B, Kaddurah-Daouk R, Mendes P, Ommen B van, Lindon JC, Sansone S-A (2007) The metabolomics standards initiative (MSI). Metabolomics 3:175–178. https://doi.org/10.1007/s11306-007-0070-6
dc.relation.referencesPena-Pereira F, Wojnowski W, Tobiszewski M (2020) AGREEAnalytical GREEnness Metric Approach and Software. Anal Chem 92:10076–10082. https://doi.org/10.1021/acs.analchem.0c01887
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.agrovocDesechos agrícolas
dc.subject.agrovocagricultural wastes
dc.subject.agrovocInocuidad alimentaria
dc.subject.agrovocfood safety
dc.subject.agrovocLimites máximos de residuos
dc.subject.agrovocmaximum residue limits
dc.subject.proposalOchratoxin A
dc.subject.proposalAcrylamide
dc.subject.proposalPesticides
dc.subject.proposalPolycyclic aromatic hydrocarbons
dc.subject.proposalStable isotope labeling
dc.subject.proposalValidation
dc.subject.proposalEco-friendly
dc.subject.proposalOcratoxin A
dc.subject.proposalPlaguicidas
dc.subject.proposalHidrocarburos aromáticos policíclicos
dc.subject.proposalMarcado con isótopos estables
dc.subject.proposalValidación
dc.subject.proposalAmbientalmente amigable
dc.subject.proposalAcrilamida
dc.title.translatedEvaluation of pesticide residues, mycotoxins and processing contaminants as key descriptors of chemical safety in the post-harvest of the coffee production chain in the Tolima region using analytical strategies based on Stable Isotope Labeling (SIL).
dc.type.coarhttp://purl.org/coar/resource_type/c_db06
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TD
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleBecas de Excelencia Doctoral del Bicentenario
oaire.awardtitleCOL 5025 IAEA project Coordinated Research Project D52039/Research contract 22177
oaire.fundernameMinisterio de ciencia, innovación y tecnología (MinCiencias)
oaire.fundernameInternational Atomic Energy Agency (IAEA)
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentGrupos comunitarios
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.orcid0000-0003-3566-5689
dc.contributor.cvlac0001104837
dc.contributor.scopus56089546400
dc.contributor.googlescholarnOAM6KsAAAAJ&hl=es&oi=ao


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito