Mostrar el registro sencillo del documento

dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.contributor.advisorCiuoderis Aponte, Karl Adolf
dc.contributor.advisorHernández Ortiz, Juan Pablo
dc.contributor.authorCarvajal Aristizabal, Leidi Yulieth
dc.date.accessioned2024-06-11T15:31:39Z
dc.date.available2024-06-11T15:31:39Z
dc.date.issued2023
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86223
dc.descriptionIlustraciones, gráficos
dc.description.abstractEl síndrome febril agudo indiferenciado (EFAI) se refiere a un conjunto de enfermedades que, además de fiebre, se manifiestan con síntomas como dolor de cabeza, malestar general, falta de apetito, entre otras, lo que dificulta el diagnóstico. Estas enfermedades pueden estar asociadas a infecciones virales, bacterianas y parasitarias, por lo que su diferenciación requiere el uso de técnicas especializadas que son poco accesibles en las regiones más vulnerables. En este trabajo se diseñaron y validaron estrategias de detección molecular con PCR múltiplex para virus como dengue, zika, chikunguña y oropouche, bacterias como Leptospira spp, Rickettsia spp, Borrelia spp, Anaplasma spp, Brucella spp y Bartonella spp y parásitos Plasmodium spp. Se tamizaron muestras de pacientes febriles de Leticia y Villavicencio entre enero de 2021 y mayo de 2022, usando una estrategia de pools. Se logró la validación exitosa de las técnicas PCR multiplex con eficiencias mayores a 90% y coeficientes de variación (CV) menores al 10%, sin perder sensibilidad respecto a la PCR singleplex. Se detectó la presencia de dengue (2.24% y 13.81%) y malaria (1.2% y 1.29%) en Villavicencio y Leticia respectivamente, pero sólo en Leticia se detectó oropouche (0.22%). Sin embargo, un alto porcentaje de casos fueron no identificados, lo cual demuestra el reto que representan las EFAI en nuestro país, pues sólo teniendo estrategias accesibles, confiables y rápidas, será posible identificar de forma oportuna las causas para ofrecer el tratamiento más adecuado, prevenir futuros brotes o epidemias por patógenos nuevos o poco estudiados. (Tomado de la fuente)
dc.description.abstractAcute undifferentiated febrile syndrome (AIFS) refers to a group of diseases that, in addition to fever, manifest with symptoms such as headache, general malaise, and lack of appetite, among others, which makes diagnosis difficult. These diseases can be associated with viral, bacterial, and parasitic infections, so their differentiation requires the use of specialized techniques that are not accessible in the most vulnerable regions. In this work, multiplex PCR molecular strategies were designed and validated for the detection of viruses such as dengue, zika, chikunguña, and oropouche, bacteria such as Leptospira spp, Rickettsia spp, Borrelia spp, Anaplasma spp, Brucella spp, and Bartonella spp, and parasites Plasmodium spp. Using a pooled strategy, samples of febrile patients from Leticia and Villavicencio were screened between January 2021 and May 2022. Successful validation of multiplex PCR tests was achieved with efficiencies greater than 90% and coefficients of variation (CV) less than 10%, without losing sensitivity with respect to singleplex PCR. The presence of dengue (2.24% and 13.27%) and malaria (1.2% and 1.4%) was detected in Villavicencio and Leticia respectively, but only in Leticia was oropouche detected (0.22%). However, a high percentage of cases were not identified, which demonstrates the challenge that EFAI represents in our country, since only by having accessible, reliable, and rapid strategies, it will be possible to identify the causes in a timely manner to identify the most appropriate treatment, prevent future outbreaks or epidemics by new or poorly studied pathogens.
dc.format.extent90 páginas
dc.format.mimetypeapplication/pdf
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.ddc570 - Biología
dc.subject.ddc610 - Medicina y salud
dc.subject.ddc610 - Medicina y salud::616 - Enfermedades
dc.titleCaracterización molecular de patógenos asociados a casos de enfermedad febril aguda indiferenciada en Leticia y Villavicencio
dc.typeTrabajo de grado - Maestría
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnología
dc.contributor.researchgroupCrs-tid center for research and surveillance of tropical and infectious diseases
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Biotecnología
dc.description.researchareaBiotecnología microbiana
dc.identifier.instnameUniversidad Nacional de Colombia
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeMedellín, Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.relation.indexedLaReferencia
dc.relation.referencesManock SR, Jacobsen KH, De Bravo NB, Russell KL, Negrete M, Olson JG, et al. Etiology of acute undifferentiated febrile illness in the Amazon basin of Ecuador. American Journal of Tropical Medicine and Hygiene. 2009;81(1):146-51.
dc.relation.referencesFaccini-Martínez ÁA, Ramírez-Hernández A, Barreto C, Forero-Becerra E, Millán D, Valbuena E, et al. Epidemiology of Spotted Fever Group Rickettsioses and Acute Undifferentiated Febrile Illness in Villeta, Colombia. Am J Trop Med Hyg. 9 de septiembre de 2017;97(3):782.
dc.relation.referencesMisión Internacional de Sabios 2019. Propuestas y desafíos para la salud y la vida. Una visión desde la Misión. Garantizar una vida saludable y promover el bienestar de todos los colombianos en todas las edades. Vol. 2, Misión SABIOS Colombia, 2019. © Ministerio de Ciencia, Tecnología e Innovación. Bogotá: Vicepresidencia de la República de Colombia, Ministerio de Ciencia, Tecnología e Innovación; 2020.
dc.relation.referencesGutiérrez C, Montes Lluch M. Fiebre de origen desconocido. 2007.
dc.relation.referencesTercero Gutiérrez MJ, Olalla Herbosa R. Enfermedades tropicales transmitidas por vectores. Medidas preventivas y profilaxis. OFFARM. junio de 2008;27(6).
dc.relation.referencesCrump JA, Gove S, Parry CM. Management of adolescents and adults with febrile illness in resource limited areas. BMJ. 8 de agosto de 2011;343(aug08 2):d4847-d4847.
dc.relation.referencesArroyave E, Londoño AF, Quintero JC, Agudelo-Flórez P, Arboleda M, Díaz FJ, et al. Etiología y caracterización epidemiológica del síndrome febril no palúdico en tres municipios del Urabá antioqueño, Colombia. Biomedica. 2013;33(SUPPL.1):99-107.
dc.relation.referencesTomashek KM, Lorenzi OD, Andújar-Pérez DA, Torres-Velásquez BC, Hunsperger EA, Munoz-Jordan JL, et al. Clinical and epidemiologic characteristics of dengue and other etiologic agents among patients with acute febrile illness, Puerto Rico, 2012-2015. PLoS Negl Trop Dis. 13 de septiembre de 2017;11(9).
dc.relation.referencesAzeredo EL, dos Santos FB, Barbosa LS, Souza TMA, Badolato-Corrêa J, Sánchez-Arcila JC, et al. Clinical and Laboratory Profile of Zika and Dengue Infected Patients: Lessons Learned From the Co-circulation of Dengue, Zika and Chikungunya in Brazil. PLoS Curr. 2018;10.
dc.relation.referencesMagalhaes T, Braga C, Cordeiro MT, Oliveira ALS, Castanha PMS, Maciel APR, et al. Zika virus displacement by a chikungunya outbreak in Recife, Brazil. PLoS Negl Trop Dis. 6 de noviembre de 2017;11(11).
dc.relation.referencesAlva-Urcia C, Aguilar-Luis MA, Palomares-Reyes C, Silva-Caso W, Suarez-Ognio L, Weilg P, et al. Emerging and reemerging arboviruses: A new threat in Eastern Peru. PLoS One. 1 de noviembre de 2017;12(11).
dc.relation.referencesCabral Castro MJ, Cavalcanti MG, Peralta RHS, Peralta JM. Molecular and serological techniques to detect co-circulation of DENV, ZIKV and CHIKV in suspected dengue-like syndrome patients. J Clin Virol. 1 de septiembre de 2016;82:108-11.
dc.relation.referencesSánchez-Carbonel J, Tantaléan-Yépez D, Aguilar-Luis MA, Silva-Caso W, Weilg P, Vásquez-Achaya F, et al. Identification of infection by Chikungunya, Zika, and Dengue in an area of the Peruvian coast. Molecular diagnosis and clinical characteristics. BMC Res Notes. 14 de marzo de 2018;11(1).
dc.relation.referencesMattar S, Tique V, Miranda J, Montes E, Garzon D. Undifferentiated tropical febrile illness in Cordoba, Colombia: Not everything is dengue. J Infect Public Health. 1 de septiembre de 2017;10(5):507-12.
dc.relation.referencesCarrillo-Hernández MY, Ruiz-Saenz J, Villamizar LJ, Gómez-Rangel SY, Martínez-Gutierrez M. Co-circulation and simultaneous co-infection of dengue, chikungunya, and zika viruses in patients with febrile syndrome at the Colombian-Venezuelan border. BMC Infect Dis. 30 de enero de 2018;18(1).
dc.relation.referencesBressan C da S, Teixeira M de LB, Gouvêa MIF da S, de Pina-Costa A, Santos HFP, Calvet GA, et al. Challenges of acute febrile illness diagnosis in a national infectious diseases center in Rio de Janeiro: 16-year experience of syndromic surveillance. PLoS Negl Trop Dis. 3 de abril de 2023;17(4).
dc.relation.referencesSánchez Lerma L, Pérez Gutiérrez N, Pavas Escobar NC. Dengue:: una causa frecuente de síndrome febril agudo en el Departamento de El Meta, Colombia TT - Dengue:: a common cause of febrile syndrome in Meta State, Colombia. Rev habanera cienc méd. 2017;16(2):256-67.
dc.relation.referencesManrique Sánchez J, Avilla GA, Rodriguez Reyes A, Díaz J, Tangarife V, Rivera D, et al. Boletín Epidemiológico Semanal. Semana 52. 2019.
dc.relation.referencesRed Nacional Laboratorios En Salud Publica C DE, Nacional de Salud I. Manual de procedimientos enfoque sindrómico para el diagnóstico de laboratorio durante brotes . Ministerio de salud, Instituto Nacional de Salud. 2005
dc.relation.referencesCortés JA, Romero-Moreno LF, Aguirre-León CA, Pinzón-Lozano L, Cuervo SI. Enfoque clínico del síndrome febril agudo en Colombia. Infectio. 2017;21(1):39-50.
dc.relation.referencesWangdi K, Kasturiaratchi K, Nery SV, Lau CL, Gray DJ, Clements ACA. Diversity of infectious aetiologies of acute undifferentiated febrile illnesses in south and Southeast Asia: A systematic review. BMC Infect Dis. 4 de julio de 2019;19(1):1-17.
dc.relation.referencesMattar S, Montero A J, González T M, Mattar S, Montero A J, González T M. La historia del dengue aún no termina. Rev MVZ Cordoba. 2019;24(2):7177-9.
dc.relation.referencesOPS. Situación de la Malaria en la Región de las Américas, 2000-2016. Informe anual. 2016.
dc.relation.referencesMattar S, Alvis N, Gonzalez M. Haemorrhagic Fevers Transmitted by Vectors in the Neotropics. Current Topics in Public Health. 2013;(June 2014).
dc.relation.referencesMinsalud. Geografía Y Salud En Colombia:27-46.
dc.relation.referencesLeón R, Aragón V. Zoonosis emergentes y reemergentes y principios básicos de control de zoonosis. Revista de Medicina Veterinaria No. 2009;17.
dc.relation.referencesGegúndez MI, Lledó L. Infección por hantavirus y otros virus transmitidos por roedores. Enferm Infecc Microbiol Clin. 1 de octubre de 2005;23(8):492-500.
dc.relation.referencesZhao R, Wang M, Cao J, Shen J, Zhou X, Wang D, et al. Flavivirus: From structure to therapeutics development. Life. 2021;11(7):1-25.
dc.relation.references’Bennett JE’, ’Dolin R, ’Blaser MJ’. Enfermedades infecciosas. Principios y práctica. 1.a ed. Barcelona: Elsevier; 2020. 2013-2040 p.
dc.relation.referencesSchaefer TJ, Panda PK, Wolford RW. Dengue Fever. BMJ Best Practice. 22 de abril de 2022;5-6.
dc.relation.referencesGurugama P, Garg P, Perera J, Wijewickrama A, Seneviratne S. DENGUE VIRAL INFECTIONS. Indian J Dermatol. 1 de enero de 2010;55(1):68.
dc.relation.referencesLi M, Zhang D, Li C, Zheng Z, Fu M, Ni F, et al. Characterization of Zika Virus Endocytic Pathways in Human Glioblastoma Cells. Front Microbiol. 6 de marzo de 2020;11:242.
dc.relation.referencesLahon A, Arya RP, Kneubehl AR, Vogt MB, Dailey Garnes NJM, Rico-Hesse R. Characterization of a Zika Virus Isolate from Colombia. PLoS Negl Trop Dis. 21 de septiembre de 2016;10(9):e0005019.
dc.relation.referencesSimon L V., Hashmi MF, Torp KD. Yellow Fever. Handbook of Zoonoses, Second Edition, Section B: Viral Zoonoses. 16 de febrero de 2022;111-24.
dc.relation.referencesMcGuinness I, Beckham JD, Tyler KL, Pastula DM. An Overview of Yellow Fever Virus Disease. Neurohospitalist. octubre de 2017;7(4):157.
dc.relation.referencesAtukorala I, Chang T. Musculoskeletal Disorders. Manson’s Tropical Diseases: Twenty-Third Edition. 1 de enero de 2014;1027-1037.e2.
dc.relation.referencesViralZone. Alphavirus. [citado 15 de agosto de 2021]. Alphavirus ~ ViralZone. Disponible en: https://viralzone.expasy.org/625?outline=all_by_species
dc.relation.referencesCappuccio L, Maisse C. Infection of Mammals and Mosquitoes by Alphaviruses: Involvement of Cell Death. Cells. 5 de diciembre de 2020;9(12).
dc.relation.referencesCunha MS, Costa PAG, Correa IA, de Souza MRM, Calil PT, da Silva GPD, et al. Chikungunya Virus: An Emergent Arbovirus to the South American Continent and a Continuous Threat to the World. Front Microbiol. 26 de junio de 2020;11:1297.
dc.relation.referencesShope R. Bunyaviruses - Medical Microbiology. Galveston (TX): University of Texas Medical Branch at Galveston; 1996.
dc.relation.referencesMattar S, González M. Oropuche virus: A virus present but ignored. REVISTA MVZ CÓRDOBA. septiembre de 2015.
dc.relation.referencesCéspedes M. Leptospirosis: Enfermedad Zoonótica Emergente. Rev Peru Med Exp Salud Publica. diciembre de 2005;22(4).
dc.relation.referencesRomero Vivas CM, Falconar AK. Leptospira spp. y leptospirosis humana. Revista Salud Uninorte. 1 de enero de 2016;32(1):123-43.
dc.relation.referencesBrown PD, Gravekamp C, Carrington DG, Van De Kemp H, Hartskeerl RA, Edwards CN, et al. Evaluation of the polymerase chain reaction for early diagnosis of leptospirosis. J Med Microbiol. 1 de agosto de 1995;43(2):110-4.
dc.relation.referencesAlton GG, Forsyth JRL. Brucella. Molecular Medical Microbiology: Second Edition. 1 de enero de 1996;3:1781-8.
dc.relation.referencesBrucellosis | CDC [Internet]. 2012 [citado 5 de junio de 2022]. Disponible en: https://www.cdc.gov/brucellosis/symptoms/index.html
dc.relation.referencesBiswas S, Rolain JM. Bartonella infection: treatment and drug resistance. Future Microbiol [Internet]. 6 de diciembre de 2010 [citado 4 de junio de 2022];5(11):1719-31. Disponible en: https://www.futuremedicine.com/doi/abs/10.2217/fmb.10.133
dc.relation.referencesMogollon-Pasapera E, Otvos L, Giordano A, Cassone M. Bartonella: emerging pathogen or emerging awareness? International Journal of Infectious Diseases. 1 de enero de 2009;13(1):3-8.
dc.relation.referencesIralu J, Bai Y, Crook L, Tempest B, Simpson G, McKenzie T, et al. Rodent-associated Bartonella Febrile Illness, Southwestern United States - Volume 12, Number 7—July 2006 - Emerging Infectious Diseases journal - CDC. Emerg Infect Dis. 2006;12(7):1081-6.
dc.relation.referencesJohnson G, Ayers M, McClure SCC, Richardson SE, Tellier R. Detection and Identification of Bartonella Species Pathogenic for Humans by PCR Amplification Targeting the Riboflavin Synthase Gene (ribC). J Clin Microbiol. 1 de marzo de 2003;41(3):1069.
dc.relation.referencesGomes C, Martinez-Puchol S, Pons MJ, Bazán J, Tinco C, del Valle J, et al. Evaluation of PCR Approaches for Detection of Bartonella bacilliformis in Blood Samples. PLoS Negl Trop Dis. 9 de marzo de 2016;10(3).
dc.relation.referencesVega L, Ariza A. Medicina Interna México. 2008 [citado 5 de junio de 2022]. p. 217-23 Bartonellosis: current clinical spectrum of an old pathogen. Disponible en: https://www.medigraphic.com/cgi-bin/new/resumenI.cgi?IDARTICULO=19615
dc.relation.referencesBlanton LS. The Rickettsioses: A Practical Update. Infect Dis Clin North Am. 1 de marzo de 2019;33(1):213.
dc.relation.referencesPortillo A, De Sousa R, Santibáñez S, Duarte A, Edouard S, Fonseca IP, et al. Guidelines for the Detection of Rickettsia spp. https://home.liebertpub.com/vbz. 1 de enero de 2017;17(1):23-32.
dc.relation.referencesParis DH, Dumler JS. State of the art of diagnosis of rickettsial diseases: the use of blood specimens for diagnosis of scrub typhus, spotted fever group rickettsiosis, and murine typhus. Curr Opin Infect Dis. 2016;29(5):433.
dc.relation.referencesCDC. Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Vector-Borne Diseases (DVBD). 2019 [citado 21 de junio de 2022]. Signs and Symptoms | Anaplasmosis | CDC. Disponible en: https://www.cdc.gov/anaplasmosis/symptoms/index.html
dc.relation.referencesFactsheet on Human granulocytic anaplasmosis. European Centre for Disease Prevention and Control.
dc.relation.referencesGarrido-Cardenas JA, Cebrián-Carmona J, González-Cerón L, Manzano-Agugliaro F, Mesa-Valle C. Analysis of Global Research on Malaria and Plasmodium vivax. Int J Environ Res Public Health. 1 de junio de 2019;16(11).
dc.relation.referencesZekar L, Sharman T. Plasmodium Falciparum Malaria. StatPearls. 11 de agosto de 2021.
dc.relation.referencesMahajan B, Zheng H, Pham PT, Sedegah MY, Majam VF, Akolkar N, et al. Polymerase chain reaction–based tests for pan-species and species-specific detection of human Plasmodium parasites. Transfusion (Paris). 1 de septiembre de 2012;52(9):1949-56.
dc.relation.referencesSato S. Plasmodium—a brief introduction to the parasites causing human malaria and their basic biology. J Physiol Anthropol. 1 de diciembre de 2021;40(1).
dc.relation.referencesCDC. Principles of Epidemiology | Lesson 1 - Section 9. Natural History and Spectrum of Disease. Disponible en: https://www.cdc.gov/csels/dsepd/ss1978/lesson1/section9.html
dc.relation.referencesVan Seventer JM, Hochberg NS. Principles of Infectious Diseases: Transmission, Diagnosis, Prevention, and Control. En: International Encyclopedia of Public Health. 2.a ed. Elsevier; 2017. p. 22-39.
dc.relation.referencesDavis S, Milechin L, Patel T, Hernandez M, Ciccarelli G, Samsi S, et al. Detecting Pathogen Exposure During the Non-symptomatic Incubation Period Using Physiological Data: Proof of Concept in Non-human Primates. Front Physiol. 3 de septiembre de 2021;12:1173.
dc.relation.referencesRai KR, Shrestha P, Yang B, Chen Y, Liu S, Maarouf M, et al. Acute Infection of Viral Pathogens and Their Innate Immune Escape. Front Microbiol. 22 de junio de 2021;12.
dc.relation.referencesMusso D, La Scola B. Laboratory diagnosis of leptospirosis: A challenge. Journal of Microbiology, Immunology and Infection. 1 de agosto de 2013;46(4):245-52.
dc.relation.referencesMuller DA, Depelsenaire ACI, Young PR. Clinical and Laboratory Diagnosis of Dengue Virus Infection. J Infect Dis. 1 de marzo de 2017;215(suppl_2):S89-95.
dc.relation.referencesSethuraman N, Jeremiah SS, Ryo A. Interpreting Diagnostic Tests for SARS-CoV-2. JAMA. 9 de junio de 2020;323(22):2249-51.
dc.relation.referencesNeagu M, Constantin C, Surcel M. Testing Antigens, Antibodies, and Immune Cells in COVID-19 as a Public Health Topic—Experience and Outlines. Int J Environ Res Public Health. 1 de diciembre de 2021;18(24).
dc.relation.referencesKabir MA, Zilouchian H, Younas MA, Asghar W. Dengue Detection: Advances in Diagnostic Tools from Conventional Technology to Point of Care. Biosensors (Basel). 1 de julio de 2021;11(7).
dc.relation.referencesBroeders S, Huber I, Grohmann L, Berben G, Taverniers I, Mazzara M, et al. Guidelines for validation of qualitative real-time PCR methods. Trends Food Sci Technol. 1 de junio de 2014;37(2):115-26.
dc.relation.referencesSmith M. Validating Real-Time Polymerase Chain Reaction (PCR) Assays. Encyclopedia of Virology. 2021;35.
dc.relation.referencesStordeur P, Poulin LF, Craciun L, Zhou L, Schandene L, De Lavareille A, et al. Cytokine mRNA quantification by real-time PCR. J Immunol Methods. 2002;259:55-64.
dc.relation.referencesSmith M. Validating Real-Time Polymerase Chain Reaction (PCR) Assays. Encyclopedia of Virology. 2021;(January):35-44.
dc.relation.referencesTaylor SM, Juliano JJ, Trottman PA, Griffin JB, Landis SH, Kitsa P, et al. High-Throughput Pooling and Real-Time PCR-Based Strategy for Malaria Detection. J Clin Microbiol. febrero de 2010;48(2):512.
dc.relation.referencesGrobe N, Cherif A, Wang X, Dong Z, Kotanko P. Sample pooling: burden or solution? Clinical Microbiology and Infection. 1 de septiembre de 2021;27(9):1212-20.
dc.relation.referencesGeng S, Mei Q, Zhu C, Fang X, Yang T, Zhang L, et al. Metagenomic next-generation sequencing technology for detection of pathogens in blood of critically ill patients. International Journal of Infectious Diseases. 1 de febrero de 2021;103:81-7.
dc.relation.referencesHill V, Ruis C, Bajaj S, Pybus OG, Kraemer MUG. Progress and challenges in virus genomic epidemiology. Trends Parasitol. 1 de diciembre de 2021;37(12):1038-49.
dc.relation.referencesLadner JT, Grubaugh ND, Pybus OG, Andersen KG. Precision epidemiology for infectious disease control. Nat Med. 1 de febrero de 2019;25(2):206.
dc.relation.referencesWhole Genome Sequencing | CDC. Disponible en: https://www.cdc.gov/pulsenet/pathogens/wgs.html
dc.relation.referencesMetzker ML. Sequencing technologies — the next generation. Nat Rev Genet. 8 de enero de 2010;11(1):31-46.
dc.relation.referencesGoodwin S, Gurtowski J, Ethe-Sayers S, Deshpande P, Schatz MC, McCombie WR. Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome. Genome Res. noviembre de 2015;25(11):1750-6.
dc.relation.referencesGoodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nature Reviews Genetics 2016 17:6. 17 de mayo de 2016;17(6):333-51.
dc.relation.referencesRamírez MT, Rosario C Del, Contreras E, Cabrera J, Degaudenzi AV, Ramírez RP. Evaluation of sample pooling for the detection of SARS-CoV-2 in a resource-limited setting, Dominican Republic. Enfermedades Infecciosas Y Microbiologia Clinica (English Ed) [Internet]. enero de 2023 [citado 9 de junio de 2024];41(1):29. Disponible en: /pmc/articles/PMC9817757/
dc.relation.referencesCiuoderis KA, Berg MG, Perez LJ, Hadji A, Perez-Restrepo LS, Aristizabal LC, et al. Oropouche virus as an emerging cause of acute febrile illness in Colombia. Emerg Microbes Infect. 31 de diciembre de 2022;11(1):2645-57.
dc.relation.referencesWaggoner JJ, Gresh L, Mohamed-Hadley A, Ballesteros G, Davila MJV, Tellez Y, et al. Single-Reaction Multiplex Reverse Transcription PCR for Detection of Zika, Chikungunya, and Dengue Viruses. Emerg Infect Dis. 1 de julio de 2016;22(7):1295.
dc.relation.referencesBounaadja L, Albert D, Chénais B, Hénault S, Zygmunt MS, Poliak S, et al. Real-time PCR for identification of Brucella spp.: A comparative study of IS711, bcsp31 and per target genes. Vet Microbiol. 28 de mayo de 2009;137(1-2):156-64.
dc.relation.referencesWaggoner JJ, Abeynayake J, Balassiano I, Lefterova M, Sahoo MK, Liu Y, et al. Multiplex Nucleic Acid Amplification Test for Diagnosis of Dengue Fever, Malaria, and Leptospirosis. Caliendo AM, editor. J Clin Microbiol. junio de 2014;52(6):2011-8.
dc.relation.referencesDahmana H, Granjon L, Diagne C, Davoust B, Fenollar F, Mediannikov O. Rodents as Hosts of Pathogens and Related Zoonotic Disease Risk. Pathogens. 10 de marzo de 2020;9(3):202.
dc.relation.referencesDiaz MH, Bai Y, Malania L, Winchell JM, Kosoy MY. Development of a Novel Genus-Specific Real-Time PCR Assay for Detection and Differentiation of Bartonella Species and Genotypes. J Clin Microbiol. mayo de 2012;50(5):1645-9.
dc.relation.referencesKamau E, Alemayehu S, Feghali KC, Saunders D, Ockenhouse CF. Multiplex qPCR for Detection and Absolute Quantification of Malaria. PLoS One. 29 de agosto de 2013;8(8):71539.
dc.relation.referencesMadden TL, Busby B, Ye J. Reply to the paper: Misunderstood parameters of NCBI BLAST impacts the correctness of bioinformatics workflows. Hancock J, editor. Bioinformatics. 1 de agosto de 2019;35(15):2699-700.
dc.relation.referencesVerrall AJ, Lye DC, Pada S, Smitasin N, Lee CK, Khoo MJ, et al. High yield of HIV testing in dengue-like febrile illness in Singapore. Open Forum Infect Dis. 2018;5(8):1-4.
dc.relation.referencesChang CC, Crane M, Zhou J, Mina M, Post JJ, Cameron BA, et al. HIV and co‐infections. Immunol Rev. 2014;254(1):114-42.
dc.relation.referencesWaggoner JJ, Abeynayake J, Balassiano I, Lefterova M, Sahoo MK, Liu Y, et al. Multiplex nucleic acid amplification test for diagnosis of dengue fever, malaria, and leptospirosis. J Clin Microbiol. 2014;52(6):2011-8.
dc.relation.referencesZhou K, Terrault N. Opioid use disorder and Chronic Hepatitis B. En: The Opioid Epidemic and Infectious Diseases. Elsevier; 2021. p. 97-123.
dc.relation.referencesHABER B. Viral Hepatitis. En: Pediatric Gastroenterology. Elsevier; 2008. p. 289-97.
dc.relation.referencesTietcheu BRG, Babai CN, Ngakou A. Seroprevalence, risk factors and impact of dengue fever/hepatitis B coinfection on liver function parameters in Cameroonian patients. Clin Exp Hepatol. 2022;8(2):161-9.
dc.relation.referencesDong H, Zhao L, Sun H, Shang M, Lv G, Yu X, et al. Coinfection of Clonorchis sinensis and hepatitis B virus: clinical liver indices and interaction in hepatic cell models. Parasit Vectors. 12 de diciembre de 2022;15(1):460.
dc.relation.referencesKumar A, Arora A. Liver involvement in common febrile illnesses. Curr Med Res Pract. septiembre de 2018;8(5):170-6.
dc.relation.referencesKhosavanna RR, Kareko BW, Brady AC, Booty BL, Nix CD, Lyski ZL, et al. Clinical Symptoms of Dengue Infection among Patients from a Non-Endemic Area and Potential for a Predictive Model: A Multiple Logistic Regression Analysis and Decision Tree. Am J Trop Med Hyg. 6 de enero de 2021;104(1):121-9.
dc.relation.referencesDíaz FA, Martínez RA, Villar LA. Criterios clínicos para diagnosticar el dengue en los primeros días de enfermedad. Biomédica. 1 de marzo de 2006;26(1):22.
dc.relation.referencesShi Y, Wang G, Lau HCH, Yu J. Metagenomic Sequencing for Microbial DNA in Human Samples: Emerging Technological Advances. Int J Mol Sci. 16 de febrero de 2022;23(4):2181.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.subject.lembFiebre - Investigaciones
dc.subject.lembBacterias patógenas - Investigaciones
dc.subject.lembEnfermedades bacterianas
dc.subject.lembVirus - Investigaciones
dc.subject.lembVirosis - Investigaciones
dc.subject.proposalVirus
dc.subject.proposalBacterias
dc.subject.proposalParásitos
dc.subject.proposalVillavicencio
dc.subject.proposalEnfermedad febril
dc.subject.proposalLeticia
dc.subject.proposalDetección molecular
dc.subject.proposalVirus
dc.subject.proposalParasites
dc.subject.proposalVillavicencio
dc.subject.proposalFebrile illness
dc.subject.proposalLeticia
dc.subject.proposalMolecular detection
dc.subject.proposalBacterium
dc.title.translatedMolecular characterization of pathogens associated with cases of acute undifferentiated febrile illness in Leticia and Villavicencio
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
dcterms.audience.professionaldevelopmentPúblico general
dc.description.curricularareaBiotecnología.Sede Medellín
dc.contributor.orcidCarvajal Aristizabal, Leidi Yulieth [0000-0002-1802-2836]


Archivos en el documento

Thumbnail

Este documento aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del documento

Atribución-NoComercial 4.0 InternacionalEsta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.Este documento ha sido depositado por parte de el(los) autor(es) bajo la siguiente constancia de depósito