Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorSpassieva, Stefanka
dc.contributor.advisorVásquez Araque, Neil Aldrin
dc.contributor.authorMuñoz Gil, Susana
dc.date.accessioned2024-05-28T18:35:18Z
dc.date.available2024-05-28T18:35:18Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86170
dc.descriptionIlustraciones
dc.description.abstractThe use of chemotherapeutic agents such as taxanes, paclitaxel, and docetaxel, can cause neurotoxicity leading to Taxane-Induced Peripheral Neuropathy (TIPN) side effect. Previous research showed that sphingolipid (SL) metabolism was deregulated in TIPN. Specifically, the research showed an overproduction of atypical SL called 1-deoxysphingolipids (deoxySL) as a result of taxane treatment. The deoxySL have a slower degradation compared to the canonical SL, and when produced in excess, tend to accumulate, leading to neurotoxicity. The first goal of this research aimed at evaluating the neurotoxicity of individual deoxySL. We tested the toxicity of the individual deoxySL, in two neuroblastoma cell model, KCNR and Neuro2a by LDH cytotoxicity assay and by measuring morphological changes such as neurite swellings and cell rounding. Our results showed that 1-deoxysphinganine was the most cytotoxic of the 1-deoxysphingoid bases for both neuroblastoma cell lines, KCNR and N2a. DeoxySL treatment showed morphological changes. In differentiated N2a cells, the individual deoxySL induced neurite swellings at different time points or concentrations, suggesting that neurite swellings are likely a transient neurotoxic effect of deoxySL treatment. In KCNR neuroblastoma cells, the neurotoxic effects of deoxySL manifested in rounding of the cells’ bodies. Differences in cytotoxicity and neurite swellings were evidenced in the neurotoxic effects of the 1-deoxysphingoid bases and the 1-deoxyceramides, also in the double bond isomers 4E and 14Z 1-deoxysphingosines and 1-deoxyceramides. In addition, to test if the neurotoxic effects of deoxySL include effects on actin organization we used immunocytochemistry and live cell fluorescent imaging to visualize cellular actin architecture. Our results showed that in KCRN cells, deoxySL caused actin stress fibers disruption and re-organization to cell cortex. In primary dorsal root ganglia (DRG) neurons, neurite swellings were also evidenced, and neurite actin distribution. Additionally, we addressed the question if deoxySLs’ neurotoxicity is mediated by the sphingosine-1-phosphate receptors (S1PRs) We utilized a broader functional antagonist of S1PRs, FTY720, in combination with deoxySL to identify if there is attenuation of neuritic damage caused by deoxySL. Results for the FTY720 treatment did not show attenuation of neuritic damage due to deoxySL, suggesting that other mechanisms than S1P signaling, might interact or modulate deoxySL toxicity. In conclusion, neurotoxicity of deoxySL resulted in cytotoxicity, and morphological changes such as neurite swellings and rounding cells, in neuroblastoma cell lines, including actin re-organization in KCNR cells and DRG neurons. S1P signaling and other mechanisms that might be implicated in deoxySL neurotoxicity must continue to be studied.
dc.description.abstractEl uso de agentes quimioterapéuticos como taxanos, paclitaxel y docetaxel, puede causar neurotoxicidad que conlleva a un efecto secundario de neuropatía periférica inducida por taxanos (TIPN). Investigaciones anteriores mostraron que el metabolismo de los esfingolípidos (SL) estaba desregulado en la TIPN. Esta investigación mostró una sobreproducción de SL atípico llamado 1-deoxiesfingolípidos (deoxySL) como resultado del tratamiento con taxanos. Los deoxySL tienen una degradación más lenta en comparación con los SL canónicos y, cuando se producen en exceso, tienden a acumularse, lo que lleva a la neurotoxicidad. El primer objetivo de esta investigación consistía en evaluar la neurotoxicidad de los deoxySL individuales. Probamos la toxicidad de los deoxySL individuales, en dos modelos de células de neuroblastoma, KCNR y Neuro2a mediante el ensayo de citotoxicidad LDH y midiendo los cambios morfológicos, como las hinchazones de neuritas y el redondeo celular. Nuestros resultados mostraron que la 1-deoxiesfinganina fue la más citotóxica de las bases 1-deoxiesfingoide para ambas líneas celulares de neuroblastoma, KCNR y N2a. El tratamiento con DeoxySL mostró cambios morfológicos. En células N2a diferenciadas, los deoxySL individuales indujeron a hinchazones de neuritas en diferentes momentos o concentraciones, lo que sugiere que las hinchazones de neuritas son probablemente un efecto neurotóxico transitorio del tratamiento con deoxySL. En las células de neuroblastoma KCNR, los efectos neurotóxicos de deoxySL se manifestaron en el redondeo de los cuerpos de las células. Las diferencias en la citotoxicidad y la hinchazón de las neuritas se evidenciaron en los efectos neurotóxicos de las bases 1-deoxiesfingoide y las 1-deoxiceramidas, también en los isómeros de doble enlace 4E y 14Z 1-deoxiesfingosinas y 1-deoxiceramidas. Además, para probar si los efectos neurotóxicos de deoxySL incluyen efectos sobre la organización de actina, utilizamos inmunocitoquímica e imágenes fluorescentes de células vivas para visualizar la arquitectura de actina celular. Nuestros resultados mostraron que en las células KCRN, deoxySL provocó la disrupción y reorganización de las fibras de estrés de actina en la corteza celular. En las neuronas DRG por sus siglas en inglés (Dorsal Root Ganglia), también se evidenciaron hinchazones de neuritas y distribución de actina de neuritas. Además, abordamos la cuestión de si la neurotoxicidad de deoxySL está mediada por los receptores de esfingosina-1-fosfato (S1PR). Utilizamos un antagonista funcional más amplio de S1PR, FTY720, en combinación con los deoxySL para identificar si hay atenuación del daño neurítico causado por los deoxySL. Los resultados del tratamiento con FTY720 no mostraron atenuación del daño neurítico causado por los deoxySL, lo que sugiere que otros mecanismos, además de la señalización de S1P podrían interactuar o modular la toxicidad de los deoxySL. En conclusión, la neurotoxicidad de los deoxySL resultó en citotoxicidad y cambios morfológicos tales como hinchazones de neuritas y células redondeadas en líneas celulares de neuroblastoma, incluida la reorganización de actina en células KCNR y neuronas DRG. La señalización de S1P y otros mecanismos que podrían estar implicados en la neurotoxicidad de los deoxySL deben continuar estudiándose.
dc.format.extent75 páginas
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc660 - Ingeniería química::666 - Cerámica y tecnologías afines
dc.titleNeurotoxicity of deoxysphingolipids in an in vitro model of taxane induced peripheral neuropathy
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnología
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ciencias- Biotecnología
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedLaReferencia
dc.relation.referencesAcevedo, J. C. (2009). Dolor y cáncer (Guadalupe SA, Ed.).
dc.relation.referencesAlaamery, M., Albesher, N., Aljawini, N., Alsuwailm, M., Massadeh, S., Wheeler, M. A., Chao, C. C., & Quintana, F. J. (2021). Role of sphingolipid metabolism in neurodegeneration. Journal of Neurochemistry, 158(1), 25–35. https://doi.org/10.1111/JNC.15044
dc.relation.referencesAlecu, I., Othman, A., Penno, A., Saied, E. M., Arenz, C., Von Eckardstein, A., & Hornemann, A. T. (2017). Cytotoxic 1-deoxysphingolipids are metabolized by a cytochrome P450-dependent pathway. Journal of Lipid Research, 58(1), 60–71. https://doi.org/10.1194/JLR.M072421/ATTACHMENT/CF587391-5E77-4C92-95E5-B112832A68F8/MMC1.PDF
dc.relation.referencesAlecu, I., Tedeschi, A., Behler, N., Wunderling, K., Lamberz, C., Lauterbach, M. A. R., Gaebler, A., Ernst, D., Van Veldhoven, P. P., Al-Amoudi, A., Latz, E., Othman, A., Kuerschner, L., Hornemann, T., Bradke, F., Thiele, C., & Penno, A. A. (2017). Localization of 1-deoxysphingolipids to mitochondria induces mitochondrial dysfunction. Journal of Lipid Research, 58(1), 42. https://doi.org/10.1194/JLR.M068676
dc.relation.referencesAmerican Cancer Society. (2020, November 20). ¿Qué Es El Cáncer? https://www.cancer.org/es/tratamiento/como-comprender-su-diagnostico/que-es-el-cancer.html
dc.relation.referencesAndersen Hammond, E., Pitz, M., & Shay, B. (2019). Neuropathic Pain in Taxane-Induced Peripheral Neuropathy: Evidence for Exercise in Treatment. Neurorehabilitation and Neural Repair, 33(10), 792–799. https://doi.org/10.1177/1545968319860486
dc.relation.referencesArgyriou, A. A., Koltzenburg, M., Polychronopoulos, P., Papapetropoulos, S., & Kalofonos, H. P. (2008). Peripheral nerve damage associated with administration of taxanes in patients with cancer. Critical Reviews in Oncology/Hematology, 66(3), 218–228. https://doi.org/10.1016/J.CRITREVONC.2008.01.008
dc.relation.referencesBecker, K. A., Uerschels, A. K., Goins, L., Doolen, S., McQuerry, K. J., Bielawski, J., Sure, U., Bieberich, E., Taylor, B. K., Gulbins, E., & Spassieva, S. D. (2020). Role of 1-Deoxysphingolipids in docetaxel neurotoxicity. Journal of Neurochemistry, 154(6), 662–672. https://doi.org/10.1111/JNC.14985
dc.relation.referencesBertea, M., Rütti, M. F., Othman, A., Marti-Jaun, J., Hersberger, M., von Eckardstein, A., & Hornemann, T. (2010). Deoxysphingoid bases as plasma markers in Diabetes mellitus. Lipids in Health and Disease, 9, 84. https://doi.org/10.1186/1476-511X-9-84
dc.relation.referencesBlasco, A., & Caballero, C. (2019, December 16). Toxicidad de los tratamientos oncológicos - SEOM: Sociedad Española de Oncología Médica © 2019. https://seom.org/guia-actualizada-de-tratamientos/toxicidad-de-los-tratamientos-oncologicos?showall=1
dc.relation.referencesBoso, F., Armirotti, A., Taioli, F., Ferrarini, M., Nobbio, L., Cavallaro, T., & Fabrizi, G. M. (2019). Deoxysphingolipids as candidate biomarkers for a novel SPTLC1 mutation associated with HSAN-I. Neurology Genetics, 5(6), e365. https://doi.org/10.1212/NXG.0000000000000365
dc.relation.referencesBouscary, A., Quessada, C., René, F., Spedding, M., Turner, B. J., Henriques, A., Ngo, S. T., & Loeffler, J. P. (2021). Sphingolipids metabolism alteration in the central nervous system: Amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. Seminars in Cell & Developmental Biology, 112, 82–91. https://doi.org/10.1016/J.SEMCDB.2020.10.008
dc.relation.referencesBrewer, J. R., Morrison, G., Dolan, M. E., & Fleming, G. F. (2016). Chemotherapy-induced peripheral neuropathy: Current status and progress. Gynecologic Oncology, 140(1), 176–183. https://doi.org/10.1016/J.YGYNO.2015.11.011
dc.relation.referencesCancer Quest. (2022). Tablas de Tratamientos de Cáncer | CancerQuest. https://www.cancerquest.org/es/para-los-pacientes/tratamientos/tablas-de-tratamientos-de-cancer
dc.relation.referencesCanta, A., Pozzi, E., & Carozzi, V. A. (2015). Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy (CIPN). Toxics, 3(2), 198. https://doi.org/10.3390/TOXICS3020198
dc.relation.referencesCardona, A. F., Ortiz, L., Reveiz, L., Becerra, H., Arango, N., Santacruz, J., Otero, J., Carranza, H., Ojeda, K., Rojas, L., Vargas, C., Rodriguez, M., Castro, C., Camacho, M., Serrano, S., Torres, D., & Balaña, C. (2010). Neuropatía inducida por el tratamiento médico del cáncer. Médicas UIS. https://revistas.uis.edu.co/index.php/revistamedicasuis/article/view/1439
dc.relation.referencesCarreira, A. C., Santos, T. C., Lone, M. A., Zupančič, E., Lloyd-Evans, E., de Almeida, R. F. M., Hornemann, T., & Silva, L. C. (2019). Mammalian sphingoid bases: Biophysical, physiological and pathological properties. Progress in Lipid Research, 75, 100988. https://doi.org/10.1016/J.PLIPRES.2019.100988
dc.relation.referencesCDC. (2021, May 12). Efectos secundarios del tratamiento contra el cáncer. Centro de Control y Prevención de Enfermedades.
dc.relation.referencesChilds, D. S., Le-Rademacher, J. G., McMurray, R., Bendel, M., O’Neill, C., Smith, T. J., & Loprinzi, C. L. (2021). Randomized Trial of Scrambler Therapy for Chemotherapy-Induced Peripheral Neuropathy: Crossover Analysis. Journal of Pain and Symptom Management, 61(6), 1247–1253. https://doi.org/10.1016/J.JPAINSYMMAN.2020.11.025
dc.relation.referencesClarke, C. J., D’Angelo, G., & Silva, L. C. (2020). Sphingolipid metabolism and signaling: embracing diversity. FEBS Letters, 594(22), 3579–3582. https://doi.org/10.1002/1873-3468.13979
dc.relation.referencesCohan, S., Lucassen, E., Smoot, K., Brink, J., & Chen, C. (2020). Sphingosine-1-Phosphate: Its Pharmacological Regulation and the Treatment of Multiple Sclerosis: A Review Article. Biomedicines, 8(7). https://doi.org/10.3390/BIOMEDICINES8070227
dc.relation.referencesColvin, L. A. (2019). Chemotherapy-induced peripheral neuropathy (CIPN): where are we now? Pain, 160(Suppl 1), S1. https://doi.org/10.1097/J.PAIN.0000000000001540
dc.relation.referencesCuadros, R., Montejo de Garcini, E., Wandosell, F., Faircloth, G., Fernández-Sousa, J. M., & Avila, J. (2000). The marine compound spisulosine, an inhibitor of cell proliferation, promotes the disassembly of actin stress fibers. Cancer Letters, 152(1), 23–29. https://doi.org/10.1016/S0304-3835(99)00428-0
dc.relation.referencesCuenta de Alto Costo. (2020, February 4). https://cuentadealtocosto.org/site/cancer/dia-mundial-contra-el-cancer-2020/
dc.relation.referencesFletcher, D. A., & Mullins, R. D. (2010). Cell mechanics and the cytoskeleton. Nature 2010 463:7280, 463(7280), 485–492. https://doi.org/10.1038/nature08908
dc.relation.referencesFridman, V., Zarini, S., Sillau, S., Harrison, K., Bergman, B. C., Feldman, E. L., Reusch, J. E. B., & Callaghan, B. C. (2021). Altered plasma serine and 1-deoxydihydroceramide profiles are associated with diabetic neuropathy in type 2 diabetes and obesity. Journal of Diabetes and Its Complications, 35(4), 107852. https://doi.org/10.1016/J.JDIACOMP.2021.107852
dc.relation.referencesGalih Haribowo, A., Thomas Hannich, J., Michel, A. H., Megyeri, M., Schuldiner, M., Kornmann, B., & Riezman, H. (2019). Cytotoxicity of 1-deoxysphingolipid unraveled by genome-wide genetic screens and lipidomics in Saccharomyces cerevisiae. Molecular Biology of the Cell, 30(22), 2814. https://doi.org/10.1091/MBC.E19-07-0364
dc.relation.referencesGoins, L., & Spassieva, S. (2018). Sphingoid bases and their involvement in neurodegenerative diseases. Advances in Biological Regulation, 70, 65–73. https://doi.org/10.1016/J.JBIOR.2018.10.004
dc.relation.referencesGomez-Larrauri, A., Presa, N., Dominguez-Herrera, A., Ouro, A., Trueba, M., & Gomez-Munoz, A. (2020). Role of bioactive sphingolipids in physiology and pathology. Essays in Biochemistry, 64(3), 579–589. https://doi.org/10.1042/EBC20190091
dc.relation.referencesGonzalez-Cabrera, P. J., Brown, S., Studer, S. M., & Rosen, H. (2014). S1P signaling: new therapies and opportunities. F1000Prime Reports, 6. https://doi.org/10.12703/P6-109
dc.relation.referencesGui, T., Li, Y., Zhang, S., Alecu, I., Chen, Q., Zhao, Y., Hornemann, T., Kullak-Ublick, G. A., & Gai, Z. (2021). Oxidative stress increases 1-deoxysphingolipid levels in chronic kidney disease. Free Radical Biology and Medicine, 164, 139–148. https://doi.org/10.1016/J.FREERADBIOMED.2021.01.011
dc.relation.referencesGüntert, T., Hänggi, P., Othman, A., Suriyanarayanan, S., Sonda, S., Zuellig, R. A., Hornemann, T., & Ogunshola, O. O. (2016). 1-Deoxysphingolipid-induced neurotoxicity involves N-methyl-d-aspartate receptor signaling. Neuropharmacology, 110, 211–222. https://doi.org/10.1016/J.NEUROPHARM.2016.03.033
dc.relation.referencesHannun, Y. A., & Obeid, L. M. (2018). Sphingolipids and their metabolism in physiology and disease. Nature Reviews. Molecular Cell Biology, 19(3), 175. https://doi.org/10.1038/NRM.2017.107
dc.relation.referencesHernández-Coronado, C. G., Guzmán, A., Castillo-Juárez, H., Zamora-Gutiérrez, D., & Rosales-Torres, A. M. (2019). Sphingosine-1-phosphate (S1P) in ovarian physiology and disease. Annales d’endocrinologie, 80(5–6), 263–272. https://doi.org/10.1016/J.ANDO.2019.06.003
dc.relation.referencesHertz, D. L., Tofthagen, C., & Faithfull, S. (2021). Predisposing Factors for the Development of Chemotherapy-Induced Peripheral Neuropathy (CIPN). Diagnosis, Management and Emerging Strategies for Chemotherapy-Induced Neuropathy, 19–51. https://doi.org/10.1007/978-3-030-78663-2_2
dc.relation.referencesHolmes, F. A., Walters, R. S., Theriault, R. L., Buzdar, A. U., Frye, D. K., Hortobagyi, G. N., Forman, A. D., Newton, L. K., & Raber, M. N. (1991). Phase II trial of taxol, an active drug in the treatment of metastatic breast cancer. Journal of the National Cancer Institute, 83(24), 1797–1805. https://doi.org/10.1093/JNCI/83.24.1797-A
dc.relation.referencesHopkins, B. (2019). Growth cone.
dc.relation.referencesHornemann, T. (2021). Mini review: Lipids in Peripheral Nerve Disorders. Neuroscience Letters, 740, 135455. https://doi.org/10.1016/J.NEULET.2020.135455
dc.relation.referencesHornemann, T., Alecu, I., Hagenbuch, N., Zhakupova, A., Cremonesi, A., Gautschi, M., Jung, H. H., Meienberg, F., Bilz, S., Christ, E., Baumgartner, M. R., & Hochuli, M. (2018). Disturbed sphingolipid metabolism with elevated 1-deoxysphingolipids in glycogen storage disease type I – A link to metabolic control. Molecular Genetics and Metabolism, 125(1–2), 73–78. https://doi.org/10.1016/J.YMGME.2018.07.003
dc.relation.referencesHube, L., Dohrn, M. F., Karsai, G., Hirshman, S., van Damme, P., Schulz, J. B., Weis, J., Hornemann, T., & Claeys, K. G. (2017). Metabolic Syndrome, Neurotoxic 1-Deoxysphingolipids and Nervous Tissue Inflammation in Chronic Idiopathic Axonal Polyneuropathy (CIAP). PLoS ONE, 12(1). https://doi.org/10.1371/JOURNAL.PONE.0170583
dc.relation.referencesHuwiler, A., & Zangemeister-Wittke, U. (2018). The sphingosine 1-phosphate receptor modulator fingolimod as a therapeutic agent: Recent findings and new perspectives. Pharmacology & Therapeutics, 185, 34–49. https://doi.org/10.1016/j.pharmthera.2017.11.001
dc.relation.referencesInstituto Nacional del Cáncer. (2021). Qué Es El Cáncer. https://www.cancer.gov/espanol/cancer/naturaleza/que-es
dc.relation.referencesJanes, K., Little, J. W., Li, C., Bryant, L., Chen, C., Chen, Z., . . . Salvemini, D. (2014). The Development and Maintenance of Paclitaxel-induced Neuropathic Pain Require Activation of the Sphingosine 1-Phosphate Receptor Subtype 1. Journal of Biological Chemistry, 289(30), 21082-21097. doi:10.1074/jbc.m114.569574
dc.relation.referencesJaveed, S. F., Amir H; Dy, Christopher; Ray, Wilson Z; MacEwan, Matthew R. (2021). Application of electrical stimulation for peripheral nerve regeneration: Stimulation parameters and future horizons. Interdisciplinary Neurosurgery, 24. doi:https://doi.org/10.1016/j.inat.2021.101117
dc.relation.referencesJaggi, A. S., & Singh, N. (2012). Mechanisms in cancer-chemotherapeutic drugs-induced peripheral neuropathy. Toxicology, 291(1–3), 1–9. https://doi.org/10.1016/J.TOX.2011.10.019
dc.relation.referencesJankovic, J. (2022). Disorders of Peripheral Nerves. https://www.clinicalkey.es/#!/content/book/3-s2.0-B9780323642613001066
dc.relation.referencesJung, Y. L.-B., Jonathan; Tognoni, Christina M; Carreras, Isabel; Dedeoglu, Alpaslan. (2023). Dysregulation of sphingosine-1-phosphate (S1P) and S1P receptor 1 signaling in the 5xFAD mouse model of Alzheimer's disease. Brain Research. doi:doi: 10.1016/j.brainres.2022.148171
dc.relation.referencesKandjani, O. J. Y., Shadi; Vahdati, Samad Shams; Borhannejad, Behnam; Dastmalchi, Siavoush; Alizadeh, Ali Akbar (2023). S1PR1 modulators in multiple sclerosis: Efficacy, safety, comparison, and chemical structure insights. European Journal of Medicinal Chemistry. doi: doi: 10.1016/j.ejmech.2023.115182
dc.relation.referencesKolter, T., & Sandhoff, K. (1999). Sphingolipids—Their Metabolic Pathways and the Pathobiochemistry of Neurodegenerative Diseases. Angewandte. https://doi.org/10.1002/(SICI)1521-3773(19990601)38:11<1532::AID-ANIE1532>3.0.CO;2-U
dc.relation.referencesKramer, R., Bielawski, J., Kistner-Griffin, E., Othman, A., Alecu, I., Ernst, D., Kornhauser, D., Hornemann, T., & Spassieva, S. (2015). Neurotoxic 1-deoxysphingolipids and paclitaxel-induced peripheral neuropathy. FASEB Journal, 29(11), 4461–4472. https://doi.org/10.1096/FJ.15-272567
dc.relation.referencesLeßmann, V. K., Georgia-Ioanna; Endres, Thomas; Pawlitzki, Marc; Gottmann, Kurt. (2023). Repurposing drugs against Alzheimer’s disease: can the anti-multiple sclerosis drug fingolimod (FTY720) effectively tackle inflammation processes in AD? Journal of Neural Transmission. doi:10.1007/s00702-023-02618-5
dc.relation.referencesLoewith, R., Riezman, H., & Winssinger, N. (2019). Sphingolipids and membrane targets for therapeutics. Current Opinion in Chemical Biology, 50, 19–28. https://doi.org/10.1016/J.CBPA.2019.02.015
dc.relation.referencesLone, M. A., Hülsmeier, A. J., Saied, E. M., Karsai, G., Arenz, C., von Eckardstein, A., & Hornemann, T. (2020). Subunit composition of the mammalian serine-palmitoyltransferase defines the spectrum of straight and methyl-branched long-chain bases. Proceedings of the National Academy of Sciences of the United States of America, 117(27), 15591–15598. https://doi.org/10.1073/PNAS.2002391117/-/DCSUPPLEMENTAL
dc.relation.referencesLone, M. A., Santos, T., Alecu, I., Silva, L. C., & Hornemann, T. (2019). 1-Deoxysphingolipids. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1864(4), 512–521. https://doi.org/10.1016/J.BBALIP.2018.12.013
dc.relation.referencesLoprinzi, C. L., Lacchetti, C., Bleeker, J., Cavaletti, G., Chauhan, C., Hertz, D. L., Kelley, M. R., Lavino, A., Lustberg, M. B., Paice, J. A., Schneider, B. P., Lavoie Smith, E. M., Smith, M. Lou, Smith, T. J., Wagner-Johnston, N., & Hershman, D. L. (2020). Prevention and Management of Chemotherapy-Induced Peripheral Neuropathy in Survivors of Adult Cancers: ASCO Guideline Update. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 38(28), 3325–3348. https://doi.org/10.1200/JCO.20.01399
dc.relation.referencesMaceyka, M., Harikumar, K. B., Milstien, S., & Spiegel, S. (2012). Sphingosine-1-phosphate signaling and its role in disease. Trends in Cell Biology, 22(1), 50–60. https://doi.org/10.1016/J.TCB.2011.09.003
dc.relation.referencesMaihöfner, C., Diel, I., Tesch, H., Quandel, T., & Baron, R. (2021). Chemotherapy-induced peripheral neuropathy (CIPN): current therapies and topical treatment option with high-concentration capsaicin. Supportive Care in Cancer, 29(8), 4223–4238. https://doi.org/10.1007/S00520-021-06042-X/FIGURES/4
dc.relation.referencesMalin, S. A. D., Brian M; Molliver, Derek C. (2007). Production of dissociated sensory neuron cultures and considerations for their use in studying neuronal function and plasticity. Nature Protocols, 2, 152-160. doi:https://doi.org/10.1038/nprot.2006.461
dc.relation.referencesMandala, S., Hajdu, R., Bergstrom, J., Quackenbush, E., Xie, J., Milligan, J., Thornton, R., Shei, G.-J., Card, D., Keohane, C., Rosenbach, M., Hale, J., Lynch, C. L., Rupprecht, K., Parsons, W., & Rosen, H. (2002). Alteration of Lymphocyte Trafficking by Sphingosine-1-Phosphate Receptor Agonists. Science, 296(5566), 346–349. https://doi.org/10.1126/science.1070238
dc.relation.referencesMartínez, J. W., Sánchez-Naranjo, J. C., Londoño-De Los Ríos, P. A., Isaza-Mejía, C. A., Sosa-Urrea, J. D., Martínez-Muñoz, M. A., López-Osorio, J. J., Marín-Medina, D. S., Machado-Duque, M. E., & Machado-Alba, J. E. (2019). Prevalence of peripheral neuropathy associated with chemotherapy in four oncology centers of colombia. Revista de Neurologia, 69(3), 94–98. https://doi.org/10.33588/rn.6903.2019035
dc.relation.referencesMartinez, T. N., Chen, X., Bandyopadhyay, S., Merrill, A. H., & Tansey, M. G. (2012). Ceramide sphingolipid signaling mediates Tumor Necrosis Factor (TNF)-dependent toxicity via caspase signaling in dopaminergic neurons. Molecular Neurodegeneration, 7(1). https://doi.org/10.1186/1750-1326-7-45
dc.relation.referencesMayo Clinic. (2019, February 5). https://www.mayoclinic.org/es-es/diseases-conditions/cancer/symptoms-causes/syc-20370588
dc.relation.referencesMcGinley, M. P., & Cohen, J. A. (2021). Sphingosine 1-phosphate receptor modulators in multiple sclerosis and other conditions. The Lancet, 398(10306), 1184–1194. https://doi.org/10.1016/S0140-6736(21)00244-0
dc.relation.referencesMendelson, K. E., Todd; Hla, Timothy. (2014). Sphingosine 1-phosphate signalling. Development, 141(1), 5-9. doi:10.1242/dev.094805
dc.relation.referencesMerrill, A. H. (2002). De Novo Sphingolipid Biosynthesis: A Necessary, but Dangerous, Pathway*. https://doi.org/10.1074/jbc.R200009200
dc.relation.referencesMerrill, A. H. (2011). Sphingolipid and Glycosphingolipid Metabolic Pathways in the Era of Sphingolipidomics. Chemical Reviews, 111(10), 6387–6422. https://doi.org/10.1021/CR2002917
dc.relation.referencesMinisterio de salud. (2021, February 4). Incidencia Del Cáncer Se Redujo En Los Últimos 3 Años. https://www.minsalud.gov.co/Paginas/Incidencia-del-cancer-se-redujo-en-los-ultimos-3-anos.aspx
dc.relation.referencesMolassiotis, A., Cheng, H. L., Lopez, V., Au, J. S. K., Chan, A., Bandla, A., Leung, K. T., Li, Y. C., Wong, K. H., Suen, L. K. P., Chan, C. W., Yorke, J., Farrell, C., & Sundar, R. (2019). Are we mis-estimating chemotherapy-induced peripheral neuropathy? Analysis of assessment methodologies from a prospective, multinational, longitudinal cohort study of patients receiving neurotoxic chemotherapy. BMC Cancer, 19(1), 1–19. https://doi.org/10.1186/S12885-019-5302-4/FIGURES/7
dc.relation.referencesMuch, J. (2017). MD Anderson Cancer Center, University of Texas. Tratamiento de La Neuropatía Inducida Por La Quimioterapia. https://www.mdanderson.org/es/publicaciones/oncolog/noviembre-diciembre-2017/tratamiento-de-la-neuropatia-inducida-por-la-quimioterapia.html
dc.relation.referencesMwinyi, J., Boström, A., Fehrer, I., Othman, A., Waeber, G., Marti-Soler, H., Vollenweider, P., Marques-Vidal, P., Schiöth, H. B., Von Eckardstein, A., & Hornemann, T. (2017). Plasma 1-deoxysphingolipids are early predictors of incident type 2 diabetes mellitus. PLoS ONE, 12(5). https://doi.org/10.1371/JOURNAL.PONE.0175776
dc.relation.referencesNational Institutes of Health. (2015). NIH. Tipos de Tratamiento. https://www.cancer.gov/espanol/cancer/tratamiento/tipos
dc.relation.referencesNi, L. Y., Zhao; Zhao, Yifan; Zhang, Tianfang; Wang, Jie; Li, Siyue; Chen, Zuobing. (2023). Electrical stimulation therapy for peripheral nerve injury. Frontiers in Neurology. doi:doi: 10.3389/fneur.2023.1081458
dc.relation.referencesNIH. (2023, March 13, 2023). Peripheral Neuropathy. Retrieved from https://www.ninds.nih.gov/health-information/disorders/peripheral-neuropathy
dc.relation.referencesNIH. (n.d.). Efectos secundarios del tratamiento del cáncer - Instituto Nacional del Cáncer. Retrieved April 15, 2022, from https://www.cancer.gov/espanol/cancer/tratamiento/efectos-secundarios
dc.relation.referencesObinata, H., & Hla, T. (2019). Sphingosine 1-phosphate and inflammation. International Immunology, 31(9), 617. https://doi.org/10.1093/INTIMM/DXZ037
dc.relation.referencesOrganización Panamericana de la Salud. (2020). https://www.paho.org/es/temas/cancer
dc.relation.referencesO’Sullivan, C., & Dev, K. K. (2013). The structure and function of the S1P1 receptor. Trends in Pharmacological Sciences, 34(7), 401–412. https://doi.org/10.1016/J.TIPS.2013.05.002
dc.relation.referencesPatel, F., & Spassieva, S. D. (2018). Side Effects in Cancer Therapy: Are Sphingolipids to Blame? Advances in Cancer Research, 140, 367–388. https://doi.org/10.1016/BS.ACR.2018.04.017
dc.relation.referencesPenno, A., Reilly, M. M., Houlden, H., Laurá, M., Rentsch, K., Niederkofler, V., Stoeckli, E. T., Nicholson, G., Eichler, F., Brown, R. H., Von Eckardstein, A., & Hornemann, T. (2010). Hereditary sensory neuropathy type 1 is caused by the accumulation of two neurotoxic sphingolipids. Journal of Biological Chemistry, 285(15), 11178–11187. https://doi.org/10.1074/JBC.M109.092973
dc.relation.referencesPike, C. T. B., Howard G; Muehlenbein, Catherine E; Pohl, Gerhardt M; Natale, Ronald B. (2012). Healthcare Costs and Workloss Burden of Patients with Chemotherapy-Associated Peripheral Neuropathy in Breast, Ovarian, Head and Neck, and Nonsmall Cell Lung Cancer. Chemotherapy Research and Practice, 2012, 1-10. doi:10.1155/2012/913848
dc.relation.referencesPyne, N. J., & Pyne, S. (2010). Sphingosine 1-phosphate and cancer. Nature Reviews Cancer, 10(7), 489–503. https://doi.org/10.1038/nrc2875
dc.relation.referencesQuinville, B. M., Deschenes, N. M., Ryckman, A. E., & Walia, J. S. (2021). A Comprehensive Review: Sphingolipid Metabolism and Implications of Disruption in Sphingolipid Homeostasis. International Journal of Molecular Sciences 2021, Vol. 22, Page 5793, 22(11), 5793. https://doi.org/10.3390/IJMS22115793
dc.relation.referencesRegula Steiner, E. M. S., Alaa Othman, Christoph Arenz, Alan T Maccarone, Berwyck L J Poad, Stephen J Blanksby, Arnold von Eckardstein, Thorsten Hornemann (2016). Elucidating the chemical structure of native 1-deoxysphingosine. Journal Lipid Research, 57(1), 1194-1203. doi:doi: 10.1194/jlr.M067033
dc.relation.referencesSantos, T. d. C. B. d. (2021). Biophysical and biological properties of atypical sphingolipids: implications to physiology and pathophysiology. Universidade de Lisboa.
dc.relation.referencesSaba, J. D. (2019). Fifty years of lyase and a moment of truth: sphingosine phosphate lyase from discovery to disease. Journal of Lipid Research, 60(3), 456. https://doi.org/10.1194/JLR.S091181
dc.relation.referencesSchwartz, N. U., Mileva, I., Gurevich, M., Snider, J., Hannun, Y. A., & Obeid, L. M. (2019). Quantifying 1-deoxydihydroceramides and 1-deoxyceramides in mouse nervous system tissue. Prostaglandins & Other Lipid Mediators, 141, 40–48. https://doi.org/10.1016/J.PROSTAGLANDINS.2019.02.005
dc.relation.referencesShahpar, S., Mhatre, P. V., & Oza, S. (2018). Rehabilitation. The Breast: Comprehensive Management of Benign and Malignant Diseases, 1031-1038.e3. https://doi.org/10.1016/B978-0-323-35955-9.00083-0
dc.relation.referencesSingh, S. K., & Spiegel, S. (2020). Sphingosine-1-phosphate signaling: A novel target for simultaneous adjuvant treatment of triple negative breast cancer and chemotherapy-induced neuropathic pain. Advances in Biological Regulation, 75, 100670. https://doi.org/10.1016/J.JBIOR.2019.100670
dc.relation.referencesSmith, T. J., Razzak, A. R., Blackford, A. L., Ensminger, J., Saiki, C., Longo-Schoberlein, D., & Loprinzi, C. L. (2020). A Pilot Randomized Sham-Controlled Trial of MC5-A Scrambler Therapy in the Treatment of Chronic Chemotherapy-Induced Peripheral Neuropathy (CIPN). Journal of Palliative Care, 35(1), 53–58. https://doi.org/10.1177/0825859719827589
dc.relation.referencesStepanovska, B., & Huwiler, A. (2020). Targeting the S1P receptor signaling pathways as a promising approach for treatment of autoimmune and inflammatory diseases. Pharmacological Research, 154, 104170. https://doi.org/10.1016/J.PHRS.2019.02.009
dc.relation.referencesStoffel, W. (1970). Studies on the biosynthesis and degradation of sphingosine bases. Chemistry and Physics of Lipids, 5(1), 139–158. https://doi.org/10.1016/0009-3084(70)90014-9
dc.relation.referencesStockstill, K., Doyle, T. M., Yan, X., Chen, Z., Janes, K., Little, J. W., . . . Salvemini, D. (2018). Dysregulation of sphingolipid metabolism contributes to bortezomib-induced neuropathic pain. Journal of Experimental Medicine, 215(5), 1301-1313. doi:10.1084/jem.20170584
dc.relation.referencesSubei, A. M., & Cohen, J. A. (2015). Sphingosine 1-Phosphate Receptor Modulators in Multiple Sclerosis. CNS Drugs, 29, 565–575.
dc.relation.referencesSun, Y., Liu, Y., Ma, X., & Hu, H. (2021). The Influence of Cell Cycle Regulation on Chemotherapy. International Journal of Molecular Sciences, 22(13). https://doi.org/10.3390/IJMS22136923
dc.relation.referencesTidhar, R., & Futerman, A. H. (2013). The complexity of sphingolipid biosynthesis in the endoplasmic reticulum. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1833(11), 2511–2518. https://doi.org/10.1016/J.BBAMCR.2013.04.010
dc.relation.referencesTimmins, H. C., Mizrahi, D., Li, T., Kiernan, M. C., Goldstein, D., & Park, S. B. (2021). Metabolic and lifestyle risk factors for chemotherapy-induced peripheral neuropathy in taxane and platinum-treated patients: a systematic review. Journal of Cancer Survivorship. https://doi.org/10.1007/S11764-021-00988-X
dc.relation.referencesTong, J., Zou, Q., Chen, Y., Liao, X., Chen, R., Ma, L., Zhang, D., & Li, Q. (2021). Efficacy and acceptability of the S1P receptor in the treatment of multiple sclerosis: a meta-analysis. Neurological Sciences : Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 42(5), 1687–1695. https://doi.org/10.1007/S10072-021-05049-W
dc.relation.referencesTsai, H. C., & Han, M. H. (2016). Sphingosine-1-Phosphate (S1P) and S1P Signaling Pathway: Therapeutic Targets in Autoimmunity and Inflammation. Drugs, 76(11), 1067–1079. https://doi.org/10.1007/S40265-016-0603-2
dc.relation.referencesVelasco, R., & Bruna, J. (2010). Neuropatía inducida por quimioterapia: un problema no resuelto. Neurología, 25(2), 116–131. https://doi.org/10.1016/S0213-4853(10)70036-0
dc.relation.referencesWang, W., Xiang, P., Chew, W. S., Torta, F., Bandla, A., Lopez, V., Seow, W. L., Wan, B., Lam, S., Chang, J. K., Wong, P., Chayaburakul, K., Ong, W.-Y., Wenk, M. R., Sundar, R., Deron, X., & Herr, R. (2019). Activation of sphingosine 1-phosphate receptor 2 attenuates chemotherapy-induced neuropathy. https://doi.org/10.1074/jbc.RA119.011699
dc.relation.referencesWigger, D., Gulbins, E., Kleuser, B., & Schumacher, F. (2019). Monitoring the Sphingolipid de novo Synthesis by Stable-Isotope Labeling and Liquid Chromatography-Mass Spectrometry. Frontiers in Cell and Developmental Biology, 7, 210. https://doi.org/10.3389/FCELL.2019.00210/BIBTEX
dc.relation.referencesWilson, E. R., Kugathasan, U., Abramov, A. Y., Clark, A. J., Bennett, D. L. H., Reilly, M. M., Greensmith, L., & Kalmar, B. (2018). Hereditary sensory neuropathy type 1-associated deoxysphingolipids cause neurotoxicity, acute calcium handling abnormalities and mitochondrial dysfunction in vitro. Neurobiology of Disease, 117, 1. https://doi.org/10.1016/J.NBD.2018.05.008
dc.relation.referencesWorld Health Organization. (2022, February 2). Cancer.
dc.relation.referencesZaimy, M. A., Saffarzadeh, N., Mohammadi, A., Pourghadamyari, H., Izadi, P., Sarli, A., Moghaddam, L. K., Paschepari, S. R., Azizi, H., Torkamandi, S., & Tavakkoly-Bazzaz, J. (2017). New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Therapy, 24(6), 233–243. https://doi.org/10.1038/CGT.2017.16
dc.relation.referencesZhang, L., Dong, Y., Wang, Y., Hu, W., Dong, S., & Chen, Y. (2020). Sphingosine-1-phosphate (S1P) receptors: Promising drug targets for treating bone-related diseases. Journal of Cellular and Molecular Medicine, 24(8), 4389–4401. https://doi.org/10.1111/JCMM.15155
dc.relation.referencesZuellig, R. A., Hornemann, T., Othman, A., Hehl, A. B., Bode, H., Güntert, T., Ogunshola, O. O., Saponara, E., Grabliauskaite, K., Jang, J. H., Ungethuem, U., Wei, Y., Von Eckardstein, A., Graf, R., & Sonda, S. (2014). Deoxysphingolipids, Novel Biomarkers for Type 2 Diabetes, Are Cytotoxic for Insulin-Producing Cells. Diabetes, 63(4), 1326–1339. https://doi.org/10.2337/DB13-1042
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposal1-deoxysphingolipids (deoxySL)
dc.subject.proposal1-deoxysphingosine
dc.subject.proposal1-deoxysphinganine
dc.subject.proposal1-deoxyceramide
dc.subject.proposaltaxane-induced peripheral neuropathy (TIPN)
dc.subject.proposalsphingosine-1-phosphate (S1P)
dc.subject.proposalsphingosine-1-phosphate receptors (S1PRs)
dc.subject.proposalFTY720
dc.subject.proposal1-deoxiesfingolípidos
dc.subject.proposal1-deoxiesfingosina
dc.subject.proposal1- deoxiesfinganine
dc.subject.proposal1-deoxiceramida
dc.subject.proposalNeuropatía periférica inducida por taxanos (TIPN)
dc.subject.proposalReceptores de esfingosina
dc.subject.proposal1-fosfato (S1PR)
dc.title.translatedNeurotoxicidad de los deoxyesfingolipidos en un modelo in vitro de neuropatía periférica inducida por taxanos
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleNeurotoxicity of deoxysphingolipids in an in vitro model of taxane induced peripheral neuropathy
dcterms.audience.professionaldevelopmentInvestigadores
dc.description.curricularareaÁrea curricular Biotecnología
dc.contributor.orcidMuñoz Gil, Susana [0000000254305323]
dc.subject.wikidataNeurotoxicidad
dc.subject.wikidataNeuroblastoma


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito