Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.contributor.advisorMerchán Arenas, Diego Rolando
dc.contributor.advisorVargas Sáenz, Julio César
dc.contributor.authorFlórez Varón, Juan Sebastián
dc.date.accessioned2024-05-24T18:43:11Z
dc.date.available2024-05-24T18:43:11Z
dc.date.issued2024
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86156
dc.descriptionilustraciones, diagramas, fotografías
dc.description.abstractEn Colombia, diariamente se producen cerca de 1,5 millones de metros cúbicos de agua de producción en diversos campos petroleros. El objetivo de eliminar los vertimientos desafía el desarrollo de tecnologías que impulsen esta estrategia, asegurando la sostenibilidad y la preservación del medio ambiente sin comprometer la producción de crudo. A lo largo de este trabajo, se estudia el procedimiento para la producción y caracterización de una membrana dotada con un material inteligente en su matriz. En primera instancia, esta membrana es de naturaleza oleofílica y permite la eliminación de los contaminantes orgánicos presentes en el agua de producción. No obstante, al exponer la membrana a una irradiación con luz UV durante 10 minutos, su afinidad al aceite se invierte, transformándose en oleofóbica. Esto posibilita la remoción de los contaminantes de la matriz de la membrana y la regeneración de su capacidad de remoción. Esta membrana logró retirar hasta el 90,6% de los contaminantes asociados a grasas y aceites de una muestra de agua de producción sintética con concentraciones entre 90 mg/L y 250 mg/L. Además, se confirmó la inversión de la afinidad al aceite al exponerse a un estímulo de luz UV, lo que permitió recuperar la capacidad de retención de contaminantes de la membrana. La membrana también se sometió a estudios de análisis termogravimétrico y microscopia electrónica de barrido, que facilitaron la caracterización de su naturaleza. (Texto tomado de la fuente).
dc.description.abstractIn Colombia, approximately 1.5 million cubic meters of production water are generated daily in several oil fields. The goal of eliminating discharges challenges the development of technologies that drive this strategy, ensuring sustainability and environmental preservation without compromising crude oil production. Throughout this work, the procedure for producing and characterizing a membrane equipped with a smart material in its matrix is evaluated. Initially, this membrane is oleophilic and allows the removal of organic contaminants in production water. However, when the membrane is exposed to UV radiation for 10 minutes, its affinity for oil is reversed, transforming it into an oleophobic state; this enables the removal of contaminants from the membrane matrix and the regeneration of its removal capacity. This membrane successfully removed up to 90.6% of pollutants associated with fats and oils from a synthetic production water sample with concentrations between 90 mg/L and 250 mg/L. Additionally, the reversal of oil affinity was confirmed when exposed to UV radiation stimulus, allowing the recovery of the membrane's contaminant retention capacity. The membrane was also subjected to thermogravimetric analysis and scanning electron microscopy studies, facilitating the characterization of its nature.
dc.format.extentxviii, 93 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc660 - Ingeniería química::662 - Tecnología de explosivos, combustibles, productos relacionados
dc.titleEvaluación de la actividad adsorbente de un material inteligente y su operabilidad para la remoción de contaminantes orgánicos en aguas de producción
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ingeniería - Ingeniería Química
dc.description.researchareaProcesos catalíticos
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesAbu Hassan, M. A., Ariffin, M., Pei Lin, T., & Zainon Noor, Z. (2009). Coagulation and Flocculation Treatment of Wastewater in Textile Industry Using Chitosan. Journal of Chemical and Natural Resources Engineering, Vol. 4: 43-53.
dc.relation.referencesAlvarado Prieto, P. R. (2014). Mechanical properties characterization of advanced composite materials, a review. Bogotá: Science and air power collection.
dc.relation.referencesBelguidoum, K., Amira-Guebailia, H., Boulmokh, Y., & Houache, O. (2014). HPLC coupled to UV–vis detection for quantitative determination of phenolic compounds and caffeine in different brands of coffee in the Algerian market. Journal of the Taiwan Institute of Chemical Engineers, 1314-1320.
dc.relation.referencesBengisu, M., & Ferrara, M. (2018). Materials that move: Smart materials, intelligent design. Milan: SPRINGER.
dc.relation.referencesChemical Book. (28 de 12 de 2023). Chemical Book. Obtenido de 4-PHENYLAZOPHENOL(1689-82-3) IR1: https://www.chemicalbook.com/SpectrumEN_1689-82-3_IR1.htm
dc.relation.referencesChildress, A., & Brandt, J. (2000). Characterization of the Hydrophobicity of Polymeric Reverse Osmosis and Nanofiltration Membranes: Implications to Membrane Fouling. Desalination and Water Purification Research and Development Program Report.
dc.relation.referencesCobzaru, C., & Inglezakis, V. (2015). Ion Exchange: Progress in filtration and separation. Academic Press.
dc.relation.referencesComité Autónomo de la Regla Fiscal. (2022). Plan Financiero del Gobierno de 2023. Bogotá.
dc.relation.referencesDardor, D., Al-Maas, M., Minier-Matar, J., Janson, A., Sharma, R., Hassan, M. K., Adham, S. (2021). Protocol for Preparing Synthetic Solutions Mimicking Produced Water from Oil and Gas Operations. American Chemical Society, 6881-6892.
dc.relation.referencesECOPETROL. (2021). Gestión integral del agua. Bogotá: ECOPETROL .
dc.relation.referencesEkins, P., Vanner, R., & Firebrace, J. (2007). Zero emissions of oil in water from offshore oil and gas installations: economic and environmental implications. Journal of Cleaner Production, 1302-1315.
dc.relation.referencesEl-Mahalawy, A., Almotiri, R., Alkhamisi, M. M., & Wassel, A. (2022). On the Optoelectronic Performance of Solution-Processable N-(4-Methoxy-2-Nitrophenyl) Acetamide Microrods Thin Films for Efficient Light Detection Applications. Surfaces and Interfaces.
dc.relation.referencesEmo, B., Verma, S., Amritphale, S. S., & Das, S. (2017). Development of non-toxic self-healing X-ray radiation shielding bandages using smart gel. Cellulose, 24(7), 2939-2951.
dc.relation.referencesFaksness, L. G., Grinir, P. G., & Daling, P. S. (2004). Partitioning of semi-soluble organic compounds between the water phase and oil droplets in produced water. Marine Pollution Bulletin, 731-742.
dc.relation.referencesFaraji, A., Cuccarese, M., Masi, S., Mancini, I. M., & Caniani, D. (2021). Use of carbon materials for produced water treatment: a review on adsorption process and performance. International Journal of Environmental Science and Technology, 1-16.
dc.relation.referencesGabbott, P. (2008). Principles and applications of thermal analysis. Oxford: Blackwell publishing.
dc.relation.referencesGallego, J. (2020). Calidad del agua en Colombia: Análisis del contexto actual con visión territorial. Bogotá: DATAREPUBLICA.
dc.relation.referencesGlass, S., Mantel, T., Appold, M., Sen, S., Usman, M., Ernst, M., & Fliz, V. (2021). Amine-Terminated PAN Membranes as Anion-Adsorber Materials. Chemie Ingeniur Technik, 1396-1400.
dc.relation.referencesGlobal Industry Analysts. (2021). Global Produced Water Treatment Industry. Obtenido de ReportLinker: https://www.reportlinker.com/p06032674/Global-Produced-Water-Treatment-Industry.html?utm_source=GNW
dc.relation.referencesGreen, M. A., Ho-Baillie, A., & Snaith, H. J. (2014). The emergence of perovskite solar cells. Nature photonics, 506-514.
dc.relation.referencesGutiérrez Rico, A. ( 2018). La industria petrolera y el recurso hídrico: la conjunción de una industria ambientalmente sostenible. International Bar Association, Energy, Environment, Natural Resources and Infrastructure Law.
dc.relation.referencesHuang, S., Ras, R. H., & Tian, X. (2018). S. Huang, R.H.A. Ras, X. Tian, Antifouling membranes for oily wastewater treatment: Interplay between wetting and membrane fouling, Current Opinion in Colloid & Interface Science 36 (2018) 90–109. . Current Opinion in Colloid & Interface Science , 90-109.
dc.relation.referencesHuerta Quiñones, V. (2015). Caracterización termodinámica de un reservorio a alta presión y temperatura: caso estudio lote 64. Fuentes: El reventón energético, Vol. 13, No. 1.
dc.relation.referencesIDEAM. (2019). Estudio Nacional del Agua. Bogotá: Ministerio de Ambiente y Desarrollo Sostenible.
dc.relation.referencesIDEAM. (2022). Riesgos en la hidrología colombiana. Bogotá: IDEAM.
dc.relation.referencesImam, N. G., Aquilanti, G., Azab, A. A., & Ali, S. E. (2021). Correlation between structural asymmetry and magnetization in Bi-doped LaFeO3 perovskite: a combined XRD and synchrotron radiation XAS study. J Mater Sci: Mater Electron, 3361–3376.
dc.relation.referencesJiménez, S. M. (2017). State of the art of produced water treatment. Chemosphere, 186-208.
dc.relation.referencesLee, K., & Neff, J. (2011). Produced water: Enviromental risks and advances in mitigation technologies. Nueva York: Springer.
dc.relation.referencesLeng, Y. (2013). Materials characterization: Introduction to Microscopic and Spectroscopic Methods. Weinheim: Wiley - VCH.
dc.relation.referencesLiu, W., Bian, S., Li, L., Samuelson, L., Kumar, J., & Tripathy, S. (2000). Enzymatic Synthesis of Photoactive Poly(4-phenylazophenol). Chemistry of materials, 12(6), 1577–1584.
dc.relation.referencesLopez, S. F. (2005). Simulación numérica y correlación experimental de las propiedades mecánicas en las aleaciones con memoria de forma . Barcelona: Universidad Politécnica de Cataluña.
dc.relation.referencesLuo, C., Ji, X., Hou, S., Eidson, N., Fan, X., Liang, Y., Wang, C. (2018). Azo Compounds Derived from Electrochemical Reduction of Nitro Compounds for High Performance Li-Ion Batteries. Advanced materials, 30, 1706498.
dc.relation.referencesNelson, W. G. (2010). Piezoelectric Materials: Structure, Properties and Applications. New York: Nova Science Publishers.
dc.relation.referencesONU. (2019). Informe de los Objetivos de Desarrollo Sostenible. Nueva York: ONU.
dc.relation.referencesONU. (2020). Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos 2020. Paris: UN Water.
dc.relation.referencesPan, M., Zhou, Q., Liu, J., He, Q., & Gong, C. (2022). Electrochromic materials containing pyridinium salt and benzoate moieties with dual-colored and long-life performance. Solar Energy Materials and Solar Cells , 11712.
dc.relation.referencesPlatt, J. R. (1961). Electrochromism, a Possible Change of Color Producible in Dyes by an Electric Field. The Journal of Chemical Physics, 862.
dc.relation.referencesQu, X., Alvarez, P., & Li, Q. (2013). Applications of nanotechnology in water and wastewater treatment. Water research, 3931-3946.
dc.relation.referencesRiazi, M. R. (2005). Characterization and Properties of Petroleum Fractions. West Conshohocken, PA: AMERICAN SOCIETY FOR TESTING AND MATERIALS.
dc.relation.referencesSalahi, A., Noshadi, I., Badrnezhad, r., & Kanjilal, B. (2013). Nano-porous membrane process for oily wastewater treatment: Optimization using response surface methodology. Journal of Environmental Chemical Engineering, 218-228.
dc.relation.referencesSaththasivam, J., Loganathan, K., & Sarp, S. (2016). An overview of oil–water separation using gas flotation systems. Chemosphere, 671-680.
dc.relation.referencesSenjiang, Y., Long, M., Jingwen, Z., Linghui, H., & N., Y. (2019). Localization of wrinkle patterns by crack-tip induced plasticity: Experiments and simulations. International Journal of Solids and Structures, 108-119.
dc.relation.referencesSigma Aldrich. (27 de 01 de 2024). Tabla y gráfico de espectros infrarrojos. Obtenido de TABLA DE ESPECTRO DE INFRARROJOS POR INTERVALO DE FRECUENCIA: https://www.sigmaaldrich.com/CO/es/technical-documents/technical-article/analytical-chemistry/photometry-and-reflectometry/ir-spectrum-table
dc.relation.referencesStewart, M., & Arnold, K. E. (2011). Produced water treatment field manual. Oxford: Elsevier.
dc.relation.referencesTamunokuro, K., Ramirez-Canon, A., Molinari, M., & Angelis-Dimakis, A. (2020). Review of oilfield produced water treatment technologies. Chemosphere.
dc.relation.referencesToupin, M., & Bélanger, D. (2007). Thermal Stability Study of Aryl Modified Carbon Black by in Situ Generated Diazonium Salt. The Journal of Physical Chemistry C, 111 (14) , 5394-5401.
dc.relation.referencesTummons, E. N., Tarabara, V. V., Wei Chew, J., & Fane, A. G. (2016). Behavior of oil droplets at the membrane surface during crossflow microfiltration of oil–water emulsions. Journal of Membrane Science, 211-224.
dc.relation.referencesWang, H., Liu, Z., Hui, L., Ma, L., Wang, X., & Zhang, B. (2020). Utilization of Xylan-rich Steam Explosion Liquid from Processing of Poplar for Hydrogel Synthesis. Bioresources, 2525-2539.
dc.relation.referencesWang, Z., Lin, B., Sha, G., Zhang, Y., Yu, J., & Li, L. (2011). A Combination of Biodegradation and Microfiltration for Removal of Oil and Suspended Solids from Polymer-Containing Produced Water. SPE Americas E&P Health, Safety, Security, and Environmental Conference.
dc.relation.referencesWorld Health Organization. (2019). Water, sanitation, hygiene and health. Suiza: A PRIMER FOR HEALTH PROFESSIONALS.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalAgua de producción
dc.subject.proposalMaterial inteligente
dc.subject.proposalProducción de membranas
dc.subject.proposalProceso de filtración-adsorción
dc.subject.proposalRemoción de grasas y aceites
dc.subject.proposalProduction water
dc.subject.proposalSmart material
dc.subject.proposalMembrane production
dc.subject.proposalFiltrationadsorption process
dc.subject.proposalOil and grease removal
dc.subject.unescoContaminación petrolera
dc.subject.unescoOil pollution
dc.subject.unescoTecnología química
dc.subject.unescoChemical technology
dc.subject.unescoTratamiento del agua
dc.subject.unescoWater treatment
dc.title.translatedEvaluation of the adsorbent activity of a smart material and its operability for the removal of organic contaminants in produced waters
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentInvestigadores


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial-SinDerivadas 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito