Mostrar el registro sencillo del documento

dc.rights.licenseReconocimiento 4.0 Internacional
dc.contributor.advisorViviescas Ramírez, Carlos Leonardo
dc.contributor.authorFalla León, José Luis
dc.date.accessioned2024-06-05T20:53:10Z
dc.date.available2024-06-05T20:53:10Z
dc.date.issued2024-04-05
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86209
dc.descriptionilustraciones, diagramas
dc.description.abstractA sub-class of variational quantum algorithms (VQAs), the quantum convolutional neural network (QCNN), has emerged as an efficient quantum error correction (QEC) algorithm and full quantum error-correcting code. Through hybrid quantum-classical optimization of a QCNN architecture for a particular error model, it is possible to "train" a neural network to decrease the logical error rates for specific error models. Going into the noisy intermediate-scale quantum (NISQ) technology era, effective quantum error correction is necessary for accurate quantum computing with noisy qubits, and VQAs can bring about near-term, intermediate-scale, reliable quantum computing.
dc.description.abstractComo una subclase de algoritmos cuánticos variacionales (VQAs), la red neuronal convolucional cuántica (QCNN), ha surgido como un algoritmo eficiente de corrección de errores cuánticos (QEC) y un código de corrección de errores cuánticos completo. A través de la optimización híbrida cuántico-clásica de una arquitectura QCNN para un modelo de error particular, es posible "entrenar" una red neuronal para reducir las tasas de error lógico para modelos de errores específicos. Entrando en la era de la tecnología cuántica de escala intermedia ruidosa (NISQ), la corrección de errores cuánticos efectiva es necesaria para la computación cuántica precisa con qubits ruidosos, y los VQAs pueden propiciar una computación cuántica confiable a corto plazo y a escala intermedia. (Texto tomado de la fuente).
dc.format.extent52 páginas
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc530 - Física::539 - Física moderna
dc.titleQuantum error correction via quantum convolutional neural networks
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Física
dc.contributor.researchgroupCaos y Complejidad
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Física
dc.description.researchareaComputación cuántica
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.relation.referencesJohn Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79, August 2018. arXiv: 1801.00862.
dc.relation.referencesJacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd. Quantum machine learning. Nature, 549(7671):195{202, September 2017.
dc.relation.referencesArute, et al. Quantum supremacy using a programmable superconducting processor. Nature, 574(7779):505-510, October 2019.
dc.relation.referencesXiao Liang, Sheng Liu, Yan Li, and Yong-Sheng Zhang. Generation of Bose-Einstein Condensates' Ground State Through Machine Learning. arXiv:1712.10093 [quant-ph], December 2017.
dc.relation.referencesG. Vidal. Class of Quantum Many-Body States That Can Be Efficiently Simulated. Physical Review Letters, 101(11):110501, September 2008.
dc.relation.referencesNobuyuki Yoshioka and Ryusuke Hamazaki. Constructing neural stationary states for open quantum many-body systems. Physical Review B, 99(21):214306, June 2019.
dc.relation.referencesIris Cong, Soonwon Choi, and Mikhail D. Lukin. Quantum convolutional neural networks. Nature Physics, 15(12):1273-1278, December 2019.
dc.relation.referencesRaymond Laflamme, Cesar Miquel, Juan Pablo Paz, and Wojciech Hubert Zurek. Perfect Quantum Error Correcting Code. Physical Review Letters, 77(1):198-201, July 1996.
dc.relation.referencesPeter W. Shor. Scheme for reducing decoherence in quantum computer memory. Physical Review A, 52(4):R2493-R2496, October 1995.
dc.relation.referencesA. M. Steane. Error Correcting Codes in Quantum Theory. Physical Review Letters, 77(5):793-797, July 1996.
dc.relation.referencesA. R. Calderbank and Peter W. Shor. Good quantum error-correcting codes exist. Physical Review A, 54(2):1098-1105, August 1996.
dc.relation.referencesM. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf. Realization of three-qubit quantum error correction with superconducting circuits. Nature, 482(7385):382-385, February 2012.
dc.relation.referencesP. Schindler, J. T. Barreiro, T. Monz, V. Nebendahl, D. Nigg, M. Chwalla, M. Hennrich, and R. Blatt. Experimental Repetitive Quantum Error Correction. Science, 332(6033):1059-1061, May 2011.
dc.relation.referencesCharles D. Hill, Eldad Peretz, Samuel J. Hile, Matthew G. House, Martin Fuechsle, Sven Rogge, Michelle Y. Simmons, and Lloyd C. L. Hollenberg. A surface code quantum computer in silicon. Science Advances, 1(9):e1500707, October 2015.
dc.relation.referencesWright, et al. Benchmarking an 11-qubit quantum computer. Nature Communications, 10(1):5464, November 2019.
dc.relation.referencesKosuke Fukui, Akihisa Tomita, and Atsushi Okamoto. Tracking quantum error correction. Physical Review A, 98(2):022326, August 2018.
dc.relation.referencesKjaergaard et al. Superconducting Qubits: Current State of Play. arXiv:1905.13641, May 2019.
dc.relation.referencesBharti et al. Noisy intermediate-scale quantum (NISQ) algorithms. Reviews of Modern Physics, 94(1):015004, February 2022. arXiv:2101.08448 [cond-mat, physics:quant-ph].
dc.relation.referencesF. Vatan, V. P. Roychowdhury, and M. P. Anantram. Spatially Correlated Qubit Errors and Burst-Correcting Quantum Codes. arXiv:quant-ph/9704019, April 1997.
dc.relation.referencesChi-Kwong Li, Mikio Nakahara, Yiu-Tung Poon, Nung-Sing Sze, and Hiroyuki Tomita. Efficient Quantum Error Correction for Fully Correlated Noise. Physics Letters A, 375(37):3255-3258, August 2011.
dc.relation.referencesEmanuel Knill, Raymond Laflamme, and Lorenza Viola. Theory of Quantum Error Correction for General Noise. arXiv:quant-ph/9908066, August 1999.
dc.relation.referencesM. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and Patrick J. Coles. Variational quantum algorithms. Nature Reviews Physics, 3(9):625{644, August 2021.
dc.relation.referencesMichael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2000.
dc.relation.referencesRamamurti Shankar. Principles of quantum mechanics. Plenum, New York, NY, 1980.
dc.relation.referencesSimon J. Devitt, Kae Nemoto, and William J. Munro. Quantum Error Correction for Beginners. Reports on Progress in Physics, 76(7):076001, July 2013.
dc.relation.referencesT. Brun, I. Devetak, and M.-H. Hsieh. Correcting Quantum Errors with Entanglement. Science, 314(5798):436{439, October 2006.
dc.relation.referencesP.G. Kwiat and D.F.V. James. Quantum optics -- entanglement and quantum information. In Robert D. Guenther, editor, Encyclopedia of Modern Optics, pages 256-264. Elsevier, Oxford, 2005.
dc.relation.referencesJ. Chiaverini, D. Leibfried, T. Schaetz, M. D. Barrett, R. B. Blakestad, J. Britton, W. M. Itano, J. D. Jost, E. Knill, C. Langer, R. Ozeri, and D. J. Wineland. Realization of quantum error correction. Nature, 432(7017):602-605, December 2004.
dc.relation.referencesA. R. Calderbank, E. M. Rains, P. W. Shor, and N. J. A. Sloane. Quantum Error Correction and Orthogonal Geometry. Physical Review Letters, 78(3):405-408, January 1997.
dc.relation.referencesDaniel Gottesman. Stabilizer Codes and Quantum Error Correction. arXiv:quant-ph/9705052, May 1997.
dc.relation.referencesH. Barnum and E. Knill. Reversing quantum dynamics with near-optimal quantum and classical fidelity. Journal of Mathematical Physics, 43(5):2097, 2002.
dc.relation.referencesPhilipp Schindler, Thomas Monz, Daniel Nigg, Julio T. Barreiro, Esteban, A. Martinez, Matthias F. Brandl, Michael Chwalla, Markus Hennrich, and Rainer Blatt. Undoing a Quantum Measurement. Physical Review Letters, 110(7):070403, February 2013.
dc.relation.referencesD. Riste, S. Poletto, M.-Z. Huang, A. Bruno, V. Vesterinen, O.-P. Saira, and L. DiCarlo. Detecting bit-flip errors in a logical qubit using stabilizer measurements. Nature Communications, 6(1):6983, November 2015.
dc.relation.referencesKristan Temme, Sergey Bravyi, and Jay M. Gambetta. Error Mitigation for Short-Depth Quantum Circuits. Physical Review Letters, 119(18):180509, November 2017.
dc.relation.referencesYing Li and Simon C. Benjamin. Efficient Variational Quantum Simulator Incorporating Active Error Minimization. Physical Review X, 7(2):021050, June 2017.
dc.relation.referencesAlberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alan Aspuru-Guzik, and Jeremy L. O'Brien. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5(1):4213, July 2014.
dc.relation.referencesDave Wecker, Matthew B. Hastings, and Matthias Troyer. Progress towards practical quantum variational algorithms. Physical Review A, 92(4):042303, October 2015.
dc.relation.referencesJarrod R McClean, Jonathan Romero, Ryan Babbush, and Alan Aspuru-Guzik. The theory of variational hybrid quantum-classical algorithms. New Journal of Physics, 18(2):023023, February 2016.
dc.relation.referencesDavid Fumo. Types of machine learning algorithms you should know [blog]. https://www.scientificstyleandformat.org/Tools/SSF-Citation-Quick-Guide.html. Accessed: 2021-11-22.
dc.relation.referencesAshish Sukhadeve. Understanding neural networks: A beginner's guide [blog]. https://www.datasciencecentral.com/profiles/blogs/understanding-neural-network-a-beginner-s-guide. Accessed: 2021-11-22.
dc.relation.referencesDenny Novikov. Machine Learning: The Ultimate Beginners Guide to Efficiently Learn and Understand Machine Learning, Artificial Neural Network and Data Mining. Independently Published, 2019.
dc.relation.referencesG. I. Diaz, A. Fokoue-Nkoutche, G. Nannicini, and H. Samulowitz. An effective algorithm for hyperparameter optimization of neural networks. IBM Journal of Research and Development, 61(4/5):9:1-9:11, 2017.
dc.relation.referencesKevin Gurney. Introduction to Neural Networks. Taylor & Francis, Oxford, 1997. OCLC: 892785047.
dc.relation.referencesYann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436{444, May 2015.
dc.relation.referencesAlexandra Nagy and Vincenzo Savona. Variational Quantum Monte Carlo Method with a Neural-Network Ansatz for Open Quantum Systems. Physical Review Letters, 122(25):250501, June 2019.
dc.relation.referencesMichael J. Hartmann and Giuseppe Carleo. Neural-Network Approach to Dissipative Quantum Many-Body Dynamics. Physical Review Letters, 122(25):250502, June 2019.
dc.relation.referencesFilippo Vicentini, Alberto Biella, Nicolas Regnault, and Cristiano Ciuti. Variational Neural-Network Ansatz for Steady States in Open Quantum Systems. Physical Review Letters, 122(25):250503, June 2019.
dc.relation.referencesRichard P Feynman. Simulating physics with computers. International Journal of Theoretical Physics, page 22, 1982.
dc.relation.referencesRoman Orus. A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States. Annals of Physics, 349:117-158, October 2014.
dc.relation.referencesPeter D. Johnson, Jonathan Romero, Jonathan Olson, Yudong Cao, and Alan Aspuru-Guzik. QVECTOR: an algorithm for device-tailored quantum error correction, November 2017. arXiv:1711.02249 [quant-ph].
dc.relation.referencesAustin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland. Surface codes: Towards practical large-scale quantum computation. Physical Review A, 86(3):032324, September 2012.
dc.relation.referencesG. Vidal. Entanglement Renormalization. Physical Review Letters, 99(22):220405, November 2007.
dc.relation.referencesGeoffrey Hinton. Lecture Notes for CSC2515: Lecture 6, 2007.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.proposalQuantum error correction
dc.subject.proposalQuantum convolutional neural network
dc.subject.proposalQuantum computing
dc.subject.proposalQuantum algorithms
dc.subject.proposalCorrección de error cuántico
dc.subject.proposalRedes neuronales convolucionales cuánticas
dc.subject.proposalComputación cuántica
dc.subject.proposalAlgoritmos cuánticos
dc.title.translatedCorrección de error cuántico mediante redes neuronales convolucionales cuánticas
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
dc.contributor.orcidFalla, Jose [0000-0001-9918-2198]
dc.subject.wikidataredes neuronales convolucionales
dc.subject.wikidataconvolutional neural network
dc.subject.wikidatacorrección de errores cuántica
dc.subject.wikidataquantum error correction
dc.subject.wikidataquantum algorithm
dc.subject.wikidataalgoritmo cuántico


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Reconocimiento 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito